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Abstract
Perceptual image hashing has been broadly used in the literature to authenticate images or to identify
similar contents for image copy detection. It can be used to improve the security of fingerprint-based
identification systems, especially to guarantee the authenticity of fingerprint images. In this paper, a
comparative study of the most used techniques in the field of perceptual hashing is provided, aiming at
evaluating their performance when applied to fingerprint images. The study includes five techniques,
namely: A-Hash, D-Hash, P-Hash, W-Hash and SVD-Hash. The performance has been assessed in
terms of perceptual robustness, discrimination capability and authentication characteristics, through
extensive experiments. The obtained results are promising and show that overall both the A-Hash and
P-Hash performed well when compared to other evaluated techniques.

Keywords
perceptual hashing, fingerprint images, robust hashing

1. Introduction

With the widespread utilization of fingerprint-based identification systems, establishing the
authenticity of fingerprint data itself has emerged as an important research issue. Indeed, it is, in
many cases, imperative that the authenticity of the transmitted fingerprint images, for example
from intelligence agencies to a central database, must be first verified before it is processed by
the identification modules. Recently, perceptual image hashing, which is one of the possible
techniques that may be used along with digital watermarking, is becoming one of the most
widespread research area and has emerged as an efficient way to check the authenticity of
multimedia data (i.e. images and videos) [1].

Perceptual image hashing functions are based on extracting certain robust or invariant features
from the image to produce a hash (or a fingerprint) with the property that two completely
different images provide uncorrelated hashes while two visually similar images (i.e. perceived as
similar by the human eye) generate highly correlated hashes. In this case, an efficient perceptual
hashing technique should be able to detect that an image has been derived from another one in a
way to remain perceptually similar, even their corresponding files are substantially different [2].
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It is meant here by two visually similar images that one image is derived from another via the
commonly used content-preserving image manipulations.

In general, an authentication perceptual image hashing system consists of three main phases:
the pre-processing stage, the hashing generation stage, and the decision making stage. The
main objective of the pre-processing phase is to improve the robustness of features by reducing
the effects of possible distortions, by applying image processing operations such as resizing,
filtering, color space dimension reduction, etc. In the next phase, the reference hashes are
generated and stored in a dataset. In the context of image authentication, the same perceptual
hash process is applied to the image to be authenticated to generate a test hash. After that, and
at the decision-making phase, the test hash is compared with the reference hashes to check the
authenticity of the test image, based on a selected metric such as the Euclidean distance, the
Hamming distance, the Normalized Hamming distance, etc. [3]. In the context of authentication
applications, the major part of perceptual hashing algorithms can be broadly classified into the
following classes : (i) invariant feature transform-based hashing, (ii) local feature points-based
hashing, (iii) dimension reduction-based hashing, (iv) statistical features-based hashing, and (v)
leaning-based hashing[3]. More details can be found in [4, 5, 6].

The objective of this paper is to analyze and evaluate the performance of five of the commonly
used perceptual hashing techniques when applied to fingerprint images in the context of
verifying their authenticity. The evaluated techniques are two spatial domain techniques,
namely: the Average hashing (A-Hash) and the Difference hashing (D-Hash), and three frequency
domain techniques, including: the DCT-based hashing (P-Hash), the Wavelet-based hashing (W-
Hash) and the SVD-based hashing (SVD-Hash). Extensive experiments have been conducted on
real fingerprint images, in which we have evaluated the perceptual robustness, the discrimination
capability and authentication property of each evaluated technique. Carrying out this study
is motivated by the fact that, and for non expert persons, they perceive fingerprint images
as an alternation of curved dark lines, representing the ridges, along with white lines, which
represent the valleys and they almost have the same shape. In other word, visually fingerprint
images may, in many cases, look the same. Therefore, it is important to analyze how perceptual
hashing techniques deal with such kind of images.

The rest of the paper is organized as follows. The evaluated techniques are described in
Section 2. Evaluation results and analysis are provided in Section 3. Conclusions are drawn in
Section 4.

2. Perceptual Image Hashing Techniques

In this section, five of the most used perceptual hashing techniques are described. It is worth
mentioning that, in this study, we focus on perceptual image hashing algorithms that can
produce fast image hashes, while still preserving image identity.

