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Abstract. Software systems become increasingly distributed and inter-
connected. Single functions are usually realized by the interaction of mul-
tiple components, while single components participate in fulfilling mul-
tiple functions. During early development, engineers often design new
functionalities by first taking an inter-component, interaction-oriented
perspective, which must be mapped to a single-component implementa-
tion perspective later. This extended abstract reviews past and ongoing
work on scenario-based modeling and programming techniques, which
support engineers in this process. We also discuss new opportunities for
applying these techniques as well as open research challenges.
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1 Introduction

From micro-services information systems to cyber-physical systems-of-systems,
software-intensive systems become increasingly distributed and interconnected.
In these systems, single functions are usually realized by the interaction of mul-
tiple components, while single components often participate in fulfilling multi-
ple functions. During the design of these systems, engineers often first take a
birds-eye, inter-component view on how components shall interact in order to
fulfill a certain function. Typically sequence diagrams or interaction overview
diagrams are modeled during this phase to support design decision-making and
communication. At some stage, these inter-component models must be mapped
to specifications and, finally, implementations of the individual components.

Scenario-based modeling techniques aim at supporting engineers in this pro-
cess. One goal of these techniques is to facilitate the transition from inter-
component- to component-specific behavior specifications, and doing so itera-
tively. The second goal is to support the engineer with behavior analysis tech-
niques already during the inter-component behavior modeling stage, so that
engineers can make more informed early design decisions.

Copyright © 2021 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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In this extended abstract, we give a brief review of the existing work in this
context, with a pinch of personal experience and opinion. In particular, we cover
own past and current work on the Scenario Modeling Language (SML) and the
Scenario Modeling Language for Kotlin (SMLK), a Kotlin-based internal DSL for
scenario-based programming. Concluding, we discuss open research directions.

2 Related Work

Early research on scenario-based modeling was centered around Message Se-
quence Charts (MSC) [26], which also influenced UML Sequence Diagrams. A
number of approaches suggested techniques for deriving state-based models from
individual MSCs [31, 39] and high-level MSCs [30], which are MSCs extended
with control-flow constructs. Other approaches considered deriving state-based
models in a setting where multiple MSC diagrams could be active at the same
time [29, 34], and it was soon recognized that there needed to be a way to de-
scribe constraints how scenarios are allowed to overlap. Some approaches used
event pre- and post-conditions [40], others required the definition of the com-
ponent states within the scenarios [8,9], temporal logic constraints [4,37,38]. or
proposed modeling positive and negative scenarios [24].

Addressing the problem of specifying overlapping scenarios, Damm and Harel
introduced Live Sequence Charts (LSC) [5], which recognized that there is a
difference between scenarios that should be possible to occur, and scenarios that
express rules on the behavior that must always be satisfied. These scenario kinds
are called existential resp. universal scenarios. Moreover, in universal scenarios
it should be possible to distinguish between events that must occur and events
that may occur or act as triggers for subsequent must-occur events. These are
called hot (must occur) resp. cold (may occur) events. Likewise, hot and cold
conditions can model mandatory- or interrupt conditions.

Based on LSC, the Play-In/Play-Out approach was developed [21]. with the
vision to interactively “play” with a system to teach it possible, allowed, or for-
bidden behaviors, in the form of LSC diagrams. These LSC specification can then
be executed using the Play-Out algorithm. There were numerous approaches to
synthesize state-based models from LSC specifications [2, 20, 32, 33], and check-
ing whether this is at all possible; combinations of must-happen and must-not-
happen requirements can render LSC specifications unrealizable, meaning that no
implementation of the specification exists. Our own work included realizability-
checkig and synthesis techniques for timed LSC specifications [10,18], and LSC-
based product line specifications [12, 19]. Also the Petri Nets community sug-
gested analysis techniques for LSCs, for example analyzing LSC specifications
by mapping to Colored Petri Nets (CPN) [27] or by a procedure for composing
Petri Nets from LSC-inspired Petri Net fragments [7].

