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Abstract
In this paper, an exhaustive search for relevant characteristics for automatic texture classification has
been carried out. These features have been extracted from different cooperative methods dealing with
texture characterization. An optimal features vector has been constructed using genetic algorithms (GA)
to avoid characteristics redundancy . Then texture classification has been performed using multi-class
SVM, k-nearest neighbors, and random forest classifier algorithms. Obtained results on three texture
databases are very satisfying against those produced by existing methods.
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1. Introduction

Texture is one of the most relevant characteristics used to identify objects or regions of interest
in an image. Also, texture analysis is one of the central concepts in computer vision [1]. One can
identify four major issues on texture analysis: texture synthesis, classification, segmentation,
and shape from texture. This work is concentrated on texture classification problems. It
consists on the issue of distinguishing objects by there different textures [2, 3]. Thus, the
given technique’s target is to assign any unknown or test image to at least one of the set of
previously known texture classes. Previous works found that the majority of the machine
vision-based texture classification techniques have combined texture features with classifiers
to supply reasonably good classification accuracy for various images [4, 5]. Texture features
provide important information about the primitives that constitute a texture and relationship[6].
Several approaches have been proposed to represent texture. statistical features including
co-occurrence matrices [7, 8], Weber Local Descriptor (WLD) [9], Local Binary Pattern (LBP)
[10],autocorrelation-based and registration-based features[11]. Structural features include
primitive measurements [12], edge measure [13], and morphological operation features. Filter
features consist in spatial domain filtering [14], frequency domain analysis [15], and common
spatial-frequency methods [16]. Additionally, model-based features include fractal models [17]
and auto-regressive models [18].(FIg.1)

In this work, discriminating feature extraction methods have been considered: statistical,
structural, model-based, and graph-based approaches. A judicious characteristics vector has
been constructed and optimized using genetic algorithms. Because the relevant used features
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Figure 1: texture features classes.

are issued from different methods, their effects cooperate to characterise a texture, yielding to
an optimal features vector. Local binary feature Pattern(LBP), histogram of oriented Gradient
(HOG), a two random coefficient auto-regressive model(2D-RCA), and the weber descriptor
(WLD) have been chosen to construct our characteristics vector because of the different texture
information they provide. A multi-class SVM, K-NN and Random Forest algorithms have
been used to classify various texture images. Performances of each classifier using the same
constructed vector have been estimated and discussed. This study aims to search the utility of
mixing various texture features with different kind of information to classify image databases.



The remainder of this paper is as follows: Section 2 presents the texture features. Section 3 is
dedicated to the different used classifiers. Experimental results carried out on three databases
are discussed in section 3. Section 4 concludes the paper and offers future work.

2. Texture features

In this section, A brief description of the used parameters is given.

2.1. Local binary Pattern (LBP)

Local Binary pattern is a standard feature descriptor used for texture classification[10]. since its
presentation by Ojala methods in 1994, LBP have shown a strong ability to describe a region . A
3x3 window is used in opposition to the local pixels to plot an exciting surface and think about
a close-by double example (LBP).

The LBP approach uses a binary pattern to represent each image pixel qc. It is dependent on
the difference between the pixel qc’s grey level value and the radius R of its circular neighborhood
centered at qc. As a result, the LBP codes are calculated as follows.

𝐿𝐵𝑃𝑃,𝑅 (𝑞𝑐) =
𝑃−1∑︁
𝑝=0

𝑠(𝑥)2𝑝 (1)

where x=qp-qc is the difference between the intensity levels of the neighboring pixels (qp)
and the central pixel (qc),s(x) is:

𝑠(𝑥) =

{︂
1 𝑥 ≥ 0
0 otherwise

(2)

for more detail see [10].

