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Abstract  
In this paper, an implementation of a very fast nonlinear model-based predictive controller 

using a newly developed open-source toolkit (CasADi) was used to attain the two control goals 

of differential drive mobile robots, point stabilization (regulation) and trajectory following 

(time-varying reference). The controller’s stability was assured by the addition of final state 

equality constraints, which in general require a long optimization horizon for feasibility. In the 

work presented here, we performed a full-scale simulation proving the applicability of the 

terminal stabilization equality constraint have been performed. The obstacle avoidance 

problem has been solved by adding the obstacle position as a constraint in the main optimal 

control problem. 
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1. Introduction 

The issues of control associated with the class of differential drive mobile robots have attracted the 

researchers’ attention over the last three decennaries. This interest is by cause of theoretical and 

practical concerns; the nature “non-holonomy” of this category of mobile robot forces limits on 

velocities acceptable by the system [1]. Notwithstanding, non-holonomy turns out to be valuable 

because it decreases the control inputs’ number, while at the same time, maintaining the system fully 

controllable in the state space [2]. This benefit, however, introduces a complexity that is related to first 

control objective: the task cannot be attained with a pure feedback [1]. In the literature, the main control 

goals considered for this type of systems are point stabilization (regulation) which include forward and 

parallel parking, and trajectory tracking control. First one aims at driving the robot from one pose to 

another one. Second one aims to force the robot to follow a provided trajectory changing in time. As it 

is comparatively simpler, roboticists widely studied the problem of tracking. 

Researchers in [3] have carried out several tracking techniques, counting feedback linearization, 

sliding mode, back-stepping and discontinuous methods. In [4], several strategies using Lyapunov 

control, smooth time-varying control, nonlinear geometric control, piecewise-continuous feedback, and 

dynamic feedback linearization have been reported. In [2], [5]– [7], 

Methods fulfilling both control goals were achieved. Among the best cutting-edge control 

techniques utilized in the industry is model predictive control (MPC); the aim of the latter is to measure 

a future sequence of control in a given time horizon in order to guide the prediction of the controlled 

system’s output close to the reference value by means of minimizing an objective function over an 

online optimization phase in relation to future control actions, as a result, a set of command actions and 

constraints of the states of the system are met [8]. To resolve the two key control goals of nonholonomic 

differential drives, variations of MPC (linear MPC and nonlinear (NMPC)) have been utilized. Linear 

version uses a linearized model of the robot dynamic motion equations to allow it to be used exclusively 

for the problem of trajectory tracking [9], [10]; or its time-non-parameterized case known as path 

tracking [8], [11]. Nonlinear version includes the nonlinearities of the system and utilizes the motion 
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model of the robot explicitly in the optimization control problem, in [3], [12], researchers have utilized 

it for tracking; [4], [13] for regulation; and [14] for both. The usage of a predictive control horizon 

raises a stability problem as mentioned in [4]. It has been shown that stability can be secured by using 

final-state equality constraints for a finite receding horizon [15], [16]. Further analysis shows that by 

adding a final-state penalty, the final-state equality limit can be relaxed as a final-state inequality [3], 

[4]. Another stability criterion was introduced in [14], centered on first-state contractive predictive 

control. In [3], [4], and [15], it was stated that it is time-consuming and a practically unmanageable task 

to achieve stability using the terminal equality constraint. None the less, many dynamic optimization 

packages that implements nonlinear model predictive control have been developed due to developments 

in hardware and the development of successful numerical algorithms [17], [18]. In comparison with the 

formerly developed optimization packages, a lately developed package (CasADi) [19], which easily 

implements NMPC problems, has been shown to be a free software, user-friendly, extensible, and 

computationally scalable [19]. It has been noted, as per the outlined literature above, that a study using 

real-time NMPC is needed for the two key control goals of non-holonomic mobile robots, where 

stabilizing final equality constraints are considered.  