2.1. A-Hash

The average hashing technique, referred to as A-Hash, is one of the simplest and basic methods
used to generate perceptual hashes of images [7, 8, 9]. This technique produces the hash value
of the image based on its low frequencies, which represent the image structure, and eliminates



the higher frequencies, corresponding to the image details[10]. For this purpose, the A-Hash
uses a number of pre-processing operations including blurring, re-sizing, colors reduction and
normalization [8]. It is worth noting that the primary goal of the A-Hash is to find the average
color of all the image matrix values by calculating the mean of the matrix. In this study, we
followed the same steps cited in [8] to implement this algorithm. These steps are summarized
as follows : (i) the input image is resized to a size of 8× 8 pixels; (ii) a color space conversion
from RGB color space to gray-scale (YCbCr) color space is conducted; (iii) the mean value of all
luminance values of the precedent image matrix is calculated; (iv) a comparison of each element
of the image matrix and the calculated mean value is done, and a new binary matrix with 64
elements is obtained, where 1 indicates that the intensity of the element is greater than the
average and 0 otherwise; (v) construct the vector from the resulting binary matrix, starting
from the top left and going to the bottom right, to obtain a 64-bit long hash. The resulting hash
can be later compared with other images hashes to retrieve the “similarity score” based on the
distance metric between the two hashes.

2.2. D-Hash

The difference hash technique, also known as D-Hash, is an alternative method and similar
to the A-Hash one [11]. Like the A-Hash, D-Hash focuses on the image structure, which is
achieved by reducing the image size, i.e. by eliminating the higher frequencies from the image.
The main difference between the two techniques is that, the D-Hash generates the hashes by
computing the difference hash similarity of the image based on the change of color gradient
between adjacent pixels in the image matrix[12, 13]. As for the A-Hash algorithm, we followed
the same steps cited in [8] to implement the D-Hash algorithm. These steps are summarized as
follows : (i) the image is reduced to a 9 × 8 block size to produce a total of 72 pixels; (ii) the
image is converted to a gray-scale space color; (iii) for each row, we perform a comparison of
the difference between each two adjacent pixels, to obtain a total of 8 differences per row; (iv)
the 64 differences are computed for each image and then used to build the image hash, so that if
the difference value is negative then the hash bit is set to 0, otherwise it is set to 0. At the end, a
64-bit hash is obtained.

2.3. P-Hash

The perceptive hash, denoted as P-Hash, is a technique that extends the A-Hash method by
using the Discrete Cosine Transform (DCT) to obtain the most sensitive information of the
human vision system (HVS) [9]. This technique uses the same approach like the A-Hash:
finding the mean values and compare [8], but instead of using image intensities to perform the
hash generation process, it uses a range of low frequencies obtained after applying the DCT
technique [14]. The implementation of P-Hash includes the following steps:(i) the image is
resized to a 32× 32 pixels matrix; (ii) the obtained image is then converted to the gray-scale
space color; (ii) a 32× 32 DCT is performed on the gray-scale image to obtain a 32× 32 DCT
coefficient matrix, where the energy of the image will be gathered into a few low-frequency
DCT coefficients; (iv) a vector of length 64 is constructed by concatenating the DCT coefficients
from (1,1), corresponding the upper left corner of the 64 size matrix, to the coefficient (8,8),



representing the lower right corner; (v) the mean of the resulting coefficients array is computed;
(vi) a comparison of the 64 DCT coefficients with the mean value is performed, in a way that
the hash bit is set to 1 if the coefficient is greater than the mean value, and 0 otherwise; (vii)
finally, a 64 bits binary hash is obtained.

2.4. W-Hash

The wavelet hash technique, referred to as W-Hash, is a frequency domain hashing technique
that uses the Discrete Wavelet Transform (DWT) to generate perceptual hashes. It is based
on analyzing the image in the wavelet domain, while retaining temporal information [15].
Note that this transform is often used to remove redundancy in a data with highly correlated
neighboring values, such as pixels in images [10]. The original W-Hash was introduced by
Venkatesan et al. [16], who described the main steps to implement this technique as follows: (i)
a randomly tilling of each sub-band of the image is calculated in a given number of level wavelet
decomposition using the Haar wavelet [17]; (ii) the resulting statistics vector is then quantized
using a randomized quantizer; (iii) the calculated quantized statistics vector is decoded using a
first-order Reed-Muller error-correcting decoder, to produce a binary hash value with a length
𝑛; (iv) finally, the resulting intermediate hash value is passed by another decoding stage of a
linear code with random parameters, to transform it into an even shorter hash code.

