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Abstract  
Cement industry releases large amounts of carbon dioxide CO2 as by-product to the atmosphere 

during the calcination of cement raw material. In fact, the calcination is a complex process and 

not completely understood. The amount of CO2 emitted varies with the grain size, chemical 

composition, burning temperature and time to pass through the kiln during calcination process. 

However, due to interaction of several parameters, it is not easy to establish accurate 

mathematic model to calculate the real amount of CO2 emission. Moreover, using the 

laboratory experiments to determine the amount of CO2 emissions are not usually easy, time-

consuming, expensive and require good quality of reagents and equipments. To overcome the 

above problems, artificial neural network (ANN), ANN optimised by imperialist competitive 

algorithm (ICA-ANN), ANN optimised by particle swarm optimization (PSO-ANN) are 

applied to predict amount of CO2 emissions. A comparative accuracy of these tools is evaluated 

based on the coefficient of determination R2, R2 adjusted, mean absolute percentage error 

(MAPE) and scatter index (SI). 

The results obtained are promising and demonstrate that all proposed tools represent a good 

alternative for the prediction of CO2 emission with adequate accuracy. PSO and ICA are 

capable to improve the predicting accuracy of ANN. In addition, PSO-ANN can predict slightly 

better than ICA-ANN. Based on testing data, the results obtained show that 98.61%, 98.18% 

and 97.5% of experimental data are explained by PSO-ANN, ICA-ANN and ANN, 

respectively with average relative error less than 1.41% and SI less than 0.1.  
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1. Introduction 

The cement is used extensively in a diversity of construction projects. The one of the most important 

step in the cement production process is clinker calcination process of raw materials. The calcination 

of raw materials is produced in cement kilns at high temperature. In fact, the calcination process is a 

complex thermo-chemical reaction, and at the same time, it is greatly influenced by heat transfer, mass 

transfer from inside particle to reaction interface, chemical reaction and experimental conditions [1]. It 

is complicated process due to complex interactions of the influencing parameters between them [2]. In 

fact, the calcination process is a complex process and not completely understood. 

The main by-product of clinker calcination process of raw materials is CO2 emitted from thermal 

chemical decomposition reaction of limestone [3]. The amount of CO2 emissions during calcination of 

raw materials is very important and it has strong influence in determining cement quality. The main 

oxides present in in the raw materials are CaO, SiO2, MgO, Al2O3 and Fe2O3 [6]. These oxides have 
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very significant role in determining the amount of CO2 emissions during calcination. The amount of 

CO2 emissions vary with their grain size, chemical composition and burning time. However, the 

influence of these parameters on an amount of CO2 emissions is still not clear. Due to the complexity 

of calcination process, it is very difficult to account the amount of CO2 emissions by traditional 

mathematical methods. Moreover, using the laboratory experiments to determine the amount of CO2 

emissions are not usually easy, time-consuming, expensive and require good quality of reagents and 

equipments. 

For decades, intelligence methods are widely used in several domain to predict the behavior of 

complex phenomena [4,5]. The objective of present study is to evaluate the predicting ability of artificial 

neural network (ANN), ANN optimised by imperialist competitive algorithm (ICA-ANN) and ANN 

optimised by particle swarm optimization (PSO-ANN) in the prediction of CO2 emissions during the 

calcination of cement raw material. These models do not need to understand the process behavior for 

extracting prior knowledge and have strong capability to adapt to system variation. Due to their 

advantages, ANN, PSO-ANN, ICA-ANN are widely used to solve a diversity of complex problems in 

many fields. ANN is a very effective tool for predicting the pitting corrosion [7] and velocity of sound 

in liquid water [8]. PSO-ANN is also successfully applied for predicting of cobalt leaching rate from 

waste lithium-ion batteries [9] and solar space heating system parameters [10]. ICA-ANN is 

successfully applied as intelligence models to predict maximum surface settlement caused by tunnelling 

with higher reliability [11] and oil flow rate of the reservoir [12]. 