Navigation is one of the most important problems in the design and development of intelligent 

mobile robots, it is the ability of a robot to plan and execute collision-free motions within its 

environment. The sensor data feeds the controller from the environment. This information is considered 

in the computation of the control law, in which the vicinity to any obstacle is also penalized [20]. In 

other words, the obstacle avoidance problem is solved by considering its position as a constraint in the 

optimal control problem. The problem that is heightened in this paper is that of driving a differential 

drive to stabilize at a goal position or follow a formerly calculated desired trajectory, avoiding fixed 

obstacles: A predictive control strategy would seem to be an acceptable approach to the issue, since we 

know the desired future reference. In this work, our main contribution is to propose a NMPC that utilizes 

a final state constraint for stability, a norm 2 distance between the robot pose and the obstacle pose 

constraint for the obstacle avoidance navigation task. A nonlinear model of the robot kinematics is 

utilized. control variables constraints are also considered and a quadratic objective function is proposed 

for computing the set of control signals, and the latter is solved using the multi-shooting technique in 

CasADi toolbox as it reduces the simulation time by 10 to 20 times compared with single shooting 

technique the solver used for the OCP is the IPOPT. 

2. Modelling 

In this section, A brief overview of the differential drive kinematics is given along with an example 

of both control objectives namely regulation and tracking. 

2.1. Robot Kinematics 

The derivations of the WMR’s kinematics utilized in this paper are based on the assumptions below 

[3]: Design Assumptions: 

• The WMR does not contain flexible parts; it is considered a rigid body robot 

• There is no steering link per wheel; wheels can either go forward or backward only 

Operational Assumptions: 

• The WMR moves on a planar surface. 

• The translational friction at the point of contact between a wheel and the surface is large enough 

so that no translational slip may occur. 

The relevant variables for the kinematic model of a typical two-wheel differential mobile robot are 

its center position coordinates (𝑥𝑟𝑜𝑏;  𝑦𝑟𝑜𝑏) ), its angle of orientation 𝜃𝑟𝑜𝑏, along with its linear and 

angular velocities (𝑣𝑟𝑜𝑏 , 𝑤𝑟𝑜𝑏), respectively. 

To illustrate the position of the robot on the plane, we establish a relationship between the global 

reference frame on the plane and the local reference frame on the robot. These frames are shown in 

Figure 1. Axes 𝑋𝐼 and 𝑌𝐼 define the global reference frame. 𝑂 is the origin. We choose a point 𝑃 to 

represent the position reference point of the robot chassis; the pair [𝑋𝑅 , 𝑋𝑅]𝑇 represents the robot 



reference frame point, also referred to as the local frame point, this pair pass-through the point P and 

defines the WMR’s local reference frame. Therefore, the classic prediction model derived from Figure 

1 result in the prediction model described in “(1)”. 

 
Figure 1: The global reference frame and the robot local reference frame. 

Where, the state and control signal vectors are expressed as as 𝑞 = (𝑥𝑟𝑜𝑏 , 𝑦𝑟𝑜𝑏 , 𝜃𝑟𝑜𝑏)𝑇 and 

𝑢 = (𝑣𝑟𝑜𝑏 , 𝑤𝑟𝑜𝑏)𝑇 

𝑞̇ = [

𝑥̇𝑟𝑜𝑏

𝑦̇𝑟𝑜𝑏

𝜃̇𝑟𝑜𝑏

] = [
𝑣𝑟𝑜𝑏𝑐𝑜𝑠𝜃
𝑣𝑟𝑜𝑏𝑠𝑖𝑛𝜃

𝑤𝑟𝑜𝑏

] = [
𝑐𝑜𝑠𝜃 0
𝑠𝑖𝑛𝜃 0

0 1
] 𝑢 

 

   (1) 

 

Since “(1)” has the form of a driftless system “(2)” and the condition of the accessibility rank is 

satisfied globally [21], controllability of “(1)” is assured. 

