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Abstract
In this paper we propose a true concurrency semantics for limited resources systems using K-bounded
Petri net as modeling formalism and maximality labeled transition system (MLTS) as semantics model.
Indeed the model of MLTS expresses clearly the semantics of true parallelism of concurrent systems.
The proposed operational maximality semantics for K-bounded Petri nets makes it possible to interpret
any K-bounded Petri net in terms of MLTS. Through an example we show the interest of the proposed se-
mantics in comparison with the interleaving semantics and the ST semantics. The comparison concerns
the preservation of true concurrency and the reduction of the size of the semantics model. Furthermore,
we will show that expected CTL properties may be verified on the corresponding maximality labeled
transition system of a modeled system using our developed tool.
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1. Introduction

Formal verification of complex systems is now a major issue in many areas. Indeed, the use
of methods of specification and formal verification, assisted by powerful computer tools make
the analysis of these systems reliable and guarantees a good compromise between cost and
performance. The Petri net model is a graphical and mathematical modelling tool used to
specify clearly concurrent systems behaviours. The marking graph associated to the Petri net is
used to check the properties of the specified system. Indeed this markings graph is seen as a
labeled transition system (LTS). However, the model of LTS is an interleaved model that makes
abstraction of the parallel execution of transitions. To clarify the ideas, we recall the example of
the two Petri nets of Figures 1.(a) and Figure 1.(b) presented in [1][2]. The Petri net of Figure
1.(a) represents a system able of executing the transitions 𝑡1 and 𝑡2 in parallel, while the Petri
net of Figure 1.(b) represents a system which executes either the transition 𝑡1 then 𝑡3 or the
transition 𝑡2 then 𝑡4.

The marking graphs corresponding to the Petri net of Figure 1.(a) and Figure 1.(b) are given
respectively by Figure 2.(a) and Figure 2.(b). When the transitions 𝑡1 and 𝑡4 are labeled by the
action 𝑎 and the transitions 𝑡2 and 𝑡3 by the action 𝑏, we remark that these marking graphs are
isomorphic. Consequently, the parallel execution of the actions 𝑎 and 𝑏 is interpreted as the
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Figure 1: Ordinary Petri net.

interleaved execution of these two actions in time.

Figure 2: Interleaving semantics.

This result is acceptable under the assumption that the firing of each transition corresponds
to the execution of an indivisible action with zero duration (structural and temporal atomicity
of the actions). This hypothesis is far from acceptable in the reality.
In order to accept the results of the verification, it is imperative that the constraints imposed by
the real world are taken into account both by the specification and by the underlying semantic
model. To support our claim, let us now reconsider that the transition 𝑡1 (resp. 𝑡4) consists of
two sequential transitions 𝑡1−1 followed by 𝑡1−2 (resp 𝑡4−1 followed by 𝑡4−2), the transitions
𝑡1−1 and 𝑡4−1 are labeled by the action 𝑎1 while the transitions 𝑡1−2 and 𝑡4−2 are labeled by
the action 𝑎2. The refined Petri nets as well as their labeled transitions systems are represented
in Figure 3. It is clear that the behaviours of these two Petri nets are different. Indeed, in the
first system, the execution of action 𝑏 may occur between the execution of actions 𝑎1 and 𝑎2,
which is not possible in the second system.

Taking into account the non-atomicity of actions in a system has been deeply studied in
the literature through the definition of several semantics supporting the concept of action
refinement [3][4][5][6][7][8][9][10][11][12][13][14][15][16]. Considering such semantics al-
lows a hierarchical design of the systems by refining actions (actions are seen as abstract
processes). Another interest of these semantics is the characterization of parallel executions of



Figure 3: No structural atomicity of actions.

non-instantaneous actions.
Among these semantics, we can cite the maximality semantics. Which has been defined by Dev-
illers and Vogler [10][17]. In this context, maximality bissimulation relation has been defined
and proved to be coarsest relation preserved by action refinement.
In underlying semantics models of Petri net and event structures, a system with infinite be-
haviour needs an infinite set of events, which makes the underlying structures interesting just
for theoretical point of view [10][17].
Dealing with implementability, another model named maximality based labeled transition
system has been defined in the literature and used for expressing the semantics of process
algebras and Petri net with the hypothesis that actions are not necessary atomic, i.e. actions are
abstractions of finite processes and may elapse on time [18][1][19][2][20]. The main interest of
maximality labeled transition system model is that it can be implemented and used in verifica-
tion.
To more show the interest of the maximality semantics, we take the same example of the figure
1 while applying the method of generation of MLTS for the Petri nets proposed in [1]. So we
get from the start two completely different MLTS that exactly reflect the behaviour described
by the Petri nets.