2.2. 2D RCA PARAMETERS

This calculation’s initial step comprises characterizing the texture with the 2D-RCA models
presented by equation.3. The 2D-RCA model is an expansion of the 2D-AR model presented to
show some non-Gaussian spatial informational collection, for example, image digitization. Its
development was enlivened by the renowned 1D-RCA model broadly utilized in econometric
displaying and designing applications. A 2D stochastic cycle follows a 2D-RCA model. The
2D-RCA models proposed in [19] have been drawn on a standard network. The more significant
part of the image we measure is made of matrices with sporadic pixels. Luckily, In a few
circumstances, information with sporadically divided pixels can be supplanted by an ordinary
network utilizing image insertion methods and re-testing programs.

𝑋(𝑡) =
∑︁

s∈]0;𝑃 ]

𝑎s(t)𝑥(t− 𝑠) + 𝑒(t), t ∈ 𝑍2 (3)



Under stationary conditions, the estimation of the 2D RCA model given by Equation (3) is
achieved by the generalized method of moments (GMM) [20]. Based on the observations the
GMM estimator of

𝜃 = (𝛼, 𝛽, 𝛾) (4)

is:

�̂�𝑛 =
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

⌊︀
𝑥(𝑖, 𝑗)𝑥′(𝑖, 𝑗)

⌋︀−1 ×
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

⌊𝑥(𝑖, 𝑗)𝑋(𝑖, 𝑗)⌋ (5)

Where:
x = (𝑋(𝑖, 𝑗 − 1);𝑋(𝑖− 1, 𝑗);𝑋(𝑖− 1, 𝑗 − 1)) (6)

for more details see [19]

2.3. Weber Local Descriptor

Weber’s law (a psychological law) is the foundation for the Weber local descriptor (WLD) [9].
There are two sections of this descriptor. As a result, two components of the WLD function
are calculated for each pixel of the image under research: differential excitation and gradient
orientation.

𝜉 (𝐼𝑐) = arctan
[︁∑︀𝑝−1

𝑖=0

(︁
𝑖−𝑖 𝑙𝑐
𝐼𝑐

)︁]︁
𝜃 (𝐼𝑐) = median

{︁
𝐼𝑅(𝑖+4)−𝐼𝑖

𝐼𝑝(𝑖+1)−𝐼𝑝(𝑖+2)

}︁
; 𝑖 = 0, 1, . . . 𝑝− 1

(7)

Ic is the central pixel of a given neighborhood, and Ii is an Ic’s neighbor.
The ratio between the relative intensity differences of a current pixel against its neighbors

and the current pixel’s intensity determines the differential excitation variable. The gradient
orientation of the current pixel is the orientation variable. As a result, the descriptor is influenced
by both the local intensity difference and the size of the intensity of the middle pixel. Then,
WLD concatenates these two components of all pixels to construct a final histogram.

2.4. Histogram of oriented Gradient (HOG)

Histogram of oriented Gradient features is one of the most descriptors of images. The hog
features consist to describe an image by a set of local histograms. Then, the occurrences of
gradient orientation are assembled in a small spatial localized part of the image. The subsequent
concatenation of 1-D histograms produces the features vector. Let the image’s intensity value
be analyzed is L. If the image is divided into N x N cells of size. The orientation 𝜃x,y of the
gradient in each pixel is calculated using Equation (7).

𝜃𝑥,𝑦 = tan−1 𝐿(𝑥, 𝑦 + 1)− 𝐿(𝑥, 𝑦 − 1)

𝐿(𝑥+ 1, 𝑦)− 𝐿(𝑥− 1, 𝑦)
(8)

The successive orientation 𝜃𝑗𝑖 , i=1. . . . . . ..N2 belonging to the same cell j is quantized and
accumulated into an M-bins histogram. Then, the histograms accumulated into a single HOG
histogram.