𝑞̇ = [

𝑥̇𝑟𝑜𝑏

𝑦̇𝑟𝑜𝑏

𝜃̇𝑟𝑜𝑏

] = [
𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

0
] 𝑣𝑟𝑜𝑏 + [

0
0
1

] 𝑤𝑟𝑜𝑏 

 

(2) 

2.2. Point Stabilization and Trajectory Tracking 

To describe the two control problems at hand, we define a reference robot according similar to “(1)” 

and subject to the same constraints, where 𝑞𝑟𝑒𝑓 = (𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓 , 𝜃𝑟𝑒𝑓)𝑇 is the reference state vector, and 

𝑢𝑟𝑒𝑓 = (𝑣𝑟𝑒𝑓 , 𝑤𝑟𝑒𝑓)𝑇 is the input control vector, thus, the reference robot can be described as: 

𝑞̇𝑟𝑒𝑓 = [

𝑥̇𝑟𝑒𝑓

𝑦̇𝑟𝑒𝑓

𝜃̇𝑟𝑒𝑓

] = [

𝑣𝑟𝑒𝑓 𝑐𝑜𝑠 𝜃𝑟𝑒𝑓

𝑣𝑟𝑒𝑓 𝑠𝑖𝑛 𝜃𝑟𝑒𝑓

𝑤𝑟𝑒𝑓

] = [

𝑐𝑜𝑠 𝜃𝑟𝑒𝑓 0

𝑠𝑖𝑛 𝜃𝑟𝑒𝑓 0

0 1

] 𝑢𝑟𝑒𝑓 

 

 

(3) 

At this level, if the reference vector 𝑞𝑟𝑒𝑓  has a steady value comparable to the goal position, we are 

dealing with the point stabilization problem, and the control vector 𝑢𝑟𝑒𝑓 = (𝑣𝑟𝑒𝑓 , 𝑤𝑟𝑒𝑓)𝑇 = (0,0)𝑇 . 

On the other hand, according to the chosen reference trajectory, if the vectors 𝑞𝑟𝑒𝑓 and 𝑢𝑟𝑒𝑓 have values 

changing in time, we are dealing with the trajectory tracking problem. In both cases, controlling “(1)” 



to track “(3)” is our goal; hence, we define the tracking error model 𝑞𝑒 in the basis of the frame linked 

to the mobile platform or the local frame as follows: 

𝑞𝑒 = [

𝑥𝑒

𝑦𝑒

𝜃𝑒

] = [
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃) 0

− 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0
0 0 1

] [

𝑥𝑟𝑒𝑓 − 𝑥𝑟𝑜𝑏

𝑦𝑟𝑒𝑓 − 𝑦𝑟𝑜𝑏

𝜃𝑟𝑒𝑓 − 𝜃𝑟𝑜𝑏

] 

 

(4) 

It can be easily shown that by forcing the state vector 𝑞𝑒 to 0, the two control objectives can be 

accomplished. We differentiate “(4)” versus time; we get the error dynamics for the tracking problem 

which is as follows: 
𝑥̇𝑒 = 𝑤𝑟𝑜𝑏𝑦𝑒 − 𝑣𝑟𝑜𝑏 + 𝑣𝑟𝑒𝑓 𝑐𝑜𝑠 𝜃𝑒

𝑦̇𝑒 = −𝑤𝑟𝑜𝑏𝑥𝑒 + 𝑣𝑟𝑒𝑓 𝑠𝑖𝑛 𝜃𝑒

𝜃̇𝑒 = 𝑤𝑟𝑒𝑓 − 𝑤𝑟𝑜𝑏

 

 

(5) 

Linearizing “(5)”, the error model takes the form: 

𝑞̇𝑒 = [

𝑥̇𝑒

𝑦̇𝑒

𝜃̇𝑒

] [

0 𝑤𝑟𝑒𝑓 0

−𝑤𝑟𝑒𝑓 0 𝑣𝑟𝑒𝑓

0 0 0

] 𝑞𝑒 + [
−1 0
0 0
0 −1

] 𝑢𝑒 

 

   (6) 

Where 𝑢𝑒 is  

𝑢𝑒 = [
−𝑣𝑟𝑜𝑏 + 𝑣𝑟𝑒𝑓 𝑐𝑜𝑠 𝜃𝑒

𝑤𝑟𝑒𝑓 − 𝑤𝑟𝑜𝑏
] 

