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Abstract  
Rational function model (RFM) is commonly used in photogrammetric and remote sensing 

applications because it does not need sensor parameters. Therefore, the RFM terms or also 

rational polynomial coefficients (RPCs) have no physical significance but depends on many 

ground control points (GCPs) that make the model prone to the over parameterization 

problem. This paper proposes a new binary particle swarm optimization algorithm to 

surmount the issue of over-parameterization and find the optimum combination of RPCs for 

the RFM by adding a new transfer function in binary PSO in order to increase the 

convergence speed and avoid the local minimum phenomenon. The results showed that the 

proposed method is compatible with different types of RFM, more stable, and gives higher 

accuracy than the traditional binary PSO. 
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1. Introduction 

One of the most important sources of geographic information systems (GIS) is high-resolution 

satellite imagery. The high-resolution satellite images are actually used in several contexts at both the 

industrial and scientific domain [1] but raw images usually contain some significant geometrical 

distortions. This distortion depends on the device (airplane or satellite), type of sensor, and the overall 

field of view, which cannot use the raw images directly in GIS without ortho-rectification in order to 

correct the geometrical deformations that were introduced during acquisition [2]. Ortho-rectification 

is the method of transforming an image's central projection into an orthogonal, uniform-scaled view. 

Thus, the distorting effects of tilt optical projection and terrain relief are removed [3]. The high 

accuracy potential of ortho-rectification depends on the relationship between images and object 

spaces [4]. For that, there have been functions and mathematical models developed either through 

empirical models (such as 2D/3D polynomial or 3D rational functions, RFs) or with rigorous 

(physical) models [2]. The rigorous models mostly based on the collinear-equation are lack generality 

because they are complex and its imaging model can differ from one sensor type to another. In 

addition, parameters such as orbital satellite ephemeris, attitudes, and the physical parameters of the 

sensor should also be provided for geo-positioning based on a rigorous sensor model; but those 

parameters may not be accessible because they expose satellite and sensor core technology. Protecting 

certain key parameters IKONOS, QuickBird and other commercial satellite imagery vendors have 

adopted empirical models, simpler and more general imaging platform the renowned type and mainly 

used in empirical models is rational function model (RFM) [3]. There are two methods to solving the 

RFM named as dependent-terrain and independent-terrain. In the case of the independent terrain, 

RFM is solved by using the physical sensor model; otherwise in the absence of the sensor parameters, 
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the RFM is solved by using a set of ground control points (GCPs). This solution depending on the 

number and the distribution of the ground control point on the terrain is known as dependent-terrain 

method [5]. The independent-terrain approach, RFM necessitates a large number of accurate, well-

distributed GCPs which is a time-consuming and costly process. In addition, RFM coefficients or also 

rational polynomial coefficients (RPC) have no physical significance which makes it difficult to find 

their best combination [6]. To overcome these problems the binary form of meta-heuristic algorithms 

can be helpful in optimization and determining the optimum RPCs.  

Recently, many investigations carried out on the employment of the meta-heuristic approaches for 

RFM optimizations. Genetic algorithms (GAs) and particle swarm optimization (PSO) are the most 

useful technique in the literature employed to find the optimum number and combination of RFM 

parameters. GA-based approaches for RFM optimization were introduced in [7], [8].  Zoej et al in [7] 

used GA to find an optimum RPC by recommending a three-category division of ground points 

(GPs): Ground check points (GCPs) are used to estimate RPCs; dependent check points (DCPs) are 

used to estimate cost functions; and independent check points (ICPs) are used to measure the accuracy 

of the optimum RFM obtained by the method. In [8] a modified version of GA was employed for 

RFM optimization. Jennati in [8] have suggested using qualified genes in chromosome body to create 

some genetically modified (transgenic) chromosomes. The conventional PSO and its modified 

version, known as PSO for rational function optimization (PSORFO), were introduced in [6] and [9] 

respectively. PSORFO was the first PSO-based approach presented in the RFM literature, that used 

binary particles to decide whether or not the RPCs where present in the RFM structure and designed 

to be more likely to omitting coefficients rather than maintaining them. Yavari have demonstrates that 

the binary modified PSO has outperformed GA in terms of computational time and accuracy [6], [9]. 

Thereafter, PSO's employment has been the subject of several research works as in [10-11]. 

