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Abstract
Here, we demonstrate Tone Transfer, an interactive web experience that enables users to use neural networks to transform
any audio input into an array of several different musical instruments. By implementing fast and efficient neural synthesis
models in TensorFlow.js (TF.js), including special kernels for numerical stability, we are able to overcome the size and latency
of typical neural audio synthesis models to create a real-time and interactive web experience. Finally, Tone Transfer was
designed from extensive usability studies with both musicians and novices, focusing on enhancing creativity of users across
a variety of skill levels.
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1. Introduction
Neural audio synthesis, generating audio with neu-
ral networks, can extend human creativity by creat-
ing new synthesis tools that are expressive and intu-
itive [1, 2, 3, 4]. However, most neural networks are
too computationally expensive for interactive audio gen-
eration, especially on the web and mobile devices [5,
6, 7]. Differentiable Digital Signal Processing (DDSP)
models are a new class of algorithms that overcome
these challenges by leveraging prior signal processing
knowledge to make synthesis networks small, fast, and
efficient [8, 9].

Tone Transfer is a musical experience powered by
Magenta’s open source DDSP library1 to model and
map between the characteristics of different musical
instruments with machine learning. The process can
lead to creative, quirky results. For example replac-
ing a capella singing with a saxophone solo, or a dog
barking with a trumpet performance.

Tone Transfer was created as an invitation to novices
and musicians to take part in the future of machine
learning and creativity. Our focus was on cultural in-
clusion, increased awareness of machine learning for
artists and the general public, and inspiring excitement
of the future of creative work among musicians. We

Joint Proceedings of the ACM IUI 2021 Workshops, April 13-17, 2021,
College Station USA
email: michellecarney@google.com (M. Carney);
chongli@google.com (C. Li); edwintoh@google.com (E. Toh);
nzada@google.com (N. Zada); piyu@google.com (P. Yu);
jesseengel@google.com (J. Engel)
orcid:

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)
1g.co/magenta/ddsp

did this through an interactive, in-browser creative ex-
perience.

2. User Interface Design
We created the Tone Transfer website (https://sites.
research.google/tonetransfer) to allow anyone to ex-
periment with DDSP, regardless of their musical expe-
rience, on both desktop and mobile. Through multiple
rounds of usability studies with musicians, we have
been able to distill the following three main features
in Tone Transfer:

• Play with curated music samples. To understand
what DDSP can do, the user could click to lis-
ten to a wide range of pre-recorded samples and
their machine learning transformations in other
instruments.

• Record and transform new music. We also pro-
vided options for users to record or upload new
sounds and transform them into four instruments
in browser.

• Adjust the music. We know that control is im-
portant for the user so we allow the user to ad-
just the octave, loudness, and mixing of the ma-
chine learning transformations to get desired mu-
sic output.

There is also the need to help the user understand
how to use Tone Transfer as well as the machine learn-
ing technology behind it. Therefore, we designed tips
that guide the user through the experience and edu-
cate them on the best ways to interact with it. The user
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Figure 1: The web user interface of Tone Transfer

can also learn the training process of machine learning
models by clicking the "Discover more" button.

3. Models
At a technical level, the goal of our system is to be
able to create a monophonic synthesizer that can take
coarse user inputs of Pitch and Loudness and convert
them into detailed synthesizer coefficients that pro-
duce realistic sounding outputs.

We find this is possible with a carefully designed
variant of the standard Autoencoder architecture, where
we train the model to:

• Encode: Extract pitch and loudness signals from
audio.

• Decode: Use a network to convert pitch and loun-
dess into synthesizer controls.

• Synthesize: Use DDSP modules to convert syn-
thesizer controls to audio.

We then compare the synthesized audio to the orig-
inal audio with a multi-scale spectrogram loss [10, 8,
11] to train the parameters of the decoder network.

3.1. Encoding Features
To extract pitch during training (fundamental frequency,
𝑓0), we use a pretrained CREPE network [12]. Dur-

ing inference we use the SPICE model, which is faster
and has an implementation available in TF.js (https:
//tfhub.dev/google/tfjs-model/spice/2/default/1).

While the original DDSP paper used perceptually
weighted spectrograms for loudness, we find that the
root-mean-squared (RMS) power of the waveform works
well as a proxy and is less expensive to compute. We
train on 16kHz audio, with a hop size of 64 samples
(4ms) and a forward-facing (non-centered) frame size
of 1024 samples (64ms). We convert power to decibels,
and scale pitch and power to the range [0, 1] before
passing the features to the decoder.

3.2. Decoder Network
The decoder converts the encoded features (𝑓0, power)
into synthesizer controls for each frame of audio (250Hz,
4ms). As we discuss in Section 3.3, for the DDSP mod-
els in this work, the synthesizer controls are the har-
monic amplitude (𝐴), harmonic distribution (𝑐𝑘 ), and
filtered noise magnitudes.