Figure 4: Maximality semantics.

For the MLTS of figure 4.(a) actions 𝑎 and 𝑏 are executed sequentially 𝑎 then 𝑏 or 𝑏 then 𝑎.
For example for the first branch of this MLTS the start of execution of action 𝑎 is identified by
𝑥, this action is executed independently of any other action, hence the association of the empty
set to the cause of the transition 𝑠1

∅𝑎𝑥−−→ 𝑠2. However the start of the execution of the action
𝑏 from state 𝑠2 is caused by the end of the execution of the action 𝑎 hence the association of

the set {𝑥} to the set of causes of the transition 𝑠2
{𝑥}𝑏𝑥−−−→ 𝑠2 and the event name 𝑥 is re-used

to identify the start of execution the action 𝑏. For the MLTS of figure 4.(b) actions 𝑎 and 𝑏 are
clearly executed in parallel. The actions 𝑎 and 𝑏 are executed independently of any other action.
The set {𝑥, 𝑦} in states 𝑠4, 𝑠5 indicated that there is two actions executed in parallel one is
identified by 𝑥 and the other by 𝑦.

In this paper we are interested by limited resources systems, while using the model of K-
bounded Petri net as a modelling formalism, indeed the model of K-bounded Petri net is an
intuitive model to represent the limitation of resources in a system. To deal with concurrency
in the system behaviour we propose an operational maximality semantics that translates any
K-bounded Petri net to maximality labeled transition systems.
The proposed semantics is concretized by the development of a software tool named MOS-KBPN
for (Maximality Operational Semantics for K-Bounded Petri Net). Consequently we can take
advantage of different results developed around the model of maximality labeled transition
system.

Through a classic example of a limited buffer producer consumer paradigm, we show the
interest of the proposed semantics in comparison to the interleaving semantics and the ST
semantics. The comparison concerns the preservation of true concurrency and the reduction
of the size of the semantics model. Furthermore, we will show that the properties of good
behaviour of system can be verified on the corresponding maximality labeled transition system
using our developed tool.

In addition, as we have mentioned to take advantage of the results developed around the
model of maximality labeled transition system, we have applied on the fly reduction method
to the maximality labeled transition system generated from a K-bounded Petri net which is



proposed in [19][21]. This method is based on the transitions aggregation, which contributes
considerably to the reduction rate of the semantics model.

2. Maximality-based labeled transition system

Definition 2.1. Let ℋ be a countable set of event names. Let L be an alphabet ranging over by
𝑎, 𝑏, ... In practice a label is a name of an action. A maximality-based labeled transition system of
support ℋ is a fivefold (𝜌, 𝜙, 𝜇, 𝜉, 𝜃) with: 𝜌 = ⟨𝑆, 𝑇𝑅, 𝛼, 𝛽, 𝑠0⟩ is a transition system such that:

• S is the set of states in which the system may be found, this set can be finite or infinite.
• TR is the set of transitions indicating the change of states which the system can do; this set

can be finite or infinite.
• 𝛼 and 𝛽 are two applications of TR in S such that for any transition 𝑡𝑟 ∈ 𝑇𝑅: 𝛼 (𝑡𝑟) is the

origin of the transition tr and 𝛽 (𝑡𝑟) is its goal.
• 𝑠0 is the initial state of the transition system 𝜌.
• (𝜌, 𝜙) is a system of transitions labeled by the function 𝜙 on L, called support of (𝜌, 𝜙).
(𝜙 : 𝑇𝑅 −→ L).