The present paper is organised as follows: Section 2 describes briefly the artificial intelligence tools 

used to predict the target. Section 3 presents the used materials and methods. Section 4 presents and 

discuss predicting results. Finally, Section 5 presents our conclusions. 

2. Brief description of artificial intelligence tools 
2.1. Artificial neural network (ANN) 

Artificial neural network is inspired from the biological nervous system within the human brain [13]. 

It is the most popular intelligence tools because it is able to predict the output of complex nonlinear 

relationships among variables in a wide range of areas. It is composed of input layer (IL), output layer 

(OL) and at least one intermediate layers called hidden layers (HL). Each layer contain one or more 

nodes arranged (neurons). The neurons in each layer are fully connected with neurons in the subsequent 

layer. There are no links between neurons in the same layer. The neuron mainly consists of weight, bias 

and activation functions. The weight, bias factors are adjusted and optimised at every iteration by 

Levenberg Marquardt (LM) based back propagation (BP) during training process [14]. The cost 

function used by ANN during leanining process mean square error (MSE). It is used to measure the 

difference between the predicted output and the desired output. 

The number of neurons in the input layer and the output layer equal the number of input and output 

variables in the data, respectively. Whereas, there are no general rules to determine the suitable number 

of hidden nodes and number of its neurons. The common way is to set a relative large number of neurons 

at the beginning, and then reduce it gradually until the desired error are achieved. There are some cases 

where the ANN tool has the disadvantages of slow learning convergence, local optima trapped instead 

of global optimal solution [15]. PSO and ICA are proposed to overcome the previous shortcomings of 

ANN and to improve its applications. 

2.2. Imperialist Competitive Algorithm-Artificial Neural Network (ICA-ANN) 

As mentioned previously, despite the popularity of ANN in prediction complex system, it still has 

the possibility to fall in a local optimum. Hence, Imperialist Competitive Algorithm is combined with 

ANN to find the global optimal and avoid premature convergence toward local. 

The imperialist competitive algorithm ICA is a new optimization algorithm which is inspired by the 

imperialistic competition processes of human [16]. ICA algorithm is applied to update the weights and 

biases during the training process in order to improve efficiency of ANN. Recently, it is very attractive 

[17] and widely applied to solve discrete optimization problems due to its good convergence rate and 



better global optima finding. ICA algorithm start by initial randomly population called countries. In 

reality, there are two groups of countries which are imperialists and colonies regarding their power. The 

most powerful countries with the minimum best cost are chosen as imperialists, whereas the weakest 

countries are taken as colonies of theses imperialists. The imperialist and their colonies are united 

together to construct the initial empires. ICA algorithm begins an iterative process to arrive at optimal 

solutions after some number of decades or generations.  

Three main operators of ICA are assimilation, revolution and competition [18]. In assimilation, each 

colony starts to moves to their corresponding imperialist in order to develop its position. During the 

movement, the colony can attain great power (lower cost) compared to its imperialist. This procedure 

is called revolution. In this case, their positions will be exchanged and the empire has a new imperialist. 

At the next step, imperialist competition starts and the weakest empires is eliminated from the 

competition. At the end, only one of these empires is remained and all the other countries are their 

colonies. The remaining empire presents the optimal solution. The most important ICA parameters are 

number of countries, number of imperialists, number of decades. 

2.3. Particle Swarm Optimization-Artificial Neural Network (PSO-ANN) 

Similar to ICA, Particle Swarm Optimization (PSO) is combined with ANN to form powerful tools 

and to adjust its setting parameters. PSO is a popular algorithm due to its competitive performance and 

easy implementation [19]. It is inspired by natural phenomena of birds flocking or schooling fish while 

searching for food sources. In the natural, birds randomly move in groups and work together by sharing 

information to achieve a nearest food source. Each bird tries to follow the bird which is nearest to the 

food. Bird searching for food updates both its speed and position. This process is repeated iteratively 

until the source of food is found. After a sufficient number of iterations, all birds will eventually 

discover the nearest path from the nest to the food source. The nearest path is the desired solution [20]. 