2.5. SVD-Hash

The Singular Value Decomposition hash, denoted by SVD-Hash, was first introduced by Kozat
et al. [18]. The general mechanism of this technique is to derive a secondary image, from the
original one using a pseudo-randomly (PR) extracting features that approximately capture
semi-global geometric characteristics. Then, the final features are extracted and further suitably
quantized to form the final hash value. The SVD-Hash algorithm implementation steps are
summarized as follows: (i) from the input image matrix of size 𝑛×𝑛, form 𝑝 possibly overlapping
blocks, so that each of them has the size of 𝑚×𝑚; (ii) for each resulting block, generate the
corresponding feature vector using the SVD transformation ; (iii) generate a secondary image
via the PR combination of all intermediate feature vectors; (iv) apply the same steps 1 and 2
to the new resulting image; (v) finally, combine the generated feature vectors from the second
image to build the final hash vector.

3. Experimental Results

In this section, intensive experiments have been carried out to evaluate the performance of the
techniques described in Section 2. In all experiments, real fingerprint images from the ‘FVC
2000, DB3_a’ database [19] have been used. This database contains 800 fingerprint images of
size 448× 478. Note that these images have been slightly resized to have a size of 448× 480
(i.e., having a height and width divisible by 8). Three aspects are considered in our experiments:
(i) perceptual robustness, (ii) discrimination capability, and (iii) authentication. Moreover, and
in order to make the comparison as fair as possible between the evaluated techniques, the
Normalized Hamming distance has been used as a metric to evaluate the similarity between



extracted hashes. To perform perceptual robustness and authentication testing, eleven kinds
of commonly used content-preserving image manipulations were utilized to produce visually
similar images. The details of image manipulations and the corresponding parameter settings
are given in Table 1.

Table 1
Content-preserving manipulations and parameters setting

Manipulation Parameters setting

Gaussian noise (GN) variance = 0.07
Average filtering (AF) filter size = 9
Salt & pepper noise (SP) density = 0.20
Gaussian blurring (GB) standard deviation = 7
Gamma correction (GC) gamma = 0.8
Motion blurring (MB) len = 40, theta = 55
JPEG compression (JC) quality factor = 40
Median filtering (MF) filter size = 7
Wiener filtering (WF) filter size = 7
Image sharpening (SH) alpha = 0.49
Image scaling (SC) factor = 0.5

3.1. Perceptual Robustness

An efficient perceptual hashing technique should be robust and resist content-preserving
manipulations with moderate strength. In other words, for visually similar images, it should
produce the same or similar hashes even their digital representations are no longer the same.
This characteristic can be measured by evaluating the perceptual robustness. In this work,
we conducted a set of experiments to assess the perceptual robustness of the five evaluated
techniques. Hence, for every evaluated technique, we extracted the original (reference) hashes
from the original 800 fingerprint images and their corresponding manipulated versions under
the eleven content-preserving manipulations listed in Table 1. Then, the Normalized Hamming
distance is calculated between each original hash and its corresponding manipulated hash.
The minimum, maximum, and mean values of the resulting distances after each operation are
presented in Table 2. Note that, to make the comparison as fair as possible, we have normalized
the obtained results by mapping them to the same interval.

The obtained results clearly show that, in most cases, the A-Hash technique provides the
lowest mean values of the Normalized Hamming distances, computed between reference hashes
and their manipulated ones. The P-Hash comes in the second place in most cases. Moreover, the
D-Hash shows an acceptable level of robustness against the most manipulations. The least robust
technique is the SVD-Hash, where the results clearly show that the applied manipulations affects
the Hamming distances significantly. It is worth mentioning that in the absence of manipulations,
the Normalized Hamming distances should be equal to 0.



Table 2
Hamming distances under different content-preserving manipulations. Best values are in bold.