• 𝜃 : 𝑆 −→ 2ℋ is a function which associates to each state a finite set of maximal event
names, with the assumption that 𝜃 (𝑠0) = ∅.1

• 𝜇 : 𝑇𝑅 −→ 2ℋ is a function which associates to each transition a finite set of event names
corresponding to the actions which began their execution and their terminations cause the
execution of this transition.

• 𝜉 : 𝑇𝑅 −→ ℋ is a function which associates to each transition the event name identifying
its occurrence.

Where each transition 𝑡𝑟 ∈ 𝑇𝑅 satisfies the condition, 𝜇 (𝑡𝑟) ⊆ 𝜃 (𝛼 (𝑡𝑟)), 𝜉 (𝑡𝑟) /∈ 𝜃 (𝛼 (𝑡𝑟))−
𝜇 (𝑡𝑟) and 𝜃 (𝛽 (𝑡𝑟)) = (𝜃 (𝛼 (𝑡𝑟))− 𝜇 (𝑡𝑟)) ∪ {𝜉 (𝑡𝑟)}.

The last condition avoids the consideration of imaginary systems. In fact:

• The condition 𝜇 (𝑡𝑟) ⊆ 𝜃 (𝛼 (𝑡𝑟)) ensures that the execution of the transition 𝑡𝑟 is only
conditioned by the termination of a subset of actions potentially in execution in the state
𝛼 (𝑡𝑟).

• The condition 𝜉 (𝑡𝑟) /∈ 𝜃 (𝛼 (𝑡𝑟)) − 𝜇 (𝑡𝑟) ensures that the event name 𝜉 (𝑡𝑟) indexing
the transition 𝑡𝑟 does not refer to any action remaining potentially in execution in the
resulting state 𝛽 (𝑡𝑟).

• As the set of event names 𝜇 (𝑡𝑟) is related to actions such that their termination consti-
tute a condition for the execution of the transition 𝑡𝑟, then the condition 𝜃 (𝛽 (𝑡𝑟)) =
(𝜃 (𝛼 (𝑡𝑟))− 𝜇 (𝑡𝑟)) ∪ {𝜉 (𝑡𝑟)} ensures that the set of maximal events in the state 𝛽 (𝑡𝑟)
is the one in the state 𝛼 (𝑡𝑟) from which the set 𝜇 (𝑡𝑟) is removed and the event name
𝜉 (𝑡𝑟) is added.

12ℋ denotes the part sets of ℋ.



3. Maximality semantics for ordinary Petri net

In this section we recall the maximality approach for ordinary Petri net, proposed in [1]. Consider

Figure 5: Marked Petri net.

the example of the marked Petri net of Figure 5. After the firing of the transition 𝑡1, it is evident
that the execution of the transitions 𝑡2 and 𝑡3 are conditioned by the end of the action linked
to the transition 𝑡1. To capture this causal dependence between the firing of transitions, we
consider that the tokens produced by the firing of the transition 𝑡1 are bound to this transition,
namely the token in place 𝑝2 and the token in place 𝑝3. We can remark that, in the initial state,
the token in 𝑝1 is not bound to any transition, this token is said to be free in this state. In the
case where the transition 𝑡2 is fired, it could be deduced that the action associated with the
firing of 𝑡1 has finished. As a result, the token in 𝑝3 will become free. Resulting marking after
the firing of the transition 𝑡2 is given in Figure 6.(c).

To distinguish between free and bound tokens in a place, we can imagine that a place is
composed of two separated parts. The left part contains free tokens while the right one will
contain bound tokens. In a place, the number of free tokens will be noted by ℱ𝒯 , while bound
tokens set will be noted by ℬ𝒯 . Each bound token identifies an action that is potentially in
execution (this token is a maximal event). For example, in the configuration 𝐶2 of Figure 6,
the right part ℬ𝒯 of the place 𝑝2 contains a bound token of the firing ∅𝑡1𝑥, which means that
ℬ𝒯 2 = {(1, 𝑡1, 𝑥)}.

4. Maximality Semantics for k-bounded Petri net

Through an example we explain the idea behind the proposed maximality semantics for K-
bounded Petri nets. Let the Petri net of Figure 7. The tokens in 𝑝1 are not bound to any transition,
these tokens are said to be free (see Figure 8.(a)). In the case when the transition 𝑡1 is launched,
a bound token is produced in the place 𝑝2.

