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Abstract
Image denoising is one of the fundamental image processing problems. Noise removal is an important
step in the image restoration process. In this paper, firstly we develop and implement two different
image denoising algorithms based on norm minimization, namely ℓ1 and ℓ2-regularization applied to
images contaminated by gaussian noise. Then, after their discretization and implementation, we perform
a comparison between the two methods using several test images. Through this study, the algorithm
which minimizes ℓ2-norm of gradient of image has a unique solution and it’s easy to implement, but it
doesn’t accept contour discontinuities, causing the obtained solution to be smooth. The ℓ2-norm will
blur the edges of the image. In order to preserve sharp edges, ℓ1-norm is introduced.
There are different methods to solve the problem of energy minimization. In this work, we have chosen
the discretization finite difference method before applying the gradient descent algorithm to optimize
the signal (2D grayscale images) denoising functionality.
Experiments results, show that ℓ1 regularization encourages image smoothness while allowing for
presence of jumps and discontinuities, a key feature for image processing because of the importance of
edges in human vision.
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1. Introduction

In image acquisition systems, acquired digital images always contain noise. There are different
kinds of digital image noise which are caused by many factors. In this paper, we focus our
research to study, implement and compare two methods based on partial differential equation
(PDE) model for removing Gaussian noise. Generally, images are corrupted with additive white
Gaussian noise during acquisition e.g. sensor noise caused by poor illumination and/or high
temperature, and/or transmission e.g. electronic circuit noise.
In the literature, several methods have been proposed to remove the noise and recover the

true image 𝑢, such as iterative median filtering [1], Weight Median Filter (WMF) [2], Adaptive
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Median Filter (AMF) [3] [4], Wavelet Transform (WT) [5], Anisotropic diffusion filtering [6, 7] ,
Total Variation (TV) filter [8, 9, 10],...

There are many mathematical models which have been proposed to solve image denoising
problems. we consider two types of image denoising problems which are expressed as the
following norm minimization problems:

min
𝑢∈𝑉

{1
2
‖𝑢 − 𝑓‖2 + 𝜆1

2
‖∇𝑢‖22} (1)

min
𝑢∈𝑉

{1
2
‖𝑢 − 𝑓‖2 + 𝜆‖∇𝑢‖1} (2)

𝑉 is the space of images (a space of smooth functions), 𝑢 ∈ ℜ𝑁 is the real image and 𝑓 ∈ ℜ𝑁 is
the image contaminated by additive noise, 𝜆 > 0 is regularization parameter, ‖■‖2 and ‖■‖1denotes
the ℓ2 and ℓ1-norm , respectively. The first terms of 𝐽1 (𝑢, 𝑓) = ‖𝑢 − 𝑓‖22 is called the data-fitting
(the fidelity) term which forces the final image to be not too far away from the initial image,
note that the fidelity term is convex function, and the second terms such as 𝐽2 (𝑢) =

1
2 ‖∇𝑢‖

2
2

and 𝐽2 (𝑢) = ‖∇𝑢‖1 are called the regularization (or penalty) terms, which perform actually the
noise reduction and they are also convex . The minimization problem (1) is called the ℓ2-norm
problem (Tikhonov regularization) and (2) is called the ℓ1-norm regularization problem.

The rest of the paper is organized as follows: The second section presented the noise model.
Section 3 is dedicated to analyze and implement the two different image denoising algorithms
based on energy minimization: ℓ1 and ℓ2-regularization. In section 4, we provide some numerical
experiments. Lastly, section 5 concludes the paper.

2. Noise model

Probability Density Function (PDF) or Histogram is also used to design and characterize the
noise models, in this paper wewill discuss only Gaussian noise model in digital images. Gaussian
noise is statistical noise having a probability distribution function (PDF) equal to that of the
normal distribution, which is also known as the Gaussian distribution. The probability density
function of a Gaussian random variable is given by :

𝑝𝐺 (𝑧) =
1

𝜎√2𝜋
.𝑒−

(𝑧−𝜇)2

2.𝜎2 (3)

where 𝑧 represents the grey level, 𝜇 the mean value and 𝜎 the standard deviation.
The PDF of this noise model Fig. 1 shows that to noisy pixel values of degraded image in

between 𝜇 − 𝜎 and 𝜇 + 𝜎. (see [11])
where

𝑃𝑧1 =
0, 607

√2𝜋𝜎2
(4)

𝑃𝑧2 =
1

√2𝜋𝜎2
(5)



Figure 1: Probability density function of Gaussian noise

3. Methods analysis and implementation

The image denoising problem can be formulated as the following. Given an observed image 𝑓,
we know 𝑓 is the addition of the ideal image 𝑢 and some noise with mean 0 and variance 𝜎2.