2.5. FILTER BANKS: LAW’S TEXTURE FEATURES

The application of basic filters to digital images is used in this feature extraction process. It
consists of two stages[21]. To generate twenty-five 3×3 or 5 ×5 masks, multiple 1D arrays are
convolved together in a combinatorial way . The texture field is then convolved with the latter
to emphasize its micro structure. This yields to an image from which the micro structure’s
energy (and other statistics) can be calculated. Second, macrostatistic characteristics are derived
from data collected over time. Five 1D arrays (size of 5) have been specified by Laws:

• Level L5 D [1 4 6 4 1]
• Edge E5 D [-1 - 2 0 2 1]
• Spot S5 D [-1 0 2 0 - 1]
• Wave W5 D [-1 2 0 - 2 1]
• Ripple R5 D [1 - 4 6 - 4 1].

Steerable filters have also been proposed for directed textures. They are a group of orientation-
selective filters created by combining a linear combination of basis filters. Unser and Eden [22]
have suggested a nonlinear transformation and an iterative Gaussian smoothing algorithm to
create an analogous filter bank. At the performance of this analogous filter bank, the local
statistics (texture energy measures) are computed. Mellor et al. [23] suggested a system based
on invariant linear filter combinations in 2008. This method consists of two steps: the first
is to compute two descriptors for each point in the image. The polar-separable filters form
the Hessian matrix, and the eigenvectors (principal directions) and eigenvalues (principal
curvatures) of the matrix are then computed. These eigenvectors and eigenvalues are then
converted to local phases and energies. Contrast transitions, intensity shifts, rotations, and
scaling have little impact on these descriptors locally. They’re also resistant to skewing. The
texture is then interpreted using these descriptors’ first order statistics.

2.6. LOCAL GRAPH STRUCTURES

The characteristics of local graph structures are derived from the texture. A graph of points
is used to represent the image [24]. Local graph systems are involved by a specific function
on a pixel’s six neighbors. As a threshold, the target pixel I(x; y) is selected. By rotating anti-
clockwise at the left region of I(x; y), the neighbors pixels of I(x; y) are “visited" (x; y). If the
neighbor pixel has a higher (or equal) grey value than (as) I(x; y), the edge separating the two
vertices is given a binary value 1, otherwise a binary value 0 is assigned. When the left region is
completed. The same procedure is repeated in an horizontal (clockwise) direction on the graph’s
right side. The decimal value is then calculated using the generated string. The expanded local
graph form was suggested in 2016. In order to collect more spatial detail, the latter takes into
account both the vertical and horizontal graphs. As a result, we have two descriptors. For each
descriptor, an histogram is generated independently. The attributes of the two histograms are
then combined to create a global descriptor.



3. Feature selection using GA

the amount of information carried out by the feature vector is too huge, for large images
execution time and required memories space are increased. A solution to resolve this problem
is to optimize the number of features.hence irrelevant features are taken of the characteristics
vector avoiding data redandinding and time and space consuming.thus GA have been used to
optimize this vector.

The next step after extracting features involves the combination of all features extracted to
get more accurate results. The dimensions for the fused feature vector are 1×44 for each image.
The high dimensional features increase the system execution time and space requirement for
processing. For that, the feature selection techniques are used to find a subset of most relevant
features from irrelevant data, where not pertinent denotes the redundant features, these fused
features are fed to GA for feature optimization[25]. Here a GA approach is utilized for feature
selection having cost function mean squared error (MSE). The best-selected features are fed to
all classifiers used in the presented method for classification. In the presented work, a feature
selection technique is used to improve the classification accuracy’s performance to remove the
redundancy between features.

The essential components of Genetic algorithms are:

1. Initial population of chromosomes: Let m be the number of features. The size of population
is N. To create random population P of N number of chromosomes is given below: P =
[C1, C2, . . . . CN]

2. Fitness function: mean squared error is used to evaluate the fitness of each individual
population.

3. Selection: Select two parents from population according to their best fitness, which can
generate new offspring. It assures that only the best fittest solutions made to generate
offspring.

4. Recombination or Crossover: Recombinant the parents to form new offspring from two
parents string, by copying selected bit of each parents.

5. Mutation: after the performance of crossover, mutate the new offspring from single parent.
It reduces local optimum.

4. TEXTURE CLASSIFICATION

The above-presented characteristics have been extracted from textured images. efficiency of
each feature has been tested using three machine learning classifiers (multiclass SVM, K-NN,
Rf algorithms). Then, the classification has been performed using the concatenation of these
features as a data vector for each classifier; the proposed method is presented in fig 2.