By firing the transition 𝑡1, we will obtain the marked Petri net of Figure 8.(b). From this
marking, it can be seen that transition 𝑡1 can be launched again. The firing of this transition



Figure 6: Free tokens and bound tokens in a marking.

Figure 7: Modelling of auto-concurrency.



will lead to the configuration of Figure 8.(c). From this configuration, the transition 𝑡1 can not
be fired again because the place 𝑝2 is 2-bounded (𝑘 = 2).
The maximality labeled transition system of Figure 9 corresponds to the petri net of Figure 7.

Figure 8: Evolution of Petri net.

Figure 9: MLTS in the case of parallelism.

5. Operational maximalitysSemantics for K-bounded Petri net

5.1. Preliminary definitions:

Definition 5.1. A K-bounded Petri net is a fivefold (𝑃, 𝑇,𝑊−,𝑊+,𝐾) where:

• 𝑃 : is a finite set of places.
• 𝑇 : is a finite set of transitions such that: 𝑃 ∩ 𝑇 = ∅.
• 𝑊− : 𝑃 × 𝑇 −→ N is the matrix of preconditions.
• 𝑊+ : 𝑃 × 𝑇 −→ N is the matrix of postconditions.
• 𝐾 : 𝑃 −→ N+ is a function defining the limit capacity of places. 𝐾 (𝑝) = 𝑘 denotes the

fact that the place p can’t contain more than k tokens.

Definition 5.2. A labeled system Σ = (𝑃, 𝑇,𝑊−,𝑊+,𝐾, 𝜆) is a K-bounded Petri net in which
all transitions are labeled by actions such that 𝜆 : 𝑇 −→ 𝐿 is a labeling function.



Definition 5.3. Let (𝑃, 𝑇,𝑊−,𝑊+,𝐾) be a K-bounded Petri net with a marking 𝑀 :

• ∀𝑝 ∈ 𝑃 , 𝑀 (𝑝) is a pair (ℱ𝒯 ,ℬ𝒯 ) such that ℱ𝒯 ∈ N and ℬ𝒯 = {𝑏𝑡/𝑏𝑡 ∈ N× 𝑇 ×ℋ}
denote the number of free tokens and the set (possibly empty) of bound tokens in the place
𝑝, respectively.

• Let 𝑝 be a place such that𝑀 (𝑝) = (ℱ𝒯 ,ℬ𝒯 )whereℬ𝒯 = {(𝑛1, 𝑡1, 𝑥1) , ..., (𝑛𝑚, 𝑡𝑚, 𝑥𝑚)}.
The set of event names in 𝑝 is given by a function 𝛿∙ : 𝑃 −→ 2ℋ, 𝛿∙ (𝑝) = {𝑥1, 𝑥2, .., 𝑥𝑚}.

• The set of maximal event names in 𝑀 is the set of all event names identifying bound tokens
in the marking 𝑀 . Formally, the function 𝛿 will be used to calculate this set and it can be
defined as:
𝛿 : {𝑀 : 𝑀 𝑎𝑚𝑎𝑟𝑘𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒𝑃𝑒𝑡𝑟𝑖 𝑛𝑒𝑡} −→ 2ℋ such that 𝛿 (𝑀) = ∪𝑝∈𝑃 𝛿∙ (𝑝).

• Let 𝑋 ⊂ ℋ be a finite set of maximal event names of actions which terminated their
execution. The operation of transforming bound tokens defined by 𝑋 to free tokens in the
marking 𝑀 is defined by the inductive function 𝑚𝑎𝑘𝑒𝑓𝑟𝑒𝑒 as follows :

– 𝑚𝑎𝑘𝑒𝑓𝑟𝑒𝑒 ({𝑥1, 𝑥2, ..., 𝑥𝑚} ,𝑀) = 𝑚𝑎𝑘𝑒𝑓𝑟𝑒𝑒 ({𝑥2, ..., 𝑥𝑚} ,𝑚𝑎𝑘𝑒𝑓𝑟𝑒𝑒 ({𝑥1} ,𝑀))