PSO is more attractive because of its quick convergence and only few parameters adjustments are 

required [21]. The performance of PSO is related principally to the number of particle, number of 

iterations. 

3. Materials and methods 

3.1. Materials and experiments 
In the present study, CO2 emission is considered as a function of chemical composition, grain size 

and time exposed. The raw materials are blended and preheated to around 300°C to remove water 

combined in the hydration products and then up to 850° C to remove impurities, which can affect the 

cement quality. 

Four different grain size distribution (71, 125, 250 and 350 µm) of raw materials used are selected 

separately. The chemical composition and mix proportions of four raw materials used are summarised 

in Table 1. Finally, each mixture of raw materials with gain size are burned in the laboratory furnace at 

1000° C for different times 5, 10, 15, 20, 30 min. The amount of CO2 emissions is calculated before 

and after burning of each mixture of raw materials at 1000 °C. 

Table 1 
Chemical composition (% by weight) for each raw 

Raw Materials SiO2 CaO MgO Fe2O3 Al2O3 

Material 1 12.38 80.28 1.38 1.69 4.27 
Material 2 3.96 92.62 0.99 0.65 1.78 
Material 3 14.06 78.69 1.35 1.68 4.22 
Material 4 14.16 78.04 1.36 2.21 4.23 

3.2. Dataset collection 
The dataset extracted from the experimentation is collected in a table of 80 rows and 8 columns. 

Each row in this table presents an experiment. From 1 to 7 columns are inputs where the last column is 



output. The size particle, time exposed, SiO2(%), CaO (%), MgO (%), Fe2O3 (%), Al2O3 (%) are inputs 

and the amount of CO2 emissions is the output. 

The total dataset are randomly divided into two sets: training and testing. For each algorithm, 75% 

of dataset is used for training while the remaining 25% (unseen dataset) of dataset are kept out to 

evaluate the generalisation ability. The most common performance criterion used to evaluate the 

accuracy of each algorithm are the coefficient of determination R2 R2 adjusted, the mean absolute 

percentage error (MAPE) and the  scatter  index  (SI). The tool performance is perfect when value of 

R2 is very close to 1, while value of MAPE are very close 0. The predictive accuracy is excellent when 

SI is inferior of 0.1; good if SI among 0.1 and 0.2; and bad if SI more than 0.3. [22]. 

4. Results and discussion 

In fact, selecting an optimal settings parameters of each intelligence methods tools during training 

stage is a challenging task. The trial-and-error method is considered as best method to find the optimal 

settings parameters [23]. It is applied in this study to determine different setting parameters. 

 

4.1. ANN results 
It is well known, that ANN has ability to learn the relationship between inputs and outputs in the 

presence sufficient number of hidden layer and neurons with suitable transfer functions [7]. After trying 

various ANN parameters during the training phase, the more appropriate structure parameters of ANN 

are determined as listed in Table 2. 

Table 2 
ANN parameters 

Parameters Values 

Number of HL 1 
Neuron number in HL 12 

Transfer function for HL transig 
Transfer function for OL purelin 

Training Algorithm LM based BP 

The comparison between experimental and predicted CO2 emissions values obtained by ANN for 

training and testing phases are shown in Figure 1 and Figure 2, respectively.  

 
Figure 1: Comparison between predicted and experimental CO2 emissions in testing phase 

 

 



 
Figure 2: Comparison between predicted and experimental CO2 emissions in training phase 

The distribution of the relative error obtained ANN during training and testing phases is illustrated 

in Figure 3. It is clear from Figure 3 that the relative error values are nearly spread around the zero line. 

The average relative error for training phase is 0.58% while it is 1.41% for testing phase. While the 

maximum error for training phase is 2.36% and for testing phase is 4.02%. These low values of MAPE 

are indicative of very small difference between experimental of CO2 emissions and predicted ones. 