4.1. SUPPORT VECTOR MACHINE (SVM)

Support vector machine is a supervised machine learning models. The objective is to find
the optimal hyper plane to separate sets of feature vectors into two classes[26]. The SVM
training rule devises a model that appends new samples (test data) to one of the two classes.



Figure 2: proposed method.

Another significant advantage of exploitation SVM is that it will effectively perform nonlinear
classifications by exploiting applicable kernel performance. The rule uses a nonlinear kernel
function rather than each real number. The Gaussian radial basis (RBF) is employed because of
this paper’s kernel function. The radial basis performs on two samples xi, and xj is of the form:

𝐾 (x𝑖, x𝑗) = exp

(︃
−‖𝑥𝑖 − 𝑥𝑗‖2

2𝜎2

)︃
(9)

Support Vector Machines designed for binary classification. When it addresses many categories,
as in object in image classification, one needs an appropriate multi-class method. Different
possibilities include: Modify the design of the SVM, as in, to incorporate the multi-class learning
directly in the quadratic solving algorithm. x Combine several binary classifiers: “One-against
one” (OAO) applies wise pair comparisons between classes, while “One-against-All” (OAA)
compares a given class with all the others put together.

4.2. K NEAREST Neighbors

A popular non-parametric technique employed for classification and multivariate analysis is
the k-Nearest Neighbors (k-NN) algorithm [27]. The k-NN algorithm measures the distance
between an objective purpose and a collection of points in the data set. It assigns the target (test)
purpose to the most specific category between its k nearest neighbors around it. Discussion
associated with neighbors implies that there should be a distance or unsimilarity measurement
that may be computed between samples victimization the freelance variables. The instances
concerned within the paper consider the only accepted measure of distance, i.e., Euclidean



distance. The Euclidean distance between any two points x and y is:

𝑑(𝑥, 𝑦) =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)
2 (10)

4.3. Random Forest

Random Forest (RF) is an ensemble of classification trees.Every tree contributes with one vote for
the assignation of the foremost frequent category to the input file [28]. RF uses the most effective
split of a random subset of input features or predictive variables within each node’s division,
rather than mistreatment the most effective split variables, which reduces the generalization
error. Besides extending the variety of the trees, RF uses Bagging or bootstrap aggregating to
grow from totally different training information subsets. Bagging could be a technique used
for training information creation by resampling the first dataset with replacement, i.e., with
no deletion of the input sample’s information for generating a succeeding subset. Thus, every
set selected mistreatment bagging to form every individual three grow containing a precise
proportion of the standardization dataset. The samples that do not seem to be a gift within
the calibration set are included as a part of another collection referred to as out-of-bag (OOB).
Note that a particular OOB set is made for every three of the ensembles, from the bootstrapping
method’s non-selected parts. The tree will classify these OOB parts that do not seem to be
thought-about for the the-tree coaching to evaluate his performance.

5. Results and Discussion

Various tests have been executed on three databases with several classes, including, Broadatz
Database [29], KTH-TIPS [30] and the UIUC [31]. Broadatz Dataset is yhe well-known texture
dataset. This dataset is devoted to rotation-invariant texture recognition.It consists of thirteen
texture categories from the initial Broadatz album and contains 1248 Pictures of dimensions
128×128 pixels. Textures are given in six different rotation angles (0𝑜, 30𝑜, 60𝑜, 90𝑜, 120𝑜, 150𝑜).
The number of samples per category and Orientation is sixteen images.

KTH is the abbreviation for Kungliga Tekniska Högskolan University and TIPS. It stands for
textures under Varying illumination, pose and scale. Images have been taken at nine different
scales spanning two octaves. At the significant scale, the distance between the camera and the
target was 28 cm. In this study, we used nine different types, with 81 images for each class. The
considered textures are sandpaper, crumpled aluminum foil, styrofoam, sponge, corduroy, linen,
cotton, brown bread, orange peel, and cracker.