A-Hash D-Hash P-Hash W-Hash SVD-Hash
Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean

GN 0.000 0.214 0.035 0.000 0.375 0.135 0.000 0.273 0.110 0.043 0.385 0.138 0.037 0.567 0.134
AF 0.000 0.156 0.018 0.000 0.119 0.019 0.000 0.097 0.025 0.006 0.035 0.015 0.010 0.200 0.058
SP 0.000 0.117 0.013 0.000 0.217 0.041 0.000 0.136 0.033 0.022 0.165 0.055 0.021 0.338 0.066
GB 0.000 0.097 0.008 0.000 0.127 0.079 0.000 0.097 0.012 0.000 0.029 0.010 0.012 0.214 0.070
GC 0.000 0.097 0.011 0.000 0.098 0.016 0.000 0.117 0.020 0.024 0.159 0.071 0.003 0.163 0.032
MB 0.000 0.136 0.020 0.000 0.177 0.046 0.000 0.195 0.064 0.000 0.035 0.014 0.014 0.221 0.073
JC 0.000 0.078 0.001 0.000 0.039 0.003 0.000 0.039 0.005 0.000 0.010 0.002 0.001 0.012 0.003
MF 0.000 0.253 0.036 0.000 0.217 0.048 0.000 0.195 0.055 0.011 0.189 0.043 0.014 0.329 0.066
WF 0.000 0.078 0.007 0.000 0.138 0.015 0.000 0.078 0.009 0.000 0.043 0.015 0.009 0.106 0.030
SH 0.000 0.078 0.007 0.000 0.079 0.007 0.000 0.058 0.003 0.000 0.030 0.008 0.006 0.083 0.015
SC 0.000 0.078 0.007 0.000 0.059 0.010 0.000 0.058 0.008 0.000 0.011 0.001 0.026 0.944 0.235

3.2. Discrimination capability

The discrimination capability of a hashing algorithm, also known as anti-collision capability [20],
can be defined as its ability to generate significantly different hashes for visually distinct images.
This means that an algorithm with high discrimination capability has a very low probability to
generate similar hashes for two perceptually different images [3]. In general, the discrimination
capability is evaluated by computing the collision probability of two hashes for two visually
distinct images, which is in our case equals to the probability that the Normalized Hamming
distance is smaller than the predetermined threshold. According to [21, 20, 22], the collision
probability P𝑐 of the hashes for two visually distinct images is given by

P𝑐(𝑇 ) =
1√
2𝛿

∫︁ 𝑇

−∞
𝑒𝑥𝑝

[︂
−(𝑥− 𝜇)2

2𝛿2

]︂
𝑑𝑥

=
1

2
𝑒𝑟𝑓𝑐

(︂
−𝑇 − 𝜇√

2𝛿

)︂
(1)

where 𝑒𝑟𝑓𝑐(.) is the complementary error function, 𝑇 is the predetermined threshold, 𝜇 is the
mean value, and 𝛿 is the standard deviation.

In order to compute P𝑐, we first need to estimate the parameters 𝜇 and 𝛿 corresponding to
the Normalized Hamming distance values computed from a large set of visually distinct images.
To do so, and for each evaluated technique, we first extracted the reference hashes for all the
800 fingerprint images and then calculated the Normalized Hashing distance for each hash with
the other 799 hashes. Consequently, we obtained 800 × (800 − 1)/2 = 319600 Normalized
Hashing distances. Then, the values of 𝜇 and 𝛿 of the obtained Normalized hashing distances
are computed by assuming that they all follow a normal distribution. The distribution of these
319 600 distances between hashing pairs, along with the obtained values of 𝜇 and 𝛿, for the
five evaluated techniques are shown in Fig. 1, where the abscissa is the Normalized Hamming
distances and the ordinate represents their frequency. Note that this assumption is widely
adopted in the literature [20, 21, 3].



(a) A-Hash technique (b) D-Hash technique

(c) P-Hash technique (d) W-Hash technique

(e) SVD-Hash technique

Figure 1: Distribution of Normalized Hamming distances corresponding to the five tested techniques.

As can be noticed, only the D-Hash and the P-Hash algorithms generate Normalized Hamming
distances that follow a normal distribution. The other algorithms are not really approximated
by this distribution, and this fact, may lead to a less accurate evaluation of the discrimination
capability by the collision probability measure. After obtaining the parameters 𝜇 and 𝛿, we
applied Eq. 1 to compute the collision probability P𝑐 for different values of thresholds 𝑇 . Note
that the values of 𝑇 have been empirically calculated as described in [21]. The obtained results
are given in Table 3. From these results, one can observe that, the smaller the threshold 𝑇 is set,
the smaller the collision probability is. Furthermore, the collision probability values are close to
each other, with a slight superiority of the P-Hash technique.