𝑓 = 𝑢 + 𝜂 (6)

In accordance with Eq. (6), the denoising problem can be considered in the unconstrained form
as:

𝐽 (𝑢) = 𝐽1 (𝑢, 𝑓) + 𝜆𝐽2 (𝑢) (7)

Minimization of 𝐽2 (𝑢) is equivalent to minimization of the majority of derivative over the
dimension of the function. Intuitively, minimization problem (7), simultaneously try to remove
the noise from the continuous image 𝑢 (which is equivalent to minimization of the total first
derivative over the domain) and forces the function 𝐽1 (𝑢) to be near enough to 𝑓. See [8], [12],
[13].

3.1. Removal noise by ℓ2- norm

The ℓ2 norm method is a 5 steps process:

• Step 1: Create the energy that describe the quality image 𝑢

min
𝑢∈𝑉

𝐽 (𝑢) = min
𝑢∈𝑉

{1
2
‖𝑢 − 𝑓‖2 + 𝜆1

2
‖∇𝑢‖2} (8)

with
𝐽1 (𝑢) =

1
2
‖𝑢 − 𝑓‖2 (9)

𝐽2 (𝑢) =
1
2
‖∇𝑢‖22 (10)

• Step 2: Compute the first variation of energy ∇𝐽

∇𝐽1 (𝑢) = 𝑢 − 𝑓 (11)



∇𝐽2 (𝑢) = Δ𝑢 (12)

so,
∇𝐽 (𝑢) = 𝑢 − 𝑓 + 𝜆.Δ𝑢 (13)

• Step 3: Setup the PDE describing the steepest descent minimization 𝜕𝑢
𝜕𝑡 = −∇𝐽

𝜕𝑢
𝜕𝑡

= − (𝑢 − 𝑓 + 𝜆.Δ𝑢) (14)

• Step 4: Discretize the PDE in Eq. (14) by finite difference method

𝑢𝑛+1𝑖,𝑗 − 𝑢𝑛𝑖,𝑗
𝜏

= − (𝑢𝑛𝑖,𝑗 − 𝑓 𝑛𝑖,𝑗 + 𝜆.𝐷ℓ2
𝑛
𝑖,𝑗) (15)

with
Δ𝑢

discretization
→ 𝐷ℓ2𝑛𝑖,𝑗 (16)

𝐷ℓ2𝑛𝑖,𝑗 = 𝑢𝑛𝑖−1,𝑗 + 𝑢𝑛𝑖+1,𝑗 + 𝑢𝑛𝑖,𝑗−1 + 𝑢𝑛𝑖,𝑗+1 − 4𝑢𝑛𝑖,𝑗 (17)

• Step 5: Evolve the PDE towards the minimum of

𝑢𝑛+1𝑖,𝑗 = 𝑢𝑛𝑖,𝑗 − 𝜏 (𝑢𝑛𝑖,𝑗 − 𝑓 𝑛𝑖,𝑗 + 𝜆𝐷ℓ2𝑛𝑖,𝑗) (18)

3.2. Removal noise by ℓ1- norm

The ℓ1 norm method is a 5 steps process:

• Step 1: Create the energy that describe the quality image 𝑢

min
𝑢∈𝑉

𝐽 (𝑢) = min
𝑢∈𝑉

{1
2
‖𝑢 − 𝑓‖2 + 𝜆‖∇𝑢‖1} (19)

with
𝐽1 (𝑢) =

1
2
‖𝑢 − 𝑓‖2 (20)

𝐽2 (𝑢) = ‖∇𝑢‖1 (21)

• Step 2: Compute the first variation of energy ∇𝐽

∇𝐽1 (𝑢) = 𝑢 − 𝑓 (22)