This paper presents a binary version of PSO (BPSO) to RFM optimization applied for the Algerian 

satellite (ALSAT2) imagery ortho-rectification. The rest of the paper is organized as follows briefly 

description of the RFM is presented in section II, the related work presented in section III, 

implementation and the results are provided in section IV, in section V we described our proposed 

algorithm, Finally, we give our conclusions in section IV. 

  

2. Theoretical background 

2.1. Rational function model RFM  

RFM is composed of two mathematical equations which define the spatial relationship between 

ground space (X,Y,Z) and image space (r,c)  using a ratio polynomial [12] as follows :     

 

r =
P1(X, Y, Z)

P2(X, Y, Z)
  , 

(1) 

 

c =
P3(X, Y, Z)

P4(X, Y, Z)
 , 

(2) 

Where: 

 

Pi = ai,0 + ai,1X + ai,2Y + ai,3Z + ai,4XY + ai,5XZ + ai,6YZ + ai,7X2 + ai,8Y2 + ai,9Z2

+ ai,10XYZ + ai,11X3 + ai,12XY2 + ai,13XZ2 + ai,14X2Y + ai,15X3 

+ ai,16YZ2 + ai,17X2Z + ai,18Y2Z + ai,19Z3, 

(3) 

 

Unknown RFCs can be solved with the linearized RFM form [13], [14] as in the following 

 

                     P1(X, Y, Z) − rP2(X, Y, Z) = 0 , (4) 
 

                    P3(X, Y, Z) − cP4(X, Y, Z) = 0 , (5) 



  
The above equations can then be written as follows, by using n GCPs [12]:  

 

y = Ax + e , (6) 
  

Where : 

A: design matrix 

y:  observations vector 

e:  residuals vector 

x: vector of RPCs. 

 

The least-squares (LS) method can be applied to determine RPCs as follows: 

 

x = (ATA)−1AT y  , (7) 
  

2.2. Particle Swarm Optimization for RFM optimization 

Particle swarm optimization is one of the most common meta-heuristic optimization algorithms 

inspired by social intelligence and cooperative behavior displayed by various species to fill their 

needs in the search space. The first version of the particle swarm algorithm developed by James 

Kennedy and Russell Eberhart in 1995 which work in continuous search space [15], [16]. 

In RFM optimization, the binary form is applied.  The standard binary PSO can be defined by the 

following equations [15]:  

 

vij (t + 1) = w. vij (t) + c1r1 (pij (t) − xij(t)) +   c2 r2 (pgj (t) − xij(t))  , (8) 

  
Where : 

- t is the iteration number. 

- vij is the velocity of the bit j of ith particle bounded within a range of [vmin,vmax],  

- xij is the position of the bit j of ith particle. 

- Pg denotes the best particle of the swarm, that is the particle with the best objective function value, 

and The best previous position of the ith particle in its own searching trajectory is recorded and 

represented as Pi. 

-W is the inertia weight.  

 

The update function for the position is defined as follows: 

 

                    xij (t + 1) = { 
  1,   if rij < ∅(vij)

0,       otherwise
      , 

(9) 

  
Each element in the vector velocity is regarded as the input of a normalizing function (transfer 

function) and usually is a sigmoid function [17] which determines the probability in the range of [0,1].  

3. The proposed binary PSO for RFM optimization (BPSO-RFO) 

The algorithm begins with a population of particles which is a set of RFMs structure generated at 

the first run randomly in a string of the binary values. This implies that each particle is a combination 

of one and zero, indicating the presence or absence of the corresponding coefficient RPC in the RFM. 

In this work, the RFM with 78 parameters was used; hence each particle is represented by a string of 

78 binary values as indicated in figure bellow. 

 



 

Figure 1: Particle representation 
 

RFM optimization aims to minimize the number of terms and maintains sufficient accuracies 

therefore the normalizing function should be structured to be more likely to omit, rather than maintain 

the terms. Hence in our algorithm called BPSO-RFO the tanh function is  used as the normalizing 

function due it deliver successful results as  it demonstrated in [9], so the bits updating is performed 

with eq.9 using the velocity of the bit calculated by eq.8, the normalizing function formula is as 

follows: 

∅(vij) = {
tanh(vij) ,            if vij > 0

          0,                        otherwise
                   , 

(10) 

  
The algorithm is repeatedly updated until a criterion for termination is reached. In this study, 

we declared the maximum number of iterations (tmax) to be termination condition. Fig.2 illustrates the 

flowchart of our proposed algorithm BPSO-RFO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: The flowchart of BPSO-RFO 
 