   (7) 

  

It can be readily tested that if [𝑣𝑟𝑒𝑓 , 𝑤𝑟𝑒𝑓] = [0, 0] , the controllability of the model “(6)” is lost, 

eliminating the ability of applying the point stabilization. Now here, it must be stated that in [4], and 

[14], a motion model version for “(5)” described in the polar coordinates was also used for the purpose 

of point stabilization control; however, model “(5)” was only used in the present work to attain the two 

control problems. Thus, no modification to the controller is needed for our implementation. 

3. DESIGN OF MODEL BASED PREDICTIVE CONTROL 

Next, an overview of the nonholonomic mobile robots’ scheme of NMPC is provided, outlining the 

premises that are required for the stability evidence of terminal equality constraints. 

3.1. NMPC Controller Design 

Generally, it is possible to express “(1)” in a compact form as follows: 

𝑞̇(𝑡)  =  𝑓(𝑞(𝑡), 𝑢(𝑡))    (8) 

Where the state is of n-dimension 𝑞(𝑡) 𝜖 𝑅𝑛 and the control is of m-dimension 𝑢(𝑡) 𝜖 𝑅𝑚 . The 

purpose of the control is calculating a permissible command 𝑢(𝑡) forcing “(8)” to shift towards the 

equilibrium defined by (𝑞𝑒(𝑡) = 0 𝑎𝑛𝑑 𝑢𝑒(𝑡) = 0), where 𝑞𝑒 = 𝑞 − 𝑞𝑟𝑒𝑓 and 𝑢𝑒 = 𝑢 − 𝑢𝑟𝑒𝑓. The 

purpose of the control process is to minimize the cost function given in [3] as follows:  

𝐽(𝑡, 𝑞𝑒(𝜏), 𝑢𝑒(𝜏)) = ∫ 𝑙(𝜏, 𝑞𝑒(𝜏), 𝑢𝑒(𝜏))

𝑡+𝑇

𝑡

𝑑𝜏 

    

   (9) 

 

Where(𝜏, 𝑞𝑒(𝜏), 𝑢𝑒(𝜏)) = 𝑞𝑒(𝜏)𝑇𝑄𝑞𝑒(𝜏) + 𝑢𝑒(𝜏)𝑇𝑅𝑢𝑒(𝜏) is called the operating cost, and 𝑇 is the 

prediction horizon and matrices 𝑄 and 𝑅 are (𝑛 ×  𝑛) and (𝑚 ×  𝑚) respectively, they are symmetric 

positive definite weight matrices. It has been shown that the stability of predictive regulation is ensured 

by the imposition of terminal equality constraints [15], [16]. Therefore, at time instant 𝑡, the online 

open-loop optimization problem of our NMPC controller can be illustrated as: 



𝑚𝑖𝑛
𝑢

𝐽(𝑡, 𝑞𝑒(𝜏), 𝑢𝑒(𝜏))

𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠,                        

𝑞̇(𝜏) =  𝑓(𝑥(𝜏), 𝑢(𝜏))

𝑢(𝜏) ∈ 𝑈(∀𝜏 ∈ [𝑡, 𝑡 + 𝑇])

𝑞𝑒(𝑡 + 𝑇) = 0

 

  

 

 (10) 

 

Where 0 𝜖 𝑈 𝜖 𝑅𝑚 is a contract set defining upper and lower bounds of the control effort, and 

𝑞𝑒(𝑡 + 𝑇) = 0 describes the equality constraints of the terminal state. Controller stability can be proven, 

as illustrated in [16], if the following two 

assumptions are fulfilled. 

