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Abstract. Predictive process analytics focuses on predicting the future
states of running instances of a business process using machine learning
and AI-based techniques. While advanced machine learning techniques
have been used to increase accuracy of predictions, the resulting predic-
tive models lack transparency. Current explainability methods, such as
LIME and SHAP, can be used to interpret black box models. However,
it is unclear how fit for purpose these methods are in explaining process
predictive models, which use complex, multi-dimensional event logs, of-
ten alongside various types of context-related data. However, given the
vast array of explainable methods available, and the differences in the
mechanism used to provide the explanations and the content of the ex-
planation, this evaluation becomes complex and no standard method or
framework of evaluation currently exists. The proposed project, there-
fore, aims to address methods to evaluate and improve AI and machine
learning transparency in the field of predictive process analytics, with
particular emphasis on creating a standardised evaluation framework and
approach for event log data.
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1 Introduction
Business Process Management (BPM) methods are increasing in technical com-
plexity and sophistication. An emerging BPM tool is predictive process analytics
(PPA), which, at runtime, attempts to predict some future state of a process
using machine learning models [11]. Modern data analytics techniques and in-
creased availability of machine-generated process data has enabled PPA, which
applies predictive analytics to business processes, providing a powerful tool that
can be used to support better decision-making in organisations, optimisation or
other process management activities [15].

However, the opaque nature of some prediction systems are cause for concern.
While more complex and sophisticated prediction algorithms often produce more
accurate predictive models, these models are also less transparent – an issue
that could affect an organisation’s transparency, ethical conduct, accountability
and liability, and raise potential issues with the safety of and fairness towards
stakeholders [5]. Methods and techniques have been proposed in machine learning
to explain such opaque “black box” models, forming a research theme known as
explainable AI (XAI) [5]. Several recent studies in PPA have applied existing
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XAI techniques to interpret process prediction models (for example, in [4, 17,
18]). However, given the variety of explainable methods available and emerging
in the field of XAI, it is unclear how fit for purpose any given intepretability
technique is when applied to PPA. Frameworks and metrics for determining XAI
fitness for PPA are so far under-explored, and further investigation is needed to
understand the impacts of dataset and model characteristics on explanation
quality. In particular, a standardised evaluation framework and approach are
necessary, particularly for tabular data and sequential tabular data, such as
event logs.

The proposed project, therefore, will address methods to improve AI and
machine learning transparency for predictive process analytics, provide a frame-
work for evaluating these explainable methods and attempt to provide a set
of guidelines or recommendations for PPA explainability. There will be a fo-
cus on creating explanations to empower decision-making, with emphasis on
explanation understandability and comprehensibility. This paper is structured
as follows. Section 2 introduces PPA, explainable PPA and XAI in more detail.
The research gaps to be explored by the proposed project, and the approach for
the proposed research are explained in section 3, and progress achieved to date
is presented in section 5. Planned future work is highlighted in section 6, and
section 7 concludes this paper.

2 Background and Related Works

Process mining forms the backbone of PPA, where event data is extracted from
historical event logs, and used by a prediction model to predict some future state
of running process executions (known as the prediction target), such as how a
running process will end, time to the end of the process, or future sequences
of activities [11]. Most techniques for PPA require data processing, followed by
learning and prediction, though there may be some variations depending on the
data and learning algorithms used. To improve prediction accuracy, event log
data can be supplemented by contextual information that might prove useful in
making the final prediction, such as case documentation [11].

A two-phase approach is generally applied to PPA [20, 21], which begins
with an offline processing and learning phase where the predictor is created
and trained, followed by deployment of the predictor at runtime (see figure 1).
The first phase begins with the processing and combining of historical event log
data and contextual data to extract relevant process information. Generally, the
relevant information, including activities that have been completed, attributes
associated with each activity, and any contextual information, are grouped to-
gether by the case for which that activity occurred, creating a log of prefixes
that describe a single run of the process – a single process instance. These pre-
fixes then converted into features more appropriate to train a predictive model,
and used to create a predictive model. This processing and conversion is also
necessary in the second phase, when runtime data is used to predict some future
state of a running process instance.
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Fig. 1. Two-phase approach to process prediction

One complexity in predictive process analytics comes from the data used.
Event log data alone is highly complex, containing various attributes for each
activity in a case, including static attributes that do not change throughout a
process instance, as well as dynamic attributes that often do change through-
out the process instance, both of which must be encoded, though the degree
to which the temporal information is preserved during encoding often varies.
If combined with context data, which may or may not be temporal in nature,
this encoded dataset becomes even more complex. Given this dataset complex-
ity, and the inherently opaque nature of the machine learning algorithms that
are most effective in creating accurate process predictions [18], it becomes hard
to understand why a predictive model may have returned any given prediction.
Furthermore, this lack of clarity leads to poorer understanding of model trust-
worthiness and impairs a user’s ability to make informed decisions based solely
on a predictive model’s output [15].