UIUC database contains 25 texture classes. Each class contains 40 samples. All images are in
greyscale JPG format at 640×480 pixels. Figures 2–4 show samples from each database

To evaluate the performance of the proposed method, a 5-fold cross-validation technique has
been computed. The three texture image databases have been used to collect training and test
sets. each fold is divided into an 80% train set and a 20 % test set. The training and testing are
conducted five times. This process guarantees that each data point ends up in the 20 % test set
exactly once. The model has achieved good performance among the five distortions.



Figure 3: image database.

GA is performed to reduce the number of features. The feature set containing six charac-
teristics is used as entries of the three classifiers. A population of 30 chromosomes has been
randomly generated. Each chromosome contains 44 genes (One gene for each feature). One-
point crossover and mutation genetic operators have been used. The crossover rate has been
set to 90%, and the mutation rate to 10%. The Tournoi selection method has been used to select
the mating pool.

Classification results are presented in three different steps. In the first step, classification is
performed on each feature. Then, in the second step, a fused features vector has been used.

The best features selection method fitted by the GA is performed. Classification results have
obtained with 40/50 training and testing sets.

Table 1 presents each feature’s performance in each dataset with several classifiers and the
fusion of texture features results.It is noticed that combining the four classes of features is
the best method among all. It remarkably outperforms all others in all datasets. Then the
classification results are calculated for feature selection In the first test, training/ testing part
40/60 has been selected. It achieves a classification accuracy of 98.4 %. It is clear from this table
that the proposed selection method gives better results than the first two ones.

Another constructive and useful approach to evaluate the performance of the classifier is the
confusion matrix. Such a matrix aims to show the number of class A elements that are assigned
to class B. For instance, we chose to show the confusion matrices for the three datasets.

We can observe from table 1 and figure 2 and 3 that the best classification result has been
obtained using the random forest classifier to combine the four classes of features. This is due
to:

• It is unexcelled in exactness among current calculations.



Figure 4: confusion matrix using four classes with Rf classifiers.

• It runs effectively on enormous information bases.
• It can deal with a large number of information factors without variable erasure.
• It is computationally faster than other tree troupe strategies



Figure 5: confusion matrix using five classes with Rf classifiers .

Table 1
Texture classification accuracy

Classification accuracy
features Brodatz database Kh tips UIUC database
classifiers SVM KNN RF SVM KNN RF SVM KNN RF
FILTER BANKS 77.652 72.45 77.5 79.123 78.463 79.402 79.8 78.45 79.652
LOCAL GRAPH STRUCTURES 78.45 75.785 78.516 78.45 76.45 77.45 78.45 75.45 79.4
2DRCA parameters 89.45 89.45 88.5 89.45 89.45 89.45 73.8 89.45 87.4
HOG 86.75 84.125 86.45 81.5 80.450 82.45 80.4 79.05 82.2
WDT 85.75 81 85.25 82.67 80.125 83.5 79.45 70.75 82.4
LBP 8.45 89.45 87.5 81.02 75.8 80.3 85.8 84.7 85.8
Combination of for features 92.5 88.3 98.2 90.4 80.1 96.32 88.8 84.3 90.75

Combination of for features using gA 94.5 90 99 91.4 80.1 98.4 91.8 86.3 93.75



6. Conclusion

in this paper, an unique combination of features extraction methods for texture classification
is proposed .Genetic algorithms have been used to pick the best features from a fused vector
which are then fed to three machine learning classifiers for classification: multi-class support
vector machine, K-nearest neighbors and random forest. The proposed approach has been
validated on three data sets. The proposed technique’s classification accuracy is substantially
higher than most current approaches, according to the experimental results. As a result of the
above discussion, it can be concluded that combining different types of texture features with
the best selection algorithm yields better results than using a random combination of features.
As a future work, we are planning to extend this work to color images classification.
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