The results illustrated in Figure 3 confirm that ANN has good generalisation capability and can 

predicts the amounts of CO2 emissions adequately, as indicated by the low value of MAPE equal to 

1.41%, high value R2 equal to 0.9763. 

 
Figure 3: Distribution of the relative error obtained ANN during training and testing phases 

From Table 3, the values of R2 adjusted indicate that ANN is able to predict approximately 98.94% 

of training dataset and 97.50% of testing dataset. The values of SI less than 0.1 obtained in both phases 

mean adequate predictive capability. The high accuracy of ANN is usually due to its flexible 

architecture and its excellent performance in solving the nonlinear mapping between the inputs and 

outputs. 

Table 3 
Performance criteria 

Parameters R2 adj SI 

Training phase 98.94% 0.0076 
Testing phase 97.50% 0.0176 



4.2. PSO-ANN results 
The PSO algorithm is used to train and optimise weights and biases of previously ANN architecture 

to form powerful tool. The objective of using the same architecture is to evaluate the capability 

optimising of PSO algorithm. The optimal parameter configuration of PSO-ANN utilised are 

summarises in Table 4. 

Table 4 
PSO-ANN parameters 

Parameters Values 

Number of particle 14 
Number of iteration 16 

Acceleration constant (C1=C2) 1.5 
Number of HL 1 

Neuron number in HL 12 
Transfer function for HL transig 
Transfer function for OL purelin 

Training Algorithm LM based BP 

The predicted values of CO2 emissions obtained from PSO-ANN are compared with the 

experimental ones for training phase and testing phase as shown in Figure 4 et Figure 5, respectively.  

It is clear that almost points are very closely clustered around the line of equality (y=x) and lied exactly 

linear fit. Moreover, the linear fit is sloped with an angle close to 45° that means strong linear 

relationships between to predicted and experimental dataset. PSO-ANN can achieve R2 of 0.9870 in the 

training phase and 0.9868 in the testing phase. The R2 values close to 1 mean that the predicted CO2 

emissions are very close to the real experimental values. The R2 mean that less than 1.4% of testing 

dataset and training dataset can not explain by PSO-ANN. 

The distribution of the relative error obtained during training and testing phases are plotted in Figure 

6. It is observed that almost of points are tightly concentrated near to line zero. The relative errors are 

relatively less in both phases, where the maximum error not exceed 3.15% in training phase and 3.17% 

in testing phase. The average relative error for training and testing are 0.6% and 0.97%, respectively.  

 
Figure 4: Comparison between predicted and experimental CO2 emissions in testing phase 
 

 



 
Figure 5: Comparison between predicted and experimental CO2 emissions in training phase 

 
Figure 6: Distribution of the relative error obtained PSO-ANN during training and testing phases 

The prediction results approve the feasibility of the PSO-ANN and show the good generalization 

capability. As reported in Table 5, the values of R2 adjusted mean that PSO-ANN can predicted 98.6 % 

of total dataset correctly. In addition, the SI values less than 0.1 reflect the excellent predicting ability 

of amount of CO2 emissions. 

Table 5 
Performance criteria 

Parameters R2 adj SI 

Training phase 98.70% 0.0088 
Testing phase 97.50% 0.0114 

The high performance of PSO-ANN is explained by the capability of PSO to find the global optimum 

solution and optimum structure of ANN and high capability of ANN to learn by example during training 

process. In summary, PSO-ANN tool is very useful in predicting the amount of CO2 emissions with 

very high value R2 and very low value of MAPE.  

4.3. ICA-ANN results 
Similar to previous case, ICA is also used for optimising the weights and bias values in ANN. The 

best parameters values of ICA utilised during training process to optimise and to improve the prediction 

performance accuracy of ANN are shown in Table 6.  