1. The state vector 𝑞𝑟 𝜖 𝑋 is an equilibrium point where qr is the reference state vector for the 

admissible control value 𝑢𝑟 𝜖 𝑈, and 𝑋 𝜖 𝑅𝑛 is the state space set for the state vector q(t); this means 

that there is a control value 𝑢𝑟 𝜖 𝑈 such that 𝑓(𝑞𝑟, 𝑢𝑟) = 𝑞𝑟 . 
2. The function of running cost 𝑙: 𝑋 ×  𝑈 →  𝑅0

+ fulfils 𝑙(𝑞𝑟, 𝑢𝑟) = 0 from 𝑢𝑟 𝜖 𝑈 obtained from 

the first assumption. 

For the first assumption, observing system “(1)” will easily verify these assumptions, and since the 

operating cost function 𝑙 has the quadratic form presented in “(9)”, the second assumption is also 

fulfilled. 

3.2. Obstacle Avoidance 

To achieve obstacle avoidance, for the Euclidean distance between the prediction of the location of 

the robot and the location of the obstacle, we must maintain a lower limit. Thus, we ought to enforce 

the following path restrictions. 

√(𝑥𝑟𝑜𝑏 − 𝑥𝑜𝑏𝑠) + (𝑦𝑟𝑜𝑏 − 𝑦𝑜𝑏𝑠)2 ≥ 𝑟𝑟𝑜𝑏 + 𝑟𝑜𝑏𝑠  (11) 

  

This leads to the inequality constraint 

−√(𝑥𝑟𝑜𝑏 − 𝑥𝑜𝑏𝑠) + (𝑦𝑟𝑜𝑏 − 𝑦𝑜𝑏𝑠)2     + (𝑟𝑟𝑜𝑏 + 𝑟𝑜𝑏𝑠) ≤ 0  (12) 

  

 

The OCP becomes 
𝑚𝑖𝑛

𝑢
𝐽(𝑡, 𝑞𝑒(𝜏), 𝑢𝑒(𝜏))

𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑛𝑔,

𝑞̇(𝜏) = 𝑓(𝑥(𝜏), 𝑢(𝜏))

𝑢(𝜏) ∈ 𝑈(∀𝜏 ∈ [𝑡, 𝑡 + 𝑇])

𝑞𝑒(𝑡 + 𝑇) = 0

−√(𝑥𝑟𝑜𝑏 − 𝑥𝑜𝑏𝑠) + (𝑦𝑟𝑜𝑏 − 𝑦𝑜𝑏𝑠)2

+(𝑟𝑟𝑜𝑏 + 𝑟𝑜𝑏𝑠) ≤ 0

 

  

 

 

 (13) 

  

  

In the next section, the code that has been created will initialize the NMPC execution routine each 

time the simulations are analyzed. 

4. CASADI TOOLKIT 

In this paper, a toolbox (CasADi) of MATLAB was used to simulate our two discussed control 

objectives, it is an open-source tool for nonlinear optimization and algorithmic differentiation. It 

facilitates rapid -yet efficient- implementation of different methods for numerical optimal control, both 

in an offline context and for nonlinear model predictive control (NMPC). In order to be able to meet 

the final equality constraints set out in the previous section, it is important to maintain prudently the 

required number of steps of the prediction horizon to satisfy constraints though sustaining a relatively 



abrupt update speed for controllers, making the online optimization feasible. The used toolkit allows 

certain stability requirements to be used, as presented in the next section. The NMPC problem that is 

solved by (CasADi) is of the general form [19]: 

𝑚𝑖𝑛
𝑞(.),𝑢(.),𝑝

∫ ℎ(𝑞(𝑡), 𝑢(𝑡), 𝑝) − 𝜂(𝑡)𝑄
2 𝑑𝑡/

𝑡0+𝑇

𝑡0

+𝑚(𝑞(𝑡0 + 𝑇), 𝑝, 𝑡0 + 𝑇) − 𝜇𝑃
2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑞(𝑡0) = 𝑞0

∀𝑡 ∈ [𝑡0, 𝑡0 + 𝑇]0 = 𝑓(𝑡, 𝑞(𝑡), 𝑞
̇
(𝑡), 𝑢(𝑡), 𝑝)

∀𝑡 ∈ [𝑡0, 𝑡0 + 𝑇]0 ≥ 𝑠(𝑡, 𝑞(𝑡), 𝑢(𝑡), 𝑝)

0 = 𝑟(𝑞(𝑡0 + 𝑇), 𝑝, 𝑡0 + 𝑇)

 

  

 

 

 (14) 

  

Where 𝑞(. ) denotes the states, 𝑢(. ) denotes the manipulated variable, 𝑝 is a constant parameter of 

time (optional), T is the prediction horizon, 𝑓(. ) is the system equation, 𝑠(. ) the trajectory constraints, 

and 𝑟(. ) is the final state constraints. 