Table 3
Collision Probability of the five evaluated algorithms with different thresholds 𝑇

Technique Threshold 𝑇 Collision probability

A-Hash

0.02 0.89× 10−2

0.04 01.36× 10−2

0.06 02.02× 10−2

0.08 02.93× 10−2

0.10 04.17× 10−2

0.12 05.79× 10−2

D-Hash

0.04 0.03× 10−2

0.08 0.13× 10−2

0.12 0.50× 10−2

0.16 01.57× 10−2

0.20 04.24× 10−2

0.24 09.76× 10−2

P-Hash

0.04 0.00× 10−2

0.08 0.02× 10−2

0.12 0.09× 10−2

0.16 0.39× 10−2

0.20 01.40× 10−2

0.24 04.16× 10−2

W-Hash

0.004 01.82× 10−2

0.008 02.03× 10−2

0.012 02.25× 10−2

0.016 02.50× 10−2

0.020 02.76× 10−2

0.024 03.05× 10−2

SVD-Hash

0.0008 03.77× 10−2

0.0010 03.98× 10−2

0.0012 04.20× 10−2

0.0014 04.42× 10−2

0.0016 04.66× 10−2

0.0018 04.90× 10−2

3.3. Authentication results

Since perceptual robustness and discrimination are contradictory with each other, we evaluate,
in this section, the overall performance of the five evaluated techniques in terms of tampering
detection accuracy. This evaluation has been carried out by computing three metrics, namely:
the Recall, Precision and F1-measure. The precision expresses the proportion of the images that
the hashing algorithm identifies as visually similar and they actually are. Whereas, The Recall
is the proportion of similar images that the algorithm identifies as similar. Therefore, Precision
measures the accuracy of the algorithm to detect visually similar images, while Recall measures



Table 4
Quantitative comparisons using the Recall, Precision and F1-measure metrics. Best results are in bold.

A-Hash D-Hash P-Hash W-Hash SVD-Hash
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

GN 0.456 0.722 0.559 0.818 0.101 0.180 0.886 0.494 0.651 NaN 0.000 NaN NaN 0.000 NaN
AF 0.461 0.899 0.609 0.912 0.971 0.941 0.878 1.000 0.935 0.984 0.977 0.981 0.240 0.159 0.191
SP 0.474 0.947 0.632 0.895 0.827 0.860 0.916 0.994 0.953 0.750 0.007 0.015 1.000 0.145 0.253
GB 0.472 0.976 0.636 0.894 0.992 0.941 0.886 1.000 0.939 0.979 0.997 0.988 0.087 0.100 0.093
GC 0.477 0.967 0.639 0.911 0.985 0.946 0.877 0.999 0.934 0.428 0.004 0.007 0.752 0.589 0.660
MB 0.441 0.889 0.590 0.906 0.784 0.840 0.944 0.862 0.901 0.979 0.979 0.979 0.064 0.072 0.068
JC 0.441 0.996 0.640 0.909 1.000 0.952 0.884 1.000 0.938 0.979 1.000 0.989 0.930 1.000 0.964
MF 0.427 0.707 0.532 0.901 0.766 0.828 0.872 0.914 0.892 0.935 0.162 0.277 0.342 0.242 0.284
WF 0.467 0.986 0.634 0.902 0.991 0.944 0.881 1.000 0.937 0.979 0.920 0.948 0.724 0.554 0.627
SH 0.471 0.989 0.638 0.909 0.996 0.950 0.889 1.000 0.941 0.977 0.994 0.985 0.956 0.877 0.915
SC 0.482 0.987 0.648 0.911 1.000 0.953 0.882 1.000 0.937 0.978 1.000 0.989 0.052 0.002 0.005

Mean 0.461 0.915 0.614 0.897 0.856 0.849 0.890 0.933 0.905 0.815 0.640 0.651 0.468 0.340 0.369

the ability of the algorithm to find all the similar images among the dataset [23]. These two
metrics are calculated by

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
,𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

where 𝑇𝑃 is the true positive value which represents the images that have been labeled as
similar by the algorithm and they actually are. 𝐹𝑃 is the false positive value, corresponding to
the images that have been labeled as similar by the algorithm, but they are actually not; and
𝐹𝑁 is the false negative value, representing the images that have been labeled as different by
the algorithm, but they are actually similar.