∇𝐽2 (𝑢) = 𝑑𝑖𝑣 ∇𝑢
‖∇𝑢‖

(23)

so,
∇𝐽 (𝑢) = 𝑢 − 𝑓 + 𝜆.𝑑𝑖𝑣 ∇𝑢

‖∇𝑢‖
(24)

• Step 3: Setup the PDE describing the steepest descent minimization 𝜕𝑢
𝜕𝑡 = −∇𝐽

𝜕𝑢
𝜕𝑡

= − (𝑢 − 𝑓 + 𝜆.𝑑𝑖𝑣 ∇𝑢
‖∇𝑢‖

) (25)



• Step 4: Discretize the PDE in Eq. (25) by finite difference method

𝑢𝑛+1𝑖,𝑗 − 𝑢𝑛𝑖,𝑗
𝜏

= − (𝑢𝑛𝑖,𝑗 − 𝑓 𝑛𝑖,𝑗 + 𝜆.𝐷ℓ1
𝑛
𝑖,𝑗) (26)

with
𝑑𝑖𝑣 ( ∇𝑢

‖∇𝑢‖
)
discretization

→ 𝐷ℓ1𝑛𝑖,𝑗 (27)

𝐷ℓ1𝑛𝑖,𝑗 =
1
ℎ2

[
𝑑𝑛1𝑖,𝑗
𝑐𝑛1𝑖,𝑗

−
𝑑𝑛2𝑖,𝑗
𝑐𝑛2𝑖,𝑗

+
𝑑𝑛3𝑖,𝑗
𝑐𝑛3𝑖,𝑗

−
𝑑𝑛4𝑖,𝑗
𝑐𝑛4𝑖,𝑗

] (28)

𝑐𝑛1𝑖,𝑗 =
√
𝜀2 + (

𝑑𝑛1𝑖,𝑗
ℎ2

)
2

+ (
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗−1

2ℎ
)
2

(29)

𝑐𝑛2𝑖,𝑗 =
√
(
𝑑𝑛2𝑖,𝑗
ℎ2

)
2

+ (
𝑢𝑖−1,𝑗+1 − 𝑢𝑖−1,𝑗−1

2ℎ
)
2

(30)

𝑐𝑛3𝑖,𝑗 =
√
(
𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗

2ℎ
)
2
+ (

𝑑𝑛3𝑖,𝑗
ℎ2

)
2

(31)

𝑐𝑛4𝑖,𝑗 =
√
(
𝑢𝑖+1,𝑗−1 − 𝑢𝑖−1,𝑗−1

2ℎ
)
2
+ (

𝑑𝑛4𝑖,𝑗
ℎ2

)
2

(32)

𝑑𝑛1𝑖,𝑗 = 𝑢𝑛𝑖+1,𝑗 − 𝑢𝑛𝑖,𝑗 (33)

𝑑𝑛2𝑖,𝑗 = 𝑢𝑛𝑖,𝑗 − 𝑢𝑛𝑖−1,𝑗 (34)

𝑑𝑛3𝑖,𝑗 = 𝑢𝑛𝑖,𝑗+1 − 𝑢𝑛𝑖,𝑗 (35)

𝑑𝑛4𝑖,𝑗 = 𝑢𝑛𝑖,𝑗 − 𝑢𝑛𝑖,𝑗−1 (36)

• Step 5: Evolve the PDE towards the minimum of

𝑢𝑛+1𝑖,𝑗 = 𝑢𝑛𝑖,𝑗 − 𝜏 (𝑢𝑛𝑖,𝑗 − 𝑓 𝑛𝑖,𝑗 + 𝜆𝐷ℓ1𝑛𝑖,𝑗) (37)



4. Numerical results

In this section, we will compare and discuss the results of the different algorithms. Our imple-
mentation of the two algorithms has been tested against the set of images: cameraman of size
256 × 256 pixels, Einstein 1064 × 948 pixels, Tower 474 × 422 pixels and Lena 512 × 512 pixels
shown in Fig. 2a , Fig. 3a, Fig. 4a and Fig. 5a respectively.

As a measure of quality, we use three metrics, namely , Signal Noise to Ratio 𝑆𝑁𝑅 [𝑑𝐵] , Peak
Signal-to-Noise Ratio (PSNR) and Structural SIMilarity index (SSIM)[14].