– 𝑚𝑎𝑘𝑒𝑓𝑟𝑒𝑒 ({𝑥} ,𝑀) = 𝑀 ′ such that for all 𝑝 ∈ 𝑃 , if 𝑀 (𝑝) = (ℱ𝒯 ,ℬ𝒯 ) then:
∗ If there is (𝑛, 𝑡, 𝑥) ∈ ℬ𝒯 then 𝑀 ′ (𝑝) = (ℱ𝒯 + 𝑛,ℬ𝒯 − {(𝑛, 𝑡, 𝑥)}) (Conver-

sion of 𝑛 bound tokens identified by the event name 𝑥 to free tokens).
∗ Otherwise, 𝑀 ′ (𝑝) = 𝑀 (𝑝).

• | 𝑀 (𝑝) |= ℱ𝒯 +
∑︀𝑚

𝑖=1 𝑛𝑖 such that𝑀 (𝑝) = (ℱ𝒯 ,ℬ𝒯 )withℬ𝒯 = {(𝑛1, 𝑡1, 𝑥1) , ..., (𝑛𝑚, 𝑡𝑚, 𝑥𝑚)}.
• Let 𝑡 be a transition of 𝑇 ; 𝑡 is said to be enabled by the marking 𝑀 iff | 𝑀 (𝑝) |≥
𝑊− (𝑝, 𝑡) for all 𝑝 ∈ 𝑃 . And | 𝑀 (𝑝) | −𝑊− (𝑝, 𝑡) + 𝑊+ (𝑝, 𝑡) ≤ 𝑘 if 𝑝 is K-bouned
place (𝐾 (𝑝) = 𝑘). The set of all transitions enabled by the marking 𝑀 will be noted
𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑀).

• The marking 𝑀 is said minimal for the firing of the transition 𝑡 iff | 𝑀 (𝑝) |= 𝑊− (𝑝, 𝑡)
for all 𝑝 ∈ 𝑃 .

• Let 𝑀1 and 𝑀2 be two markings of the K-bounded Petri net (𝑃, 𝑇,𝑊−,𝑊+,𝐾). 𝑀1 ⊆
𝑀2 iff ∀𝑝 ∈ 𝑃 , if 𝑀1 (𝑝) = (ℱ𝒯 1,ℬ𝒯 1) and 𝑀2 (𝑝) = (ℱ𝒯 2,ℬ𝒯 2) then ℱ𝒯 1 ≤ ℱ𝒯 2

and ℬ𝒯 1 ⊆ ℬ𝒯 2 such that the relation ⊆ is extended to bound tokens sets as follows:
ℬ𝒯 1 ⊆ ℬ𝒯 2 iff ∀ (𝑛1, 𝑡, 𝑥) ∈ ℬ𝒯 1, ∃ (𝑛2, 𝑡, 𝑥) ∈ ℬ𝒯 2 such that 𝑛1 ≤ 𝑛2.

• Let 𝑀1 and 𝑀2 be two markings of the K-bounded Petri net (𝑃, 𝑇,𝑊−,𝑊+,𝐾) such that
𝑀1 ⊆ 𝑀2. The difference 𝑀2 −𝑀1 is a marking 𝑀3 (𝑀2 −𝑀1 = 𝑀3) such that, for all
𝑝 ∈ 𝑃 , if𝑀1 (𝑝) = (ℱ𝒯 1,ℬ𝒯 1) and𝑀2 (𝑝) = (ℱ𝒯 2,ℬ𝒯 2) then𝑀3 (𝑝) = (ℱ𝒯 3,ℬ𝒯 3)
with ℱ𝒯 3 = ℱ𝒯 2 − ℱ𝒯 1 and ∀ (𝑛1, 𝑡, 𝑥) ∈ ℬ𝒯 1, (𝑛2, 𝑡, 𝑥) ∈ ℬ𝒯 2, if 𝑛1 ̸= 𝑛2 then
(𝑛2 − 𝑛1, 𝑡, 𝑥) ∈ ℬ𝒯 3.

• 𝑀𝑖𝑛 (𝑀, 𝑡) = {𝑀 ′/𝑀 ′ ⊆ 𝑀 and 𝑀 ′ is minimal for the firing of 𝑡}.
• 𝑔𝑒𝑡 : 2ℋ −→ ℋ is a function such that for any 𝐴 ∈ 2ℋ, 𝑔𝑒𝑡 (𝐴) ∈ 𝐴. The function 𝑔𝑒𝑡

chooses in a unique manner an element of 𝐴 (an event name).