The F1-score is the weighted harmonic average of the Precision and the Recall and it can be
calculated as follows [23]

𝐹1− 𝑠𝑐𝑜𝑟𝑒 = 2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(3)

Note that higher values indicate better performance for these three metrics.
The same set of tests described in Section 3.1 has been performed to compute the three

aforementioned metrics and the predetermined thresholds are chosen to provide the best results
and are set as follows : A-Hash: 𝑇 = 0.04, D-Hash : 𝑇 = 0.06, P-Hash: 𝑇 = 0.08, W-Hash:
𝑇 = 0.018 and SVD-Hash: 𝑇 = 0.0018. The obtained results are given in Table 4.

As it can be observed, and by evaluating the performance of each technique against a specific
content-preserving operation, the results obtained from Table 4 can be described as follows:

• For the Gaussian noise manipulation, the P-Hash is the most powerful technique with
a F1-score value of 0.651, whereas the W-Hash and SVD-Hash have not resisted to this
attack and were unable to calculate the F1-score with Recall and Precision values of zero.



• For the Average filtering, the three techniques W-Hash, D-Hash and P-Hash performed
very well and provide F1-score values of 0.981, 0.941 and 0.935 respectively. The worst
technique is the SVD-Hash which generates a poor value of F1-score, equals to 0.191.

• For Salt & pepper noise addition, the P-Hash technique is in the first place with a F1-score
value of 0.953, followed by the D-Hash technique with a F1-score value of 0.860, while
the the SVD-Hash and W-Hash are the last-rank techniques with F1-score values of 0.253
and 0.015, respectively.

• For the Gaussian blurring, the most powerful techniques are W-Hash, D-Hash and P-
Hash with F1-score values of 0.988, 0.941 and 0.939, respectively. The worst technique is
SVD-Hash with a F1-score value of 0.093.

• For the Gamma correction manipulation, both D-Hash and P-Hash techniques performed
well with F1-score values of 0.946 and 0.934, respectively. The W-Hash technique is the
worst one with a F1-score value of 0.007.

• For the Motion blurring operation, the most successful techniques are the W-Hash, the
P-Hash and the D-Hash with F1 score values of 0.979, 0.901 and 0.840, respectively. The
worst performance is obtained by the SVD-Hash algorithm, which produces a F1-score
value of 0.068.

• For the JPEG compression, all techniques performed well and provide good F1-score
values, particularly, the W-Hash and the SVD-Hash, which have the highest F1-score
values of 0.989 and 0.964, respectively. The A-Hash has generated the lowest F1-score
value of 0.640.

• For the Median filtering, the best techniques are the P-Hash and the D-Hash with F1-score
values of 0.892 and 0.828, respectively. The worst techniques are the SVD-Hash and the
W-Hash with F1-score values of 284 and 0.277, respectively.

• For the Wiener filtering, almost all techniques performed well and the most successful
ones are the W-Hash, the D-Hash and the P-Hash with F1-score values of 0.948, 0.944
and 0.937, respectively. The worst technique is the SVD-Hash which generates F1-score
value of 0.627.

• For Image sharpening operation, except the A-Hash technique which yields a low F1-score
value of 0.638, the other techniques were robust to this operation, and they all produce
F1-score values over 0.951.

• For Image scaling operation, almost all techniques have resisted to this operation, except
for the SVD-Hash algorithm which performed very poorly and provides a F1-score value
of 0.005. The most robust algorithms are the W-Hash, the D-Hash and the P-Hash with
F1-score values of 0.989, 0.953 and 0.937, respectively.

Overall, the most successful technique is P-hash, which achieves a F1-score value of 0.905 at
a Precision value of 0.890 and a Recall value of 0.933. The second one is the D-hash, which
reaches a F1-score value of 0.849 at a Precision value of 0.892 and a Recall value of 0.856. The
next successful technique is the W-hash, which yields a F1-score value of 0.651 at a Precision
value of 0.815 and a Recall value of 0.640. The forth place was assigned to the A-Hash algorithm,
with a F1-score value of 0.614 at a Precision value of 0.461 and a Recall value of 0.915. Finally,
the worst performance is obtained by the SVD-hash algorithm, which generates a F1-score
value of 0.369 at a Precision value of 0.468 and a Recall value of 0.340.