• The Signal Noise to Ratio 𝑆𝑁𝑅 [𝑑𝐵] is defined as:

𝑆𝑁𝑅 =
𝑆𝐴 − 𝑆𝐵

𝜕0
(38)

𝑆𝐴 is the original image and 𝑆𝐵 is the restored noisy image, 𝜎0 is standard deviation of the
image.
This measure of 𝑆𝑁𝑅 is useful in giving an indication of the noise in an image, but the
exact visual effect of such noise is highly image dependent.

• The PSNR metric is defined as:

𝑃𝑆𝑁𝑅 (𝑢, �̂�) = 10 log
𝐿𝑑2

𝑀𝑆𝐸
(39)

where 𝐿𝑑 is the dynamic range of the pixel-values. If the input image has an 8-bit unsigned
integer data type, 𝐿𝑑 = 255.
Equation 40 give the expression of the quality measures Mean Squared Error (MSE):

𝑀𝑆𝐸 (𝑢, �̂�) = 1
𝑀 × 𝑁

𝑀
∑
𝑖=1

𝑁
∑
𝑗=1

(𝑢 (𝑖, 𝑗) − �̂� (𝑖, 𝑗))2. (40)

𝑢 (𝑖, 𝑗) denote the original image and �̂� (𝑖, 𝑗) its reconstructed image, respectively. 𝑀 and 𝑁
are the image size.
PSNR determines the degradation in the embedded image with respect to the original
image. PSNR is more consistent in the presence of noise compared to SNR. The main
advantages of PSNR are that it is very fast and easy to implement. The value of PSNR is
larger, indicating that denoising effect is better.

• The mathematical representation of the SSIM is as follows:

𝑆𝑆𝐼𝑀 (𝑢, �̂�) =
(2𝜇𝑢𝜇�̂� + 𝐶1) (2𝜎𝑢�̂� + 𝐶2)

(𝜇2𝑢 + 𝜇2�̂� + 𝐶1) (𝜎2𝑢 + 𝜎2�̂� + 𝐶2)
(41)

where

𝜇𝑢 =
1
𝑁

𝑁
∑
𝑖=1

𝑢𝑖 (42)

𝜇�̂� =
1
𝑁

𝑁
∑
𝑖=1

�̂�𝑖 (43)



𝜎𝑢 =
√

1
𝑁 − 1

𝑁
∑
𝑖=1

(𝑢𝑖 − 𝜇𝑢)
2 (44)

𝜎�̂� =
√

1
𝑁 − 1

𝑁
∑
𝑖=1

(�̂�𝑖 − 𝜇�̂�)
2 (45)

𝜎𝑢�̂� =
1

𝑁 − 1

𝑁
∑
𝑖=1

(𝑢𝑖 − 𝜇𝑢) (�̂�𝑖 − 𝜇�̂�) (46)

𝜇𝑢 and 𝜇�̂� are the means and variances of 𝑢 and �̂� respectively.
𝜎2𝑢 and 𝜎2�̂� are variances of 𝑢 and �̂� respectively.
𝜎𝑢�̂� is the standard deviation between 𝑢 and �̂�.
𝐶1 and 𝐶2 are constants which are used to avoid instability when 𝜇2𝑢 + 𝜇2�̂� and 𝜎

2
𝑢 + 𝜎2�̂� are

very close to zero.
𝐶1 = (𝐾1𝐿𝑑)

2 (47)

𝐶2 = (𝐾2𝐿𝑑)
2 (48)

𝐾1 and 𝐾2 are two scalar constants given by; 𝐾1 = 0.01 and 𝐾2 = 0.03.
𝑆𝑆𝐼𝑀 satisfies the following conditions:

– 𝑆𝑆𝐼𝑀 (𝑢, �̂�) = 𝑆𝑆𝐼𝑀 (�̂�, 𝑢)
– 𝑆𝑆𝐼𝑀 (𝑢, �̂�) ≤ 1
– 𝑆𝑆𝐼𝑀 (𝑢, �̂�) = 1 𝑠𝑖 �̂� = 𝑢

(a) True image (b) Noisy image 𝜎 = 20

(c) ℓ2-norm (d) ℓ1-norm

Figure 2: Removal noise applied to ’Cameraman’



(a) True image (b) Noisy image

(c) ℓ2-norm (d) ℓ1-norm

Figure 3: Removal noise applied to ’Eistein’

(a) True image (b) Noisy image 𝜎 = 20

(c) ℓ2-norm (d) ℓ1-norm

Figure 4: Removal noise applied to ’Tower’



(a) True image (b) Noisy image 𝜎 = 20

(c) ℓ2-norm (d) ℓ1-norm

Figure 5: Removal noise applied to ’lena’

SSIM compares two images using information about luminous, contrast and structure, it’s
decimal value is between [−1, 1].
Images corrupted by Gaussian noise are shown in Fig. 2b, Fig. 3b, Fig. 4b and Fig. 5b.