5.2. Semantic rule

The operational semantics of labeled Petri nets allowing the generation of a maximality-based
labeled transition systems is defined by:



𝑡 ∈ 𝑇 ∧ 𝑡 ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 (𝑀1) ,𝑀3 ∈ 𝑀𝑖𝑛 (𝑀1, 𝑡)

𝑀1
𝐸𝜆(𝑡)𝑥−−−−→ 𝑀2

such that:

• 𝐸 = 𝛿 (𝑀3) ,𝑀4 = 𝑚𝑎𝑘𝑒𝑓𝑟𝑒𝑒 (𝐸,𝑀1 −𝑀3)

• For any 𝑝 ∈ 𝑃 with 𝑀4 (𝑝) = (ℱ𝒯 4,ℬ𝒯 4), 𝑀2 (𝑝) = (ℱ𝒯 4,ℬ𝒯 2) where:
ℬ𝒯 2 = ℬ𝒯 4 ∪ {(𝑊+ (𝑝, 𝑡) , 𝑡, 𝑥) /𝑊+ (𝑝, 𝑡) ̸= 0}

• 𝑥 = 𝑔𝑒𝑡 (ℋ− (𝛿 (𝑚𝑎𝑘𝑒𝑓𝑟𝑒𝑒 (𝐸,𝑀1))))

6. On the fly reduction method for maximality labeled
transition system

In this section we recall the approach that generates an on-the-fly reduced MLTS modulo a
maximality bisimulation relation proposed for ordinary Petri net in [19].

For explanation we consider the example of Figure 10. In the initial state (state 𝑠1) of the
maximality-based labeled transition system of Figure 10.(b), no action is running, from where
the association of the empty set with this state. From state 𝑠1, actions 𝑎 and 𝑏 can start their
execution independently, their starts are respectively identified by event names 𝑥 and 𝑦. 𝑎 and
𝑏 can be launched in any order. The set {𝑥} (resp. {𝑦}) in state 𝑠2 (resp. 𝑠3) stipulates that the
action 𝑎 (resp. 𝑏) are potentially under execution in this state. {𝑥, 𝑦} in 𝑠4 shows that actions 𝑎
and 𝑏 can be executed simultaneously.
Note that when the system is in state 𝑠2, while the action 𝑎 has not been terminated yet, the only
evolution concerns the start of 𝑏. However, when 𝑎 terminates, we can start the action 𝑏 caused
by 𝑎 or the action 𝑏 which is independent from the end of 𝑎. Resulting states are respectively 𝑠4
and 𝑠5. We can observe that from state 𝑠5, the start of 𝑏 is always possible. However, the same
ending constraint of 𝑎 is imposed for the execution of 𝑏 at the level of state 𝑠4. Note that causal
dependence between execution of 𝑏 across from the action 𝑎 is captured by the consumption of
the produced token coming from the transition 𝑡1 during the firing of 𝑡2 in the Petri net.
Notice that from state 𝑠2, transitions leading respectively to states 𝑠4 and 𝑠5 are due to the firing
of the same transition 𝑡2. In the first firing, the token of the initial marking is used whereas in
the second firing, the used token is that produced by the firing of 𝑡1. On the other hand, such
as we noted above, the derivation by 𝑏 leading to state 𝑠4 is not conditioned by the end of the
action 𝑎, while the derivation leading to state 𝑠5 is conditioned by the end of 𝑎. In [19] it is
clearly proved that states 𝑠4 and 𝑠5 are maximally bisimilar which means that is possible to
omit the derivations 𝑠2 −→ 𝑠5 −→ 𝑠6 in the maximality-based labeled transition system.
As we have previously mentioned, to take advantage of the results developed around the model
of maximality labeled transition system, maximality bisimulation relations defined on maximal-
ity labeled transitions system for ordinary Petri net will be extended in this paper to K-bounded
Petri net.

Definition 6.1. Let 𝑀𝑎𝑟𝑘 be a set of markings, 𝑇 a set of transitions and −→ a derivation
relation between markings which is previously explained.