The DDSP modules are agnostic to the model archi-
tecture used and convert model outputs to desired con-
trol ranges using custom nonlinearities as described
in [8].

We use two stacks of non-causal dilated convolution
layers as the decoder. Each stack begins with a non-
dilated input convolution layer, followed by 8 layers,
with a dilation factor increasing in powers of 2 from 1
to 128. Each layer has 128 channels and a kernel size
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Figure 2: A diagram of the DDSP autoencoder training. Source audio is encoded to a 2-dimensional input feature (pitch
and power), that the decoder converts to a 126-dimensional synthesizer controls (amplitude, harmonic distribution, and
noise frequency response). We use the CREPE model for pitch detection during training and the SPICE model for pitch
detection during inference. These controls are synthesized by a filtered noise synthesizer and harmonic synthesizer, mixed
together, and run through a trainable reverb module. The resulting audio is compared against the original audio with a
multi-scale spectrogram loss. Blue components represent the source audio and resynthesized audio. Yellow components
are fixed components (pitch tracking, DDSP synthesizers, and loss function), green components are intermediate features
(decoder inputs and synthesizer controls), and red components have trainable parameters (decoder layers and reverb im-
pulse response).

of 3, and is followed by layer normalization [13], and a
ReLU nonlinearity [14]. The scale and shift of the layer
normalization are controlled by the pitch and power
conditioning after it is run through a 1x1 convolution
with 128 channels. The complete model has ∼ 830𝑘
trainable parameters.

3.3. Differentiable Synthesizers
To generate audio, we use a combination of additive
(Harmonic) and subtractive (Filtered Noise) synthesis
techniques. Inspired by the work of [15], we model
sound as a flexible combination of time-dependent si-
nusoidal oscillators and filtered noise. DDSP makes
these operations differentiable for end-to-end training
by implementing them in TensorFlow [16]. Full details
can be found in the original papers [8, 9], but for clar-
ity, we review the main modules here.

3.3.1. Sinusoidal Oscillators

A sinusoidal oscillator bank is an additive synthesizer
that consists of 𝐾 sinusoids with individually varying
amplitudes 𝐴𝑘 and frequencies 𝑓𝑘 . These are flexibly
specified by the output of a neural network over 𝑛 dis-
crete time steps (250Hz, 4ms per frame):

𝑥(𝑛) =
𝐾−1
∑
𝑘=0

𝐴𝑘 (𝑛) sin(𝜙𝑘 (𝑛)), (1)

where 𝜙𝑘 (𝑛) is its instantaneous phase obtained by cu-
mulative summation of the instantaneous frequency
𝑓𝑘 (𝑛):

𝜙𝑘 (𝑛) = 2𝜋
𝑛
∑
𝑚=0

𝑓𝑘 (𝑚), (2)

The network outputs amplitudes 𝐴𝑘 and frequen-
cies 𝑓𝑘 every 4ms, which are upsampled to audio rate
(16kHz) using overlapping Hann windows and linear
interpolation respectively.

3.3.2. Harmonic Synthesizer

Since we train on individual instruments with strong
harmonic relationships of their partials, we can repa-
rameterize the sinusoidal oscillator bank as a harmonic
oscillator, with a single fundamental frequency 𝑓0, am-
plitude 𝐴, and harmonic distribution 𝑐𝑘 . All the output
frequencies are constrained to be harmonic (integer)
multiples of a fundamental frequency (pitch),

𝑓𝑘 (𝑛) = 𝑘𝑓0(𝑛) (3)



Individual amplitudes are deterministically retrieved
by multiplying the total amplitude, 𝐴(𝑛), with the nor-
malized distribution over harmonic amplitudes, 𝑐𝑘 (𝑛):

𝐴𝑘 (𝑛) = 𝐴(𝑛)𝑐𝑘 (𝑛). (4)

where ,

𝐾−1
∑
𝑘=0

𝑐𝑘 (𝑛) = 1, 𝑐𝑘 (𝑛) ≥ 0 (5)

3.3.3. Filtered Noise Synthesizer

We can model the non-periodic audio components as
a subtractive synthesizer, with a linear time-varying
filtered noise source. White noise is generated from a
uniform distribution, which we then filter with an Fi-
nite Impulse Response (FIR) filter. Since the network
outputs different coefficients of the frequency response
in each frame, it creates an expressive time-varying fil-
ter.

3.3.4. Reverb

To first approximation, room responses with fixed source
and listener locations can be approximated by a single
impulse response that can be applied as a FIR filter. In
terms of neural networks, this is equivalent to a 1-D
convolution with a very large receptive field (∼40k).
We treat the impulse response as a learned variable,
and train a new response (jointly with the rest of the
model) for each dataset with a unique recording envi-
ronment.