As such, explainable predictive process analytics has emerged as an attempt
to increase the transparency of these process predictive models. State-of-the-art
explainable predictive process analytics have generally attempted to apply exist-
ing explainable methods to PPA. Interpretability in machine learning is generally
broken down into two categories: interpretable prediction models and post-hoc
interpretation. Interpretable prediction models are those that are generated in
such a way as to be immediately interpretable by a human [5], though this often
means that the models are simpler, and so may have reduced predictive power.
The most common interpretation mechanism to be applied in explainable PPA
is post-hoc interpretation, where an interpretation mechanism external to the
predictive model is applied after the creation of the model. For example, the
use of LIME and SHAP to evaluate and improve black box models [17, 18] has
been explored, and SHAP has been used to create explainable dashboards for in-
formed decision-making [4]. While this allows for the use of a more sophisticated
predictive model, this does not necessarily imply than this external mechanism
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can accurately interpret the black box model. As such evaluation is necessary
to understand the inherent fitness of such methods to interpreting black box
predictive process models.

3 Research Objectives
While there have been attempts to apply or create XAI methods to interpret
and explain process predictions, the fitness of these methods to explain PPA is
unknown, and there are few frameworks available to evaluate this fitness. There
are a number of ways to evaluate explanations, many of which depend on the
purpose of the explanation and the explainee [13]. Although a decontextualised
evaluation will not necessarily provide an indication of explanation usefulness
or user satisfaction [8], it is still necessary to understand the inherent fitness
of the explainable method for the prediction problem. As such, it is important
to consider the characteristics necessary for an explanation and find suitable
evaluation measures. Therefore, the proposed research problem for this project
is: How can the fitness of explainable methods be assessed when explaining
predictive process analytics? This can be broken down into the following research
questions:

– RQ1: What AI-enabled models and techniques can be used to present ex-
planations to users in the context of process prediction?

Given the broad range and diversity of interpretation methods available,
all intended for different purposes and functioning in different ways, it be-
comes necessary to identify interpretability methods and tools relevant to
the datasets and methods used in PPA. Therefore, the state-of-the-art must
be first understood, and XAI methods that are commonly applied to PPA
or are applicable to PPA must be identified.

– RQ2: What criteria would be suitable to assess the quality of process pre-
diction explanations generated from the models and techniques identified in
RQ1?

While a number of evaluation frameworks and taxonomies exist for evaluat-
ing interpretability and explainability tools, they are highly generalised and
act as broad categorisations, rather than an evaluation method or standard.
For example, in [19], while a number of dimensions of categorising and evalu-
ating XAI are presented, there are no specific metrics and methods that can
be applied for evaluation, nor any standardised frameworks or approaches.
As such, it becomes necessary to define a suitable evaluation framework or
approach for functionally-grounded evaluation of XAI, with emphasis on ex-
tensibility and flexibility to account for the different prediction problems,
datasets, explanation types and users that may be involved.

– RQ3: What methods and approaches can be used to evaluate explainable
methods for predictive process analytics, given the criteria RQ2 and the
methods identified in RQ1?
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– RQ3.1: What standard approaches and/or methods can be used to eval-
uate explanations created for prediction problems using tabular data?

– RQ3.2: How can standard approaches and/or methods used to evaluate
explanations created for tabular data be adapted for event logs?

RQ3 is necessary in order to better understand how fit for purpose the iden-
tified XAI methods are for PPA. Firstly, functionally-grounded evaluation is
necessary in order to determine how well-suited an XAI method inherently
is to solving the problem of explaining PPA, even before users can be con-
sidered. However, many evaluation specific methods and metrics for XAI in
literature are specific to a particular explainable method (such as in [22]),
or unsuited for tabular data (such as those used in [2,3]). Therefore, a stan-
dardised and generalisable approach for tabular is necessary, before this can
be adapted for sequential tabular data, such as event logs. The scope of the
research required for this question will be determined by the relevant ex-
plainable methods identified in RQ1 and the specific criteria for determining
quality determined by RQ2.

4 Research Methodology

Design Science Research (DSR) will be used to guide the methods used in the
proposed project. Hevner et al. [7] define DSR as a problem solving paradigm
that creates innovations that can be used to formalise practices, ideas and prod-
ucts, and in doing so facilitate the effective and efficient creation, usage and
maintenance of information systems in businesses. In a later paper, Hevner [6]
identifies three research cycles in DSR, which connect the three facets of envi-
ronment, knowledge base and the research itself together in an iterative way.