4. Conclusion

In this work, we studied and analyzed the performance of five of the commonly used and
fastest perceptual hashing techniques when considering fingerprint images, which visually
have almost the same shape (i.e. alternation of ridges and valleys). This study involves the
following techniques: the A-Hash, the D-Hash, the P-Hash, the W-Hash and the SVD-Hash. It
has been performed through a set of extensive experiments applied to real fingerprint images
and has focused on assessing three major aspects, namely: perceptual robustness, discrimination
capability and authentication capacity. The obtained results are very interesting. Indeed, for the
perceptual robustness property, the A-Hash technique clearly outperforms the other techniques
and shows more robustness against the major part of the applied manipulations. For the
discrimination capability, the evaluated techniques provide close performance in terms of the
probability of collision, with a slight superiority for the P-Hash technique. In regard to the
authentication property, which represents the overall performance, the P-Hash has provided
the best results, when considering the whole set of applied manipulations.

Although these results are promising, they show that there is no best technique and the
choice of a perceptual hashing technique will depend on the context in which it is used. As
future works, this study can be extended to include more sophisticated hashing techniques and
apply them to other fingerprint databases with different visual aspects, such as the background
color, the shapes (flat or rolled), sensor types, etc.

References

[1] F. Khelifi, A. Bouridane, Perceptual video hashing for content identification and authenti-
cation, IEEE Trans. Circuits Syst. Video Technol. 29 (2019) 50 – 67. doi:10.1109/TCSVT.
2017.2776159.

[2] R. Gennaro, D. Hadaller, T. Jafarikhah, Z. Liu, W. E. Skeith, A. Timashova, Publicly
evaluatable perceptual hashing, in: M. Conti, J. Zhou, E. Casalicchio, A. Spognardi (Eds.),
Applied Cryptography and Network Security., volume 12147 of Lecture Notes in Computer
Science, Springer, Cham, 2020, pp. 436–455. doi:10.1007/978-3-030-57878-7_21.

[3] L. Du, Z. He, Y. Wang, X. Wang, A. T. S. Ho, An image hashing algorithm for authentication
with multi-attack reference generation and adaptive thresholding, Algorithms 13 (2020)
227. doi:10.3390/a13090227.

[4] A. Hadmi, W. Puech, B. A. E. Said, A. A. Ouahman, Perceptual image hashing, in: M. D.
Gupta (Ed.), Watermarking, 2nd. ed., InTechOpen, 2012, p. 17–42.

[5] K. Alice, N. Ramaraj, Combining hashing techniques in image authentication system:a
survey, Int. J. Sci. Res. 4 (2015) 528–530.

[6] L. Du, A. T. S. Ho, R. Cong, Perceptual hashing for image authentication: A survey, Signal
Process. Image Commun. 81 (2020). doi:10.1016/j.image.2019.115713.

[7] S. F. C. Haviana, D. Kurniadi, Average hashing for perceptual image similarity in mobile
phone application, J. Telemat. Inform. 4 (2016). doi:10.12928/JTI.V4I1.

[8] V. Popkov, Possible application of perceptual image hashing, Master’s thesis, Tallinn
University Of Technology, 2015.

http://dx.doi.org/10.1109/TCSVT.2017.2776159
http://dx.doi.org/10.1109/TCSVT.2017.2776159
http://dx.doi.org/10.1007/978-3-030-57878-7_21
http://dx.doi.org/10.3390/a13090227
http://dx.doi.org/10.1016/j.image.2019.115713
http://dx.doi.org/10.12928/JTI.V4I1


[9] M. Fei, Z. Ju, X. Zhen, J. Li, Real-time visual tracking based on improved perceptual
hashing, Multimed. Tools Appl. 76 (2016). doi:10.1007/s11042-016-3723-5.

[10] A. Drmic, M. Silic, G. Delac, K. Vladimir, A. S. Kurdija, Evaluating robustness of perceptual
image hashing algorithms, in: Proceedings of the 40th Int. Conv. on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), IEEE, Opatija
Croatia, 2017, pp. 995–1000. doi:10.23919/MIPRO.2017.7973569.

[11] R. Fitas, B. Rocha, V. Costa, A. Sousa, Design and comparison of image hashing methods:
A case study on cork stopper unique identification, J. Imaging 7 (2021). doi:10.3390/
jimaging7030048.

[12] D. z Wang, J. y. Liang, Research and design of theme image crawler based on difference
hash algorithm, in: Proceedings of IOP Conf. Series: Materials Science and Engineering,
volume 563, IOP Publishing, 2019, pp. 1–7. doi:10.1088/1757-899X/563/4/042080.

[13] N. Karunanayake, J. Rajasegaran, A. Gunathillake, S. Seneviratne, G. Jourjon, Design and
comparison of image hashing methods: A case study on cork stopper unique identification,
IEEE Trans. Mob. Comput. (2020). doi:10.1109/TMC.2020.3007260.