With Behavioral Programming (BP) [23], the idea of LSCs was transferred
to general-purpose programming languages, for example Java, JavaScript or
C++. BP allows programmers to program behavior by loosely coupled behav-
ioral threads (b-threads), where each b-thread can add behavior or constrain the
behavior of other b-threads, allowing for a flexible composition of behavior.
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3 Scenario Modeling Language (SML)

With the goal of extending existing LSC modeling techniques and experiment-
ing with analysis algorithms, we developed the textual Scenario Modeling Lan-
guage (SML), along with the Eclipse/EMF-based tool suite ScenarioTools.
We chose a textual language for improved usability over a graphical notation.

SML extends LSC with the capability to model assume/guarantee specifica-
tions, where guarantee scenarios specify how a system must react to environ-
ment events and assumption scenarios specify how the environment behaves.
This gives SML an expressive power comparable GR(1) [1], a subset of LTL. A
GR(1) specification is an implications of two generalized Büchi properties. For
example, we can specify that cars must always be able to pass crosswalks in a
traffic system assuming that each crosswalk is always eventually free of pedes-
trians. ScenarioTools implements a GR(1) game solving algorithm [3] for
realizability checking and controller synthesis. Moreover, SML extends previous
LSC modeling techniques with features for modeling dynamic topology systems,
which are systems with evolving structure [14].

Figure 1 shows an example of a Car-to-X system for coordinating cars that
approach an obstacle blocking one lane of a two-lane road. The left illustrates two
example scenarios with their SML counterpart shown on the right. SML speci-
fications are typed over a domain class model (top right). For a more extensive
description of SML and the example, we refer to the original paper [14].
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guarantee scenario CarGetsSignalBeforeReachingObstacle
bindings [oc = cp.obstacleCtrl] {

cp -> car.approachingObstacle()

alternative {
strict oc -> car.enteringAllowed

} or {
strict oc -> car.enteringDisallowed

}

cp -> car.obstacleReached()
}

guarantee scenario CarRegistersAtObstacle
bindings [oc = cp.obstacleCtrl] {

cp -> car.approachingObstacle()
strict urgent car -> oc.register()

alternative [oc.passingCar == null] {
strict urgent oc -> oc.setPassingCar(car)
strict urgent oc -> car.enteringAllowed()

} or [oc.passingCar != null] {
strict urgent oc -> oc.waitingCars.add(car)
strict urgent oc -> car.enteringDisallowed()

}
}

Fig. 1. Car-to-X SML specification example
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Based on ScenarioTools, we experimented with different analysis tech-
niques, for example symbolic execution [17], or automatic repair techniques [36].

4 Some Lessons Learned

The work on ScenarioTools and various examples [11, 13, 15, 16] has taught
us several lessons:

1. LSC-/SML-style specification techniques indeed offer an intuitive way of
modeling reactive behavior. They are more flexible and requirements-oriented
than state-based models, but also more easily comprehensible than temporal
logics due to offering a more step-by-step modeling style.

2. Constructs that forbid behavior should be used sparingly and carefully, as
otherwise contradictions will be introduced easily. Strict messages (or hot
messages in LSC), which are messages that, when enabled, forbid events
appearing elsewhere in the scenario, are harmful in bigger scenarios, because
one quickly looses the understanding in what constraints they actually imply.
It is better to specify forbidden messages explicitly.

3. Simulation and formal realizability checking techniques are helpful in finding
specification flaws. And specification flaws, just like bugs in other programs,
are guaranteed to be introduced sooner or later.

4. For complex problems, it is difficult to understand the output generated by
realizability checks. Even with interactive counter-play-out techniques that
help the user by simulation to understand how the environment can force a
violation, it may be difficult to understand the cause of the problem.

5. It is difficult to trust formal checks alone. Even if realizability checking re-
turns a positive result, it is often difficult to understand which behaviors are
or are not possible under the specification. The pragmatic approach is