– The Relevance Cycle, which grounds the research to a problem domain. Ac-
ceptance criteria for the output of the research is based on the problem
domain, and the effectiveness of the output will be considered in the con-
text of the problem domain. In the proposed project, the problem domain
is predictive process analytics, and the ultimate outcomes of the project
(approaches for determining the quality of explanations) will be evaluated
within the context of process predictions.

– The Rigor Cycle, in which information is drawn from and added to a knowl-
edge base during the course of research. In the proposed project, existing
prediction and explainability methods and models will be used to create pro-
cess prediction explanations, and existing approaches for evaluation will be
studied. The new or adapted evaluation frameworks, approaches and meth-
ods that will be used to assess process prediction explanations, the results
of the evaluations, as well as any new constructs created, will be added to
the knowledge base.

– The Design Cycle: This cycle will form the major part of the proposed
project, where evaluation approaches will be designed, explanations will be
created and evaluation conducted.
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The work will be conducted in three phases:

– Phase One will be comprised of the Problem Identification and Motivation
and Objective Definition stages of the DSR methodology, wherein the inter-
pretability and explanation needs of PPA and relevant explanation methods
will be explored (RQ1) and the characteristics required for PPA explana-
tions and ways to determine the fitness of explainable methods for PPA will
be defined (RQ2).

– Phase Two will be an iteration the Design and Development, Demonstra-
tion and Evaluation stages of the DSR methodology that attempts to answer
RQ3.1. In this phase, standard approaches and methods for evaluating ex-
planations of tabular data will be developed, assessed and refined.

– Phase Three will be another iteration of the Design and Development,
Demonstration and Evaluation stages, this time with the aim of answering
RQ 3.2. In this phase, the standard approaches and methods created during
Phase Two will be adapted for event logs, assessed and further refined as
necessary.

Results of the research will be communicated throughout all three phases.
It is expected that the following outcomes will be achieved as a result of this
project:

1. Proposal of evaluation criteria for evaluating explanations and explanation
methods for process predictions;

2. Proposal of a standard approach to evaluating explanations for tabular data;
3. Proposal of specific evaluation methods for classes of explainable methods

used to explain process predictive models that are generalisable within those
classes; and

4. Functionally-grounded evaluation of several existing explainable methods to
determine their fitness for explaining PPA;

5 Progress To Date
A three-level system of evaluation that considers context to differing levels is
proposed in [1], which comprises of:

– Application-Grounded Evaluation: Evaluating explanations in full context
with end users;

– Human-Grounded Evaluation: Evaluating explanations with laypeople doing
simple or simplified tasks; and

– Functionally-Grounded Evaluation: Using functional tasks to evaluate with-
out subjective, user-based evaluation.

This PhD will primarily focus on the first level of functionally-grounded eval-
uation. Functionally-grounded evaluation measures include those that do not re-
quire human input, but still allow some objective judgement of the explanation
to be made. A common, and important, example of such a measure would be
computational efficiency [13]. This is particularly important in PPA, where the
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earliness of interventions in a process instance affects ability to change unde-
sirable outcomes. Another key requirement for explanations is consistency, also
known as explanation stability . This is defined as the level of similarity between
explanations for similar or identical instances [22], and is vital in ensuring trust
in the explanation and the predictive model, and ensuring actionability. Also
vital is the accuracy of the explanation with respect to the original predictive
model, known as explanation fidelity . This is generally defined as how faithful the
explanation is to the black box – that is, how accurately the external mechanism
of the explainable method mimics the black box.

An initial functionally-grounded evaluation was conducted with three event
log datasets and two explainable methods for the outcome prediction problem,
where the final outcome of any given case was being predicted. The two explain-
able methods chosen for initial testing were Local Interpretable Model–Agnostic
Explanations (LIME) and Shapley Additive Explanations (SHAP). These two
methods are currently the most prevalent explainable methods in PPA literature
(for example, used in [4, 17, 18]), and are also among the most well-known and
popular methods in XAI. As such, they were considered suitable for initial evalu-
ations. LIME and SHAP both offer local feature attribution explanations [9,16].
That is, for each instance (input) requiring explanation, these explainable meth-
ods will rank the features in the input in order of importance and provide a
weight to each feature to signify its overall contribution to the black box model’s
final prediction.