 



Table 6 
ICA-ANN parameters 

Parameters Values 

Number of countries 25 
Number of initial imperialists 10 

Number of decades 3 
Number of HL 1 

Neuron number in HL 12 
Transfer function for HL transig 
Transfer function for OL purelin 

Training Algorithm LM based BP 

The capability of ICA-ANN to predict amount of CO2 emissions during calcination process is shown 

in Figure 7 and Figure 8. 

 
Figure 7: Comparison between predicted and experimental CO2 emissions in testing phase 

 
Figure 8: Comparison between predicted and experimental CO2 emissions in training phase 

The plots clearly illustrate that almost of dataset in training and testing phases fall on a linear fit 

which is mostly overlapped with line of line of equality (y=x). The R2 value are high for both phases 

and are near to one, reflecting strong linear relationships between predicted amount of CO2 emissions 



and experimental ones. The values of R2 reveal that more than 98% of testing and training dataset are 

predicted perfectly by ICA-ANN.  

The accuracy of amount of CO2 emissions prediction of ICA-ANN is shown in Figure 9. It is clear, 

the dispersion of points dataset is quite close to the line zero. The relative error is almost low in the slip 

range of 0 to 2.51% in both phases. ICA-ANN is capable of providing average relative error values 

equal to 0.6% and 1.12% for training and testing phases, respectively. These values illustrate that the 

CO2 emissions predicted are very close to the real experimental ones. 

The distribution of the relative error obtained by ICA-ANN during training and testing phases is 

shown in Figure 9. It is clear, the dispersion of points dataset is quite close to the line zero. The relative 

error is almost low in the slip range of 0 to 2.51% in both phases. ICA-ANN is capable of providing 

average relative error values equal to 0.6% and 1.12% for training and testing phases, respectively. 

These values illustrate that the amount of CO2 emissions predicted by ICA-ANN are very close to the 

real experimental ones. 

 
Figure 9: Distribution of the relative error obtained ICA-ANN during training and testing phases 

The performance criteria for both phases are illustrated in Table 7. The adjusted R2 adjusted indicate 

that only 1.08% of training and 1.72% of testing dataset are not explained by this model. The values of 

SI that are less than 0.1 signify excellent capability of predicting.  

Table 5 
Performance criteria 

Parameters R2 adj SI 

Training phase 98.92% 0.0080 
Testing phase 98.28% 0.0118 

Results obtained reveal that ICA-ANN can produce excellent predicting results with high values of 

R2 and low values of MAPE. The high accuracy of ICA-ANN is mostly due to its great capability of 

optimizing and the self -adaptive learning ability of ANN. 

4.4. Comparison between different tools 
Based on testing dataset, ANN non-optimised is compared to PSO-ANN, ICA-ANN to evaluate 

predicting ability of each tool in the prediction of CO2 emissions during the calcination of cement raw 

material and the capacity of PSO and ICA in optimising of parameters of ANN. This comparison is 

presented in Figures 10 and Figure 11. 

Firstly, PSO-ANN, ICA-ANN and ANN act as robust and powerful tools in predicting of amount of 

CO2 emissions and can generate good accuracy. As can be seen from Figure 10 and Figure 11, using 

PSO and ICA for optimising weight and bias can lead to a good predicting ability on result compared 

to simple ANN. For PSO-ANN, the values of R2 and MAPE are 0.9763 and 1.14%, respectively 

whereas after combining ANN with PSO the value of R2 and MAPE become 0.9868 and 1.01%, 

respectively. A similar improvement is observed with ICA-ANN. The results reveal the highest 

prediction capacity of PSO-ANN compared to ICA-ANN and ANN. Furthermore, the ANN efficiency 

is less than ICA-ANN by according to the results obtained via R2 and MAPE. The predicting ability of 



ANN, ICA-ANN and PSO-ANN are as excellent as expected and they can reveal the real relationship 

between the influencing parameters and target. Based on testing dataset, the results obtained show that 

1.39%, 1.82% and 2.50% of experimental dataset are not explained by PSO-ANN, ICA-ANN and ANN, 

respectively with average relative error less than 1.41% and SI less than 0.1. 