Figure 10: Example MLTS reduction.

1. Let ℜ ⊆ 2𝑀𝑎𝑟𝑞 × 2𝑀𝑎𝑟𝑞 × ℱ . the relation ℜ is sais maximality bisimulation relation
according to a set of transitions of K-bounded Petri net bisimulation relation according to a
set of transitions iff: ∀
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(𝑀𝑗 [𝑧/𝑥] ,𝑀
′
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systems with initial marking. Σ1, Σ2 are said to be maximally bisimilar according to 𝑇
noted Σ1 ≈𝑇

𝑚 Σ2 if and only if there exists a maximality bisimulation relation ℜ according
to 𝑇 such that /

(︀
𝑀1

0 ,𝑀
2
0 , ∅

)︀
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3. 𝑀1 ≈𝑇
𝑚 /𝑓 𝑀2 note that (𝑀1,𝑀2, 𝑓) ∈ ℜ.

In this paper we will apply the same approach to reduce on the fly the maximality labled
transition system generated from K-bounded Petri net. For this we keep the same operational
semantics by modifying the semantics of the function Min.
In this case, a minimal marking for the firing of a transition 𝑡 is considered as an element of
the set 𝑀𝑖𝑛 (𝑀, 𝑡) only if for each place of this marking, bound tokens are only taken in the
case when the free part does not satisfy the pre-condition of this transition. Therefore, we
can ensure that a transition 𝑡 will be executed sequentially after a transition 𝑡′ if it cannot be
executed independently with this same transition 𝑡′.
Formally, 𝑀𝑖𝑛 (𝑀, 𝑡) is the set of markings 𝑀 ′ ⊆ 𝑀 such that for any place 𝑝 where 𝑀 (𝑝) =

(𝐹𝑇,𝐵𝑇 ), 𝑀 ′ (𝑝) is defined as follows: 𝑀 ′ (𝑝) =

{︃
(𝑊− (𝑝, 𝑡) , ∅) 𝑖𝑓 ℱ𝒯 ≥ 𝑊− (𝑝, 𝑡)

(ℱ𝒯 ,ℬ𝒯 ′) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

With: ℬ𝒯 ′ ⊆ ℬ𝒯 and | ℬ𝒯 ′ |= 𝑊− (𝑝, 𝑡)−ℱ𝒯

7. Case study

Consider two processes, one called producer and the other consumer. The producer produces
data and deposits them in the buffer. The consumer process take a produced data from the
buffer and consumes them. When modelling the system, the buffer capacity will be represented
by a K-bounded place. The modelling of this example in terms of K-bounded Petri net is given
by the Figure 11.

Figure 11: Producer/consumer.



Figure 12: Labeled transitions system for producer/ consumer.

For 𝑘 = 1, the labeled transition system corresponding to the marking graph generated from
this Petri net is depicted in Figure 12, it contains 8 states, 12 transitions. At this level we notice
that this model is unable to model possible parallel execution of production and consumption
operations.

The maximality labeled transition system which corresponds to this Petri net is depicted in
Figure 13. Indeed in order to concretize our theoretical study we have developed a software tool
named MOS-KPN for (Maximality Operational Semantics for K-Bounded Petri Net) this tool
interprets any K-bounded Petri net to a MLTS. We have used this tool to generate the MLTS
corresponding to the example of producer consumer. This MLTS contains 18 states and 26
transitions, but we can clearly see that the MLTS model represents parallelism and causality
with reliability, for example in state 𝑠5 the set {0, 1} means that the actions product and take
are under execution in this state. The properties of the good functioning of the system are
specified in terms of CTL logic and verified using our developed tool.

7.1. Verification

• Safety properties:

– If the buffer is full the producer produced or waiting
𝐴𝐺𝑝𝑢𝑡 ⇒ 𝐸𝑋(𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑟 (𝑛𝑜𝑡(𝑝𝑢𝑡)))



Figure 13: Maximality labeled transitions system for producer/consumer.