Yes No 

Initialize the swarm: positions and 

velocities 

Evaluate each particle of the 

swarm, initialize pi and pg 

Update velocity using eq.8 

Update position using eq.9 and 

eq.10 

Evaluate each particle 

Update pi and pg 

t=tmax Stop 



4.  Implementation and methodology 

Two high-resolution images were used for the test, these images acquired by the Algerian satellite 

ALSAT2 over Winterthur city, Switzerland. The first one “Winterthur_ 1” consists of 18 control 

points (CPs) and the second “Winterthur_ 2” contains 20 control points (CPs). These CPs detected 

directly from terrain when the measurements were realized in August 2007 dicted in the report site of 

test and validation by [19]. Fig.3 shows Winterthur images of the satellite ALSAT2 within their CPs 

location.  

 

 

(a)  Winterthur_1 image 
 

 

(b)   Winterthur_2 image 

Figure 3: The ALSAT2 test images. 



The RFM optimization process is applied under the CPs in three different parts. First part of 
these points is employed to estimate the unknown coefficients of the model, which is called 
Ground Control Points (GCPs). The second part of CPs is used to calculate the fitness value for each 

particle named Dependent Checkpoints (DCPs). And the last part of these points is used just for 
accuracy assessment that is addressed as independent check points (ICPs).  

Generally, the most common measure used is Root Mean Square Error (RMSE) given by this 
equation 

𝑅𝑀𝑆𝐸 = √
∑ (xi − x̂i)

2 + (yi − ŷi)
2N

i=1

N
, 

(11) 

  
Where:  

N is the total number of points, (xi,yi) the estimated coordinate (x, y), (x̂i, ŷi) denote the actual 

coordinate (x, y). 

We can summarize our methodology of RFM optimization based on the proposed algorithm as 

follow: 
 

1. Estimation of the RPCs proposed by each particle by using a set of GCPs and the least 

square method (LS). 

2. Evaluation of each particle by calculating the RMSE over DCPs which is the cost 

function. 

3. Updating the RFM structure according to the BPSO-RFO algorithm.  

The experiments have been implemented using MATLAB on a personal computer with a 2.40GHz 

Intel Core i3 CPU and an 8 Gb RAM. Table 1 mentions the parameters of the proposed method. 

 

Table 1 
Parameters used of the BPSO-RFO algorithm 

Population size 30 

v 
vmax +3 

vmin -3 

w 0.7 

tmax 200 

C1 1.5 

C2 1.5 

 

 

5. Results and Discussion 

To evaluate the performance of the proposed algorithm BPSO-RFO, different testing experiments 
are carried out by selecting different combinations of well distributed GCP/ICP. In all experiments a 
20% of the GCPs were selected randomly as DCP to calculate the cost function of each particle. In 
such issues, the RMSE over DCPs was widely used as a cost function. The accuracy of the obtained 
results is determined by two measuring criteria: first the RMSE which is calculated over ICPs, second 
the standard deviation (STD). STD is a proper indicator of stability since it is measured over RMSEs. 

Furthermore, a comparison was conducted with the conventional binary PSO and standard GA with 
the same combinations of GCPs/ICPs. The genetic operators crossover and mutation probabilities used 
in the experiment are respectively 0.75 and 0.001.  

As the meta-heuristic algorithms given a different result in each execution, each algorithm is 
executed 10 times; the better one with the lowest cost function was selected as the best and mentioned 
in table 2.  



The experiments have been divided into two sections: the first is a comparison between our 
algorithm (BPSO-RFO) to the conventional PSO and GA in terms of accuracy, stability and 
convergence speed; the second experiment is about the effect of the number of RPCs on the accuracy 
of our algorithm.  

 

5.1. The stability and accuracy analysis 

As shown in Table 2 the BPSO-RFO achieve clearly better results than the conventional PSO in all 

cases and in most cases then the conventional GA in most cases either in term of accuracy or on 

stability, the value of RMSE over ICP shows the high accuracy of the proposed methods which can 

optimize the RFMs and obtain a sub-pixel on accuracy just with 12 GCPs. Through table 2, we 

observed that the BPSO-RFO achieved a sub-pixel if the number of GCPs is equal or superior to 12 

points and if the number of GCPs is less than 10 the accuracy is degraded in the worst case to 1.99 

pixels which is appropriate for photogrammetric and remote sensing applications. 