 
Figure 10: Comparison between PSO-ANN, ICA-ANN and ANN in term of R2 and MAPE 

 
Figure 11: Comparison between PSOANN, ICA-ANN and ANN in term of SI and R2 adjusted 

5. Conclusion 

In present paper, PSO-ANN, ICA-ANN and ANN tools are proposed, and their prediction 

performances of amount of CO2 emissions is evaluated through a comparison with the experimental 

ones. Based on testing dataset, the results obtained demonstrate that all tools proposed are very useful 

tools for fast prediction of amount of CO2 emissions with high generalization performance. Using PSO 

and ICA for optimising weight and bias can lead to a good predicting ability on result compared to 

simple ANN. Based on the same neural network architecture, PSO-ANN has highest predicting ability 

with comparative high value of R2 and less value of MAPE, followed ICA-ANN, while slightly less 

performance is seen in the case of ANN non optimised.  

Based on testing dataset, the results obtained show that 98.61%, 98.18% and 97.5% of experimental 

dataset are explained by PSO-ANN, ICA-ANN and ANN, respectively with average relative error less 

than 1.41% and SI less than 0.1. Finally, the results obtained are promising and demonstrate that all 

proposed tools represent a good alternative for the prediction CO2 emission during the calcination of 

cement raw material with excellent accuracy.  



6. References 

[1] F. García-Labiano, A. Abad, L. F. Diego, P. Gayán, J. Adánez,  Calcination of calcium–based 

sorbents at pressure in a broad range of CO2 concentrations, Chem. Eng. Sci 57 (2002). 

doi:10.1016/S0009-2509(02)00137-9. 

[2] G. D. Silcox, J. C. Kramlich, D. W.  Pershing, A mathematical model for the flash calcination of 

dispersed CaCO3 and Ca(OH) particles, Ind. Eng. Chem. Res 28 (1989). doi:10.1021/ie00086a005. 

[3] H. Mikulčić,  E. Berg, M. Vujanović, P. Priesching,  L. Perković, R. Tatschl, N. Duić, Numerical 

modelling of calcination reaction mechanism for cement production, Chem. Eng. Sci 69 (2012). 

doi:10.1016/j.ces.2011.11.024. 

[4] Y. Boukhari, M. N. Boucherit, M. Zaabat, S. Amzert K. Brahimi, Artificial intelligence to predict 

inhibition performance of pitting corrosion, J. Fundam. Appl. Sci 9 (2017). 

[5] A. M. Abubakar, E. Behravesh, H. Rezapouraghdam, S. B. Yildiz, Applying artificial intelligence 

technique to predict knowledge hiding behavior, Int. J. Inf. Manag. Sci 49 (2019). 

doi:10.1016/j.ijinfomgt.2019.02.006. 

[6] Z. Cao, L. Shen, J. Zhao, L. Liu, S. Zhong, Y. Yang, Modeling the dynamic mechanism between 

cement CO2 emissions and clinker quality to realize low-carbon cement, Resour. Conserv. Recycl 

113 (2016). doi:10.1016/j.resconrec.2016.06.011. 

[7] M. N. Boucherit, S. A. Amzert, F. Arbaoui, Y. Boukhari, A. Brahimi, A. Younsi, Modelling input 

data interactions for the optimization of artificial neural networks used in the prediction of pitting 

corrosion, Anti-Corros. Methods. Mater 66 (2019). doi:10.1108/ACMM-07-2018-1976. 

[8] H. Nowruzi H. Ghassemi, Using artificial neural network to predict velocity of sound in liquid 

water as a function of ambient temperature, electrical and magnetic fields, J. Ocean. Eng. Sci 1 

(2016). doi:10.1016/j.joes.2016.07.001. 