– If the buffer is empty then the consumer waiting or consuming.
𝐴𝐺𝑡𝑎𝑘𝑒 ⇒ 𝐸𝑋(𝑐𝑜𝑛𝑠𝑢𝑚𝑒 𝑜𝑟 (𝑛𝑜𝑡(𝑡𝑎𝑘𝑒)))

• Liveness properties :

– If the producer can produce then it produces.
𝐴𝐺𝑡𝑎𝑘𝑒 ⇒ 𝐸𝑋 𝑝𝑟𝑜𝑑𝑢𝑐𝑡



– If the consumer can consume then it consumes.
𝐴𝐺𝑝𝑢𝑡 ⇒ 𝐸𝑋(𝑡𝑎𝑘𝑒 𝑜𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑒)

Figure 14: Petri net with producer/consumer after refinement.

To capture the true concurrency under an interleaving semantics each transition may be
splitted into two sequential actions, the start and the end actions like in the ST semantics. So,
we consider now the Petri net of Figure 14 and we vary the capacity of buffer 𝑘. Then we
compare the results obtained with the MLTS. We find that with the labeled transition system
(LTS) the number of states and transition is very greater that of MLTS. In this case the reader
can understand that the MLTS model represents causality and true parallelism with simplicity
and reliability but with a minimum number of states. The obtained results are summarized in
Table 1.

Table 1
Number of states and transitions of LTS and MLTS

Buffer LTS MLTS reduction rate
𝑘 𝑁∘𝑠 𝑁∘𝑇 𝑁∘𝑆 𝑁∘𝑇 𝑠% 𝑇%
1 125 285 18 26 85, 60% 90, 74%
2 249 621 30 51 87, 95% 91, 78%
3 433 1161 42 76 90, 30% 93, 45%
4 693 1967 54 101 92, 20% 94, 86%
5 1048 3115 66 126 93, 70% 95, 95%
6 1548 4690 78 151 94, 86% 96, 78%
7 2126 6787 90 176 95, 76% 97, 40%
8 2896 9510 102 201 96, 47% 97, 88%
9 3855 12973 114 226 97, 04% 98, 25%
10 5031 17299 126 251 97, 49% 98, 54%



Now we applied the reduction method proposed in [19][21] to generate the MLTS for the
Petri net of Figure 14 which contributes more to the reduction of the size of the semantics
model. All with the change of the number of producers and consumers. The obtained results
are summarized in Table II.

Table 2
Number of states and transitions of MLTS before and after reduction for K=10

𝑁∘ 𝑁∘ MLTS before MLTS after reduction rate

𝑃 𝐶 𝑁∘𝑠 𝑁∘𝑇 𝑁∘𝑆 𝑁∘𝑇 𝑠% 𝑇%
1 1 126 251 108 206 14, 28% 19, 92%
2 1 448 1322 297 844 33, 70% 36, 15%
2 2 1930 7612 1321 4855 31, 55% 36, 21%
3 1 1342 5102 757 2822 43, 59% 44, 68%
3 2 7600 36751 4193 19187 44, 82% 47, 79%
3 3 31986 31986 17836 17836 44, 23% 48, 43%
4 1 3920 18166 1861 8456 52, 52% 53, 45%
4 2 28178 159320 12431 66944 55, 88% 57, 98%
5 1 11416 61898 4511 23750 60, 48% 57, 98%
6 1 33150 204226 10931 64180 67, 02% 68, 57%

8. Conclusion

In this paper we have proposed an operational method for the generating of maximality labeled
transition system associated to K-bounded Petri net. Noting that the K-bounded Petri net
model is the most appropriate for modelling systems with limited resources. Consequently,
the properties relating to the good functioning of a system specified by a K-bounded Petri
net can be verified on its corresponding maximality labeled transition system. On the other
hand, the structure of the maximality labeled transition system integrates information about
the parallel execution of actions. This structure allows us to express more easily the properties
related to the parallel execution of actions. At the end, we have applied the obtained results
to the example of the producer / consumer with limited buffer capacity. Furthermore we have
extended the on the fly reduction method for MLTS proposed in [19][21] to K-bounded Petri
net which contribute to the reduction of the number of states and transitions. Through this
example we have shown the interest of our approach for the modeling and verifying concurrent
systems with limited resources. This result may be extended to the work about recursive Petri
net presented in [22][23][24].
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