Furthermore, the cost function is stated in the form of a least squares, where 𝜂 and µ indicate the 

tracking and final reference. The moving objective function ||ℎ(. ) − 𝜂(𝑡)||𝑄
2  must be stated here 

exclusively in the work proposed herein. (i.e., ||𝑚(. ) − µ||𝑃
2 =  0). It is simple to fit the control problem 

“(14)” written in scalar notation with the control problem stated in “(13)”. 

5. SIMULATION RESULTS 

This section is devoted for the two control objectives simulation results. Data used here is from the 

i90 robot from DrRobot company, the latter is a mobile robot platform dedicated to simulation results 

shown in Figure 2 and Figure 3. 

The robot is a 2 wheeled differential drive mobile robot with an integrated computer, Wi-Fi 

communications, ultrasonic scanners, IRs, camera, and additional autonomous functions. The robot 

utilizes a high precision 40 kg.cm 12V DC motor with embedded 800 Count per Cycle Optical Encoder 

tick encoders for localization purposes. A 2.5 GHz i5 6300 computer with a 8 GB of memory, Windows 

10 operating system was utilized to perform the control vector 𝑢 computation. Full robot specifications 

can be found in [22]. 

The online optimization parameters are selected to achieve the satisfactory controller efficiency 

including the sampling frequency, the number of prediction horizon steps (𝑁), and the weight matrices 

𝑄 and 𝑅 are given in “(9)”. In the next, the results of the stabilization point are discussed first, followed 

by the results of the trajectory. 

 



Figure 2: The I90 robot from DrRobot company 

 
Figure 3: The I90 robot specifications 

5.1. Point stabilization navigation results 

The efficiency of the NMPC controller for point stabilization is seen in this section. The robot begins 

with the initial pose 𝑞0 = [0 0 0]𝑇 (𝑚, 𝑚, 𝑟𝑎𝑑) . The robot is commanded to stabilize at the pose 𝑞𝑟 =
[8.5 9.5 0]𝑇 (𝑚, 𝑚, 𝑟𝑎𝑑) . The controller sampling time step is 0.2 (𝑠) and the number of prediction 

steps number is 𝑁 =  20, resulting in a prediction horizon time 𝑇 =  10 (𝑠). The weighting matrices 

𝑄 and 𝑅 of the objective function “(9)” are diagonal matrices with diagonal elements (15, 10, 0.1) for 

𝑄, and (0.002, 0.002) for 𝑅. The controller saturation limits for linear velocity 𝑣 and angular velocity   



 



Figure 4: Point stabilization trajectory results 

 
Figure 5: Point stabilization robot velocities 

 

𝑤 commands are set to ensure accurate location of the robot and to meet its actuators saturation limits 

as follows [23]: 

[
−0.75

−753/767
] ≤ [

𝑣 (
𝑚

𝑠
)

𝑤 (
𝑟𝑎𝑑

𝑠
)

] ≤ [
0.75

753/767
]    (15) 

 

 

 (15) 

A summary of the results is in Figure 4 and Figure 5. Figure 4 demonstrates the trajectories 

performed by the robot (in red). 

The red triangle shows the position and orientation of the robot, the circles show the prediction of 

the state, the obstacle is represented by a blue disk and the reference position by a green triangle. As 

shown in the Figure 4, the robot can stabilize the controller perfectly to the required position. The results 

demonstrate the controller’s satisfactory performance in this case. Figure 5 demonstrates that the robot’s 

actual linear and angular speeds meet the saturation limit specified in “(15)”. 