A key challenge for this initial evaluation was, and still is, the lack of stan-
dardised or generalisable methods that can be applied for evaluation and com-
parison of the two explainable methods, particularly explanation stability and fi-
delity. Given their relative popularity in the field of XAI, it was assumed that ex-
isting evaluation methods would exist for LIME and SHAP that can be adapted
for event log data, and later for other explainable methods. Although event
log data are complex, and include a time-series component that sets a partic-
ular sequence to the features present within the data, event logs are similar in
construction to tabular data. Moreover, when processed for machine learning
algorithms, this data is often formatted in such a way that temporal informa-
tion is only partially preserved, and the final input to the model is identical in
format to that of standard tabular data. As such, the initial plans for testing
relied on using existing evaluation methods for LIME and SHAP, and adapting
these methods to consider the temporal aspect if necessary. However, existing
evaluation methods and metrics are often specific to a particular explainable
method [22] or data types other than tabular, such as images or text [2, 3]. As
such, an evaluation method that would allow comparison of the two methods
had to be developed for the initial testing based on existing methods.

In order to develop such methods, existing approaches were adapted. In par-
ticular, evaluation methods and evaluation metrics used to assess the stability
of feature selection algorithms are being applied to test the stability of LIME
and SHAP. Much as LIME and SHAP do, feature selection algorithms provide a
ranking or subset of the most useful features to use in evaluation, and also often
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offer some kind of ”feature weight” to indicate the importance of each feature,
and the stability of all three may be assessed [12,14]. As such, it was decided that
explanation metrics used to assess the stability of feature selection algorithms
can be adapted to evaluate the stability of LIME and SHAP. In particular, two
types of stability are being assessed for feature attribution explainable methods
used: stability by subset, which assesses the stability of the subset of the most
important features; and stability by weight, which assesses the stability of the
weight assigned to each feature as part of the explanation.

The evaluation method for explanation fidelity has, thus far, proven to be
more complex to develop. The initial approach mimicked a commonly-used abla-
tion approach for assessing the fidelity of image and text data, wherein the fea-
tures determined to be relevant by the explanation are removed and the change
in the prediction probability for the original prediction is used to determine the
correctness of the explanation [2, 3]. While this removal is relatively simple in
other types of datasets, models built on tabular data automatically impute val-
ues into ”gaps” in the data, or assign missing values to be the equivalent of an
infinite value. As such, this ablation approach was replaced with a perturba-
tion approach, where the values of the features deemed relevant by explanations
were altered to inject noise into the input data. The results of this evaluation, for
both LIME and SHAP, were quite poor and further investigations are currently
being conducted to further evaluate and adjust this perturbation approach as
necessary.

6 Future Work and Challenges
There are a number of further activities that need to be undertaken to fully an-
swer the research questions outlined. Currently, evaluations have been conducted
with LIME and SHAP, which are feature attribution methods – local methods
that explain the effects of different components for a single prediction [10]. These
two methods alone are not representative of the vast array of explainable meth-
ods currently available, and as such approaches that can be used to assess other
classes of explainable methods must also be considered. Of particular interest
are explainable methods specific to time series data.

A key challenge here will be to design explainable method evaluation meth-
ods in order to ensure comparability between explainable methods of different
classes. For example, one type of stability currently measure is the stability of
weights assigned to each feature. If techniques other than feature attribution
are to be evaluated, this measure will no longer be relevant, but other types
of stability may become more relevant, such as the stability of predicates in
rule-based explanation. However, the results produced by the evaluations must
still be comparable while being suitable for the relevant explanation methods, in
order to enable the ability to compare and choose between explainable methods
given a predictive problem. The ultimate goals of this project will be to create a
functionally-grounded evaluation approach to assess the suitability of any given
explainable method in the relevant classes of explainable methods for time-series
based prediction problems, such as PPA.
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Furthermore, the evaluation methods and approaches that will result from
this PhD will also also require validation and evaluation. A viable way of doing so
may be to use simpler, inherently interpretable and transparent machine learning
models when developing the evaluation methods, and confirm the validity of
the methods against a transparent model. Existing methods and measures from
other, similar fields, are also being adapted as necessary, as is the case with the
adaptation of stability measures and methods from the field of feature selection.

7 Conclusion
Post-hoc explainable methods are gaining popularity as a means of improving the
transparency of process predictive models. However, the fitness of these meth-
ods for predictive process analytics is extremely unclear. Given that no standard
approaches for evaluation of explainable methods exist, particularly for process
prediction explanations, the project outlined in this document will attempt to
propose evaluation criteria for evaluation explanations and explainable methods
for process predictions; create standardised approaches for evaluating explain-
able methods for process predictions; and propose evaluation methods for classes
of relevant explainable methods with regards to explaining process predictions.
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