To better disentangle the signal from the room re-
sponse, we generate the impulse response with a fil-
tered noise synthesizer as described in Section 3.3.3,
and learn the transfer function coefficients to gener-
ate a desired impulse response. This prevents coherent
impulse responses at short time scales that can entan-
gle the frequency response of the synthesizer with the
room response. At inference, we discard the expen-
sive convolutional reverb component to synthesize the
"dry" signal, and apply a more efficient stock reverb ef-
fect.

3.4. Training
Given that the DDSP model described above is for mono-
phonic instruments, we collect data of individual in-
struments, and train a separate model for each dataset.

3.4.1. Data

We train models on four instruments: Violin, Flute,
Trumpet, and Saxophone. Following [17] and [8], we
use home recordings of Trumpet and Saxophone for
training, and collected performances of Flute and Vio-
lin from the MusOpen royalty free music library 2.

Since DDSP models are efficient to train, for each
instrument we only need to collect between 10 and
15 minutes of performance, and we ensure a that all
recordings are from the same room environment to al-
low training a single reverb impulse response.

3.4.2. Optimization

We train models with the Adam optimizer [18], exam-
ples 4 seconds in length, batch size of 128, and learning
rate of 3e-4. As we would like to use models to gener-
alize to new types of pitch and loudness inputs, we re-
duce overfitting through early stopping, typically be-
tween 20k and 40k iterations.

4. Interactive Models

4.1. On-device Inference with
Magenta.js

Musical interaction has strong requirements for close
to real-time feedback and low latency. However, ma-
chine learning models are typically slow and compu-
tationally expensive, requiring GPU or TPU servers
to run at all. Further, large model sizes lead to long
load times before execution can even begin. Running
models on-device, if possible, eliminates serving costs,
decreases interactive latency, and increases accessibil-
ity. To create an interactive and scalable musical ex-
perience, we optimized and converted models to be
compatible with Tensorflow.js so that they can run on-
device in the browser on both desktop and mobile de-
vices.

Even after optimization, the models are still rela-
tively large (4mb each), so each model is only loaded
on demand. This ensured the user downloads only the
things they need, and nothing more, which resulted in
a fast and responsive website.

The methods to extract pitches, and the four mod-
els that are on the website are then open sourced and

2Violin: Five pieces by John Garner (II. Double, III. Corrente,
IV. Double Presto, VI. Double, VIII. Double, Flute: Four pieces
by Paolo Damoro (24 Etudes for Flute, Op. 15 - III. Allegro con
brio in G major, 24 Etudes for Flute, Op. 15 - VI. Moderato in
B minor, 3 Fantaisies for Solo Flute, Op. 38 - Fantaisie no. 1,
Sonata Appassionata, Op. 140)) from https://musopen.org/music/
13574-violin-partita-no-1-bwv-1002/
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made easier for anyone to download and run their own
experiences. Each model comes with a set of custom
values that are manually tweaked to create a more ac-
curate output.

These methods are added to the Magenta.js library.3

4.2. Custom TF.JS Kernels to Preserve
Precision

TensorFlow.js is a web ML platform that provides hard-
ware acceleration through web APIs like WebGL and
WebAssembly. DDSP relies on TensorFlow.js to speed
up the model execution. To maintain accuracy of DDSP
model on a variety of devices, we implemented a cou-
ple of special kernels that eliminated overflow (𝑎𝑏𝑠(𝑛) >
65504) and underflow (𝑎𝑏𝑠(𝑛) < 2−10) of float16 texture
when running on the TensorFlow.js WebGL backend.

For example, the DDSP model uses TensorFlow Cum-
sum op to calculate the cumulative summation of the
instantaneous frequency, then obtain the phase from
those values. TensorFlow.js implements a parallel al-
gorithm4 for cumulative sum, which requires log(n)
writes of intermediate tensors to the GPU textures.
The cumulative precision loss would cause a large shift
on the final phase values. The solution is to register a
custom Cumsum op that uses a serialized algorithm
that avoids all intermediate texture writes and is in-
corporated with the phase computation.

5. Conclusion and Future Work
Tone Transfer is an example of an interdisciplinary de-
sign, engineering, and AI research teams working to-
gether to create a User Interface Design for the next
wave of AI. We leverage state-of-the-art machine learn-
ing models that are both expressive and efficient, and
optimize them for client-side use to enable interactive
neural audio synthesis on the web. This work demon-
strates that on-device machine learning can enable in-
teractive and creative music making experiences for
novices and musicians alike. The technologies that
power Tone Transfer have also been open sourced as
a part of Magenta.js and provide a solid foundation for
further interactive studies. Future work will hopefully
allow users to train their own models based on their
own instruments, and explore using new types of in-
puts to create multi-sensory experiences.

3https://github.com/magenta/magenta-js/tree/master/music#
ddsp

4https://en.wikipedia.org/wiki/Prefix_sum#Parallel_
algorithms
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