5.2. Trajectory tracking navigation results 

For the trajectory tracking problem, the performance of the nonlinear model predictive controller was 

illustrated by the consideration of two reference paths, a circular and an 8-shape path, namely “(16)”, 

“(17)” and “(18)”, “(19)”. Parameters of the “(16)”, “(17)” and “(18)”, “(19)” trajectories are selected 

so that vr and wr do not violate “(15)”, for the circular path, the initial pose of the robot is 𝑞0 =
[0 0 0]𝑇 (𝑚, 𝑚, 𝑟𝑎𝑑), and for the eight-shaped path the initial pose is 𝑞0 = [1 2 0]𝑇 (𝑚, 𝑚, 𝑟𝑎𝑑) 

 

𝑥𝑟𝑒𝑓(𝑡) = 0.3 + 2 × 𝑠𝑖𝑛(0.25𝑡) 

𝑦𝑟𝑒𝑓(𝑡) = −2.3 + 2 × 𝑐𝑜𝑠(0.25𝑡) 

𝑥𝑟𝑒𝑓(𝑡) = 0.3 + 1.5 × 𝑠𝑖𝑛(0.3𝑡) 

𝑦𝑟𝑒𝑓(𝑡)  = 0.3 + 2.5 × 𝑐𝑜𝑠(0.15𝑡) 

(16) 

(17) 

(18) 

(19) 

 



The controller sampling time step is 0.2 (𝑠) with 𝑁 =  20 the prediction steps, resulting in a prediction 

horizon time 𝑇 =  4 (𝑠). The starting points of the reference trajectories “(16)”, “(17)” and “(18)”, 

“(19)” have been selected so that an initial error is different than 0. For the circular-shape tracking, the 

weight matrices 𝑄 and 𝑅 of the objective function “(9)” are diagonal matrices with diagonal elements 

defined as (30, 30, 0.2) for 𝑄, and as (50, 50) for 𝑅. 

For the eight-shape tracking, the diagonal elements of 𝑄 are (30, 30, 0.2), and the diagonal elements of 

𝑅 are (9, 5). Figure 6 and Figure 8 show the actual robot trajectory, the robot trajectory is presented in 

red, the reference trajectory in dashed blue, the predicted state is shown in red circles and the obstacles 

in blue disks. Figure 7 and Figure 9 show the linear and angular control signals, resulting from following 

the reference trajectory. 

 

Figure 6: Circular shape trajectory tracking and navigation results 



 
Figure 7: Circular shape trajectory tracking and navigation velocities results 

 



 
Figure 8: Lemniscates shape trajectory tracking and navigation results 



 
Figure 9: Lemniscate’s trajectory tracking and navigation velocities results 

 

It can be seen from the four figures Figure 6, Figure 7, Figure 8, and Figure 9 that the errors in the 

state vector qe are maintained within acceptable limits, whereas the robot speeds are maintained within 

the limits given in “(15)”. 

The average computational cost per time step for circular- shape tracking is (24.2ms), the steady-

state value of the position error was observed to be within (±3.5cm) and the orientation error was 

observed to be within (±0.04rad), except when the robot avoids obstacles. 

In the 8-shape tracking, the average time computational costs (23.2ms) have been shown to be within 

(±4.7cm) and orientation errors (±0.065rad), except when the robot is avoiding obstacles. 

6. conclusion 

In this paper, a stabilizing NMPC controller with a terminal equality constraint has been shown to 

be applicable, for 2 control objectives namely, point stabilization and trajectory tracking of mobile 

robots. Usage of a toolkit that implements fast NMPC routines, making tractable the computationally 

challenging stability requirements. Simulations were conducted using I90 DrRobot research platform 

specifications. In the point stabilization case, the robot was commanded to perform parallel parking, 

whereas in the trajectory tracking problem, the robot was commanded to follow circular and eight-shape 

trajectories. The obtained results showed a satisfactory controller performance in terms of the point 

stabilization and tracking errors, hence, proving the applicability of the stabilizing NMPC scheme. 
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