The results using ℓ1-norm regularization and images denoised with ℓ2-norm regularization are
shown in Fig. 2d, Fig. 3d, Fig. 4d, Fig. 5d and Fig. 2c, Fig. 3c, Fig. 4c and Fig. 5c.
Obtained results of SNR, PSNR and SSIM for the two proposed algorithms are summarized in
Tables 1, 2 and 3, respectively.

Table 1
Comparison of the denoising 𝑆𝑁𝑅 results

Image ℓ 𝜎
10 20 30 50 70 100

Cameraman ℓ1 16.91 15.55 12.83 7.36 3.33 −0.73
ℓ2 15.86 11, 60 6.31 1.92 −0.99 −4.09

Einstein ℓ1 21.82 19.54 14.83 8.05 3.82 −0.42
ℓ2 16.15 11, 19 6.61 2.17 −0.74 −3.84

Tower ℓ1 9.93 9, 33 8.02 4.56 1.22 −2.60
ℓ2 13.93 4, 92 4.34 −0.05 −2.99 −6.09

Lena ℓ1 18.48 16.08 11.83 5.39 1.23 −2.98
ℓ2 13.61 10, 36 4.07 −0.37 −3.30 −6.41



Table 2
Comparison of the denoising 𝑃𝑆𝑁𝑅 results

Image ℓ 𝜎
10 20 30 50 70 100

Cameraman ℓ1 29.14 27.82 25.06 19.60 15.57 11.50
ℓ2 28.10 22.11 18.55 14.16 11.23 8.14

Einstein ℓ1 33.82 31.53 26.83 20.05 15.81 11.57
ℓ2 28.12 22.11 18.58 14.14 11.22 8.12

Tower ℓ1 23.85 23.27 21.94 18.48 15.14 11.31
ℓ2 28.14 22.08 18.56 14.16 11.22 8.12

Lena ℓ1 33.01 30.59 26.36 19.92 15.76 11.54
ℓ2 28.14 22.11 18.60 14.15 11.22 8.12

Table 3
Comparison of the denoising 𝑆𝑆𝐼𝑀 results

Image ℓ 𝜎
10 20 30 50 70 100

Cameraman ℓ1 0.85 0.78 0.57 0.30 0.19 0.11
ℓ2 0.63 0.39 0.28 0.17 0.12 0.07

Einstein ℓ1 0.96 0.92 0.83 0.64 0.50 0.36
ℓ2 0.96 0.88 0.78 0.61 0.48 0.35

Tower ℓ1 0.90 0.88 0.81 0.68 0.54 0.39
ℓ2 0.95 0.86 0.76 0.59 0.46 0.33

Lena ℓ1 0.94 0.88 0.71 0.46 0.32 0.20
ℓ2 0.87 0.67 0.53 0.35 0.25 0.16

The ℓ1 method has significantly better reconstruction results, both in terms of 𝑆𝑁𝑅, 𝑃𝑆𝑁𝑅,
𝑆𝑆𝐼𝑀 and visual quality than the ℓ2 method.

5. Conclsuion

To denoise image corrupted with Gaussian noise, we have studied and implemented two
algorithms regularization schemes ℓ1 and ℓ2. The ℓ2 regularization scheme does not have edge
preserving properties, but is capable of removing almost all the noise from the image, but the ℓ1
regularization scheme is capable of removing noise and also preserving edges to a large extent.
Finally, we confirm through experimental results that the ℓ1 regularization problem involved by
Eq. (2) restore the true image better than ℓ2 regularization problem expressed by Eq. (1).
For future works, there are many aspects need to be investigated. For example, minimizing

the energy function using a variational method and deep learning-based methods.
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