[9] H. Ebrahimzade, G. R. Khayati, M. Schaffie, PSO–ANN-based prediction of cobalt leaching rate 

from waste lithium-ion batteries, J. Mater. Cycles. Waste. Manag 22 (2019). doi:10.1007/s10163-

019-00933-2. 

[10] B. Jamali, M. Rasekh, F. Jamadi, R. Gandomkar, F. Makiabadi, Using PSO-GA algorithm for 

training artificial neural network to forecast solar space heating system parameters, Appl. Therm. 

Eng 147 (2019). doi:10.1016/j.applthermaleng.2018.10.070. 

[11] M. R. Moghaddasi, M. Noorian-Bidgoli, ICA-ANN, ANN and multiple regression models for 

prediction of surface settlement caused by tunnelling, Tunn. Undergr. Space Technol 79 (2018). 

doi:10.1016/j.tust.2018.04.016. 

[12] M. A. Ahmadi, M. Ebadi, A. Shokrollahi, S. Mohammad, J. Majidi, Evolving artificial neural 

network and imperialist competitive algorithm for prediction oil flow rate of the reservoir, Appl. 

Soft Comput 13 (2013). doi:10.1016/j.asoc.2012.10.009. 

[13] E. Heidari, M. A. Sobati, S. Movahedirad, Accurate prediction of nanofluid viscosity using a 

multilayer perceptron artificial neural network (MLP-ANN), Chemom. Intell. Lab. Syst 155 

(2016). doi:10.1016/j.chemolab.2016.03.031. 

[14] P. Amani, K. Vajravelu, Intelligent modeling of rheological and thermophysical properties of 

green covalently functionalized graphene nanofluids containing na-noplatelets, Int. J. Heat. Mass. 

Transf 120 (2018). doi:10.1016/j.ijheatmasstransfer.2017.12.025. 

[15] A. M. Adrian, A. Utamima, K. J. Wang, A comparative study of GA, PSO and ACO for solving 

construction site layout optimization, KSCE J. Civ. Eng 19 (2015). doi:10.1007/s12205-013-1467-

6. 

[16] M. Abdollahia, A. Isazadehb, D. Abdollahic,  Imperialist competitive algorithm for solving 

systems of nonlinear equations, Comput. Math. with Appl 65 (2013). 

doi:10.1016/j.camwa.2013.04.018. 

[17] D. Peri, Hybridization of the imperialist competitive algorithm and local search with application 

to ship design optimization, Comput. Ind. Eng 137 (2019). doi:10.1016/j.cie.2019.106069. 

[18] D. J. Armaghani, M. Koopialipoor, A. Marto, S. Yagizd, Application of several optimization 

techniques for estimating TBM advance rate in granitic rocks,” J. Rock. Mech. Geotech. Eng 11 

(2019). doi:10.1016/j.jrmge.2019.01.002. 



[19] X. Xia, L. Gui, Z-H. Zhanc, A multi-swarm particle swarm optimization algorithm based on 

dynamical topology and purposeful detecting, Appl. Soft Comput 67 (2018). 

doi:10.1016/j.asoc.2018.02.042 

[20] Q. Cui, Q. Li, G. Li, Z. Li, X. Han, H. P. Lee, Y. Liang, B. Wang, J. Jiang,  C. Wu, Globally-

optimal prediction-based adaptive mutation particle swarm optimization, Inf. Sci 418–419 (2017). 

doi:10.1016/j.ins.2017.07.038. 

[21]  P. S. You, An efficient computational approach for railway booking problems, Eur. J. Oper. Res 

185 (2008). doi:10.1016/j.ejor.2006.12.049.  

[22] R. J. Stone, Improved statistical procedure for the evaluation of  solar  radiation  estimation  

models,  Solar Energy 51 (1993). doi:10.1016/0038-092X(93)90124-7. 

[23] D. J. Hill, B. S. Minsker, Anomaly detection in streaming environmental sensor data: a data-driven 

modeling approach. Environ. Model. Softw 25 (2010). doi:10.1016/j.envsoft.2009.08.010.  