Unlike the conventional PSO and GA, the accuracy value degraded to 1000 pixel this due to the 

stuck in local minima. In term of stability, our algorithm shows high stability also with 12 and 15 

GCPs. In the overall view of the results our method is more stable than both conventional PSO and 

GA. 

When comparing BPSO-RFO to the conventional PSO and GA, it is clear that BPSO-RFO is more 

accurate and stable, this due to the transfer function eq.10 which is designed to be more omit of the 

RPC than preserve them, this helped the BPSO-RFO to minimize the number of RPC to the minimum 

with acceptable accuracy. 

5.2. Convergence speed analysis  
To test the convergence speed of the literature methods, the best run among the 10 runs is selected 

in this section for convergence speed analysis. Fig.4 demonstrates the convergence curve of the 

literature methods with a different combinations of GCPs (15,12,7) for wientherthur1 and 

wientherthur2 data sets.  
 

As observed in fig.4, the conventional PSO and GA have a slow convergence than BPSO-RFO 

which is much faster. Our algorithm shows significant performances due to the transfer function that 

does not just improve the accuracy but also the convergence speed. 

 

Table 2 
The accuracy and stability results of different algorithms  

 
Data set 

 
GCP/ICP 

 
RMSE over ICP 

 
STD 

BPSO-RFO Conventional 

PSO 

Conventional 

GA 

BPSO-RFO Conventional 
PSO 

Conventional 
 GA 

Winterthur
_1 

15/3 0.8726 0.9836 0.8287 0.2435 0.3304 1.6440 

12/6 0.8839 1.1383 2.9475 1.0130 1.4216 204.4333 

10/8 1.1363 4.4652 298.4170 0.6519 2.0883e+03 1.0112e+03 

08/10 1.6471 205.3063 133.8651 0.4785 9.4025 2.7009e+04 

07/11 1.8783 175.7524 126.6041 1.4996e+03 9.3179e+03 1.7138e+03 

Winterthur
_2 

15/5 0.8484 0.8844 0.8781 0.0822 0.2578 2.9202 

12/8 0.8827 1.4710 0.8976 1.0938 2.9363 500.7724 

10/10 1.2606 17.0005 15.5123 2.5304 421.5296 372.7287 

08/12 1.6258 1.0265e+03 742.5804 231.2884 2.9080e+03 711.0490 

07/13 1.9921 1.0738e+03 780.0430 126.8536 2.4229e+03 4.0130e+03 



5.3. The effect of the RPCs number analysis  
To validate the effectiveness of the proposed method with different types of RFMs a comparative 

study is carried out by tested our algorithm for other RFMs with different number of RPC, so we 

chose the  RFM of 18 terms (i.e., P1, P2, P3, and, P4: five, four, five, and four terms, respectively) 

and 42 terms (i.e., P1, P2, P3 and, P4: five, four, five, and four terms, respectively), the test is applied 

to Winterthur1 dataset with a different combination of  GCPs (15,12,7). Table 3 shows the efficiency 

and compatibility of the proposed method with different types of RFM.  

The best result provided with BPSO-RFO is with the RFM of 18 terms because their spaces search 

range is less than other RFMs (42 terms, 78 terms). 

 

Table 3 
The result of apply BPSO-RFO to different RFM types 

 

GCP/ICP RMSE over ICP 

 RFM with   18 
terms 

RFM with 42 
terms 

RFM with 78 
terms 

15/3 0.8292 0.8395 0.8726 
12/6 0.6568 0.7858 0.8839 
07/11 1.6922 1.2126 1.8783 

 

6. Conclusion 

This paper presents a modified binary PSO of RFM optimization for ALSAT2 images ortho-
rectification. The proposed binary PSO can achieve a sub-pixel on accuracy with a very limited 
number of GCPs.  

The results obtained demonstrate the performance of our proposed algorithm BPSO-RFO in term of 
accuracy and stability comparing to the conventional binary PSO and conventional binary GA in the 
most cases. In term of convergence speed the proposed binary PSO confirm its superiority to other 
tested method, the BPSO-RFO converges rapidly in most cases less than 60 iteration.  

In the last test we apply the BPSO-RFO to different types of RFMs, the results show that the BPSO-
RFO is compatible to any RFM types whatever the number of RPC, which make it a good application 
for RFM optimization.  
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Figure 4: Convergence characteristic of the tested methods with different number 

 of GCPs and different data set: (a) Winterthur_1 , (b) Winterthur_2 
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