[14] F. Vega, J. Medina, D. Mendoza, V. Saquicela, M. Espinoza, A robust video identification
framework using perceptual image hashing, in: Proceedings of the 2017 XLIII Latin
American Computer Conference (CLEI), IEEE, Cordoba Argentina, 2017, pp. 1–10. doi:10.
1109/CLEI.2017.8226396.

[15] W.-C. Huang, F. D. Troia, M. Stamp, Robust hashing for image-based malware classi-
fication, in: Proceedings of the 15th Int. Joint Conf. on e-Business and Telecommuni-
cations - BASS, volume 1, SciTePress, Porto Portugal, 2018, pp. 451–459. doi:10.5220/
0006942204510459.

[16] R. Venkatesan, S. M. Koon, M. H. Jakubowski, P. Moulin, Robust hashing for image-
based malware classification, in: Proceedings of the IEEE Int. Conf. on Image Processing
(ICIP), volume 3, IEEE, Vancouver Canada, 2000, pp. 664–666. doi:10.1109/ICIP.2000.
899541.

[17] E. Aboufadel, S. Schlicker, Wavelets, introduction, in: R. A. Meyers (Ed.), Encyclopedia
of Physical Science and Technology, 3rd. ed., Academic Press, New York, NY, 2003, pp.
773–788.

[18] S. S. Kozat, R. Venkatesan, M. K. Mihcak, Robust perceptual image hashing via matrix
invariants, in: Proceedings of the 2004 Int. Conf. on Image Processing (ICIP ’04), IEEE,
Singapore, 2004, p. 3443–3446. doi:10.1109/ICIP.2004.1421855.

[19] Fingerprint verification competition, 2000. URL: http://biometrics.cse.msu.edu/fvc00db/
index.html.

[20] C. Qin, X. Chen, J. Dong, X. Zhang, Perceptual image hashing with selective sampling for
salient structure features, Displays 45 (2016). doi:10.1016/j.displa.2016.09.003.

[21] L. Du, Z. Chen, A. T. S. Ho, Binary multi-view perceptual hashing for image authentication,
Multimed .Tools Appl. (2020). doi:10.1007/s11042-020-08736-6.

[22] Q. Chuana, S. Meihui, C. Chin-Chen, Perceptual hashing for color images based on hybrid
extraction of structural features, Signal Process. 124 (2018). doi:10.1016/j.sigpro.
2017.07.019.

[23] M. Grandini, E. Bagli, G. Visani, Metrics for multi-class classification: An overview, white
paper arXiv:2008.05756v1 [stat.ML] (2020). doi:10.1007/s11042-020-08736-6.

http://dx.doi.org/10.1007/s11042-016-3723-5
http://dx.doi.org/10.23919/MIPRO.2017.7973569
http://dx.doi.org/10.3390/jimaging7030048
http://dx.doi.org/10.3390/jimaging7030048
http://dx.doi.org/10.1088/1757-899X/563/4/042080
http://dx.doi.org/10.1109/TMC.2020.3007260
http://dx.doi.org/10.1109/CLEI.2017.8226396
http://dx.doi.org/10.1109/CLEI.2017.8226396
http://dx.doi.org/10.5220/0006942204510459
http://dx.doi.org/10.5220/0006942204510459
http://dx.doi.org/10.1109/ICIP.2000.899541
http://dx.doi.org/10.1109/ICIP.2000.899541
http://dx.doi.org/10.1109/ICIP.2004.1421855
http://biometrics.cse.msu.edu/fvc00db/index.html
http://biometrics.cse.msu.edu/fvc00db/index.html
http://dx.doi.org/10.1016/j.displa.2016.09.003
http://dx.doi.org/10.1007/s11042-020-08736-6
http://dx.doi.org/10.1016/j.sigpro.2017.07.019
http://dx.doi.org/10.1016/j.sigpro.2017.07.019
http://dx.doi.org/10.1007/s11042-020-08736-6

	1 Introduction
	2 Perceptual Image Hashing Techniques
	2.1 A-Hash
	2.2 D-Hash
	2.3 P-Hash
	2.4 W-Hash
	2.5 SVD-Hash

	3 Experimental Results
	3.1 Perceptual Robustness
	3.2 Discrimination capability
	3.3 Authentication results

	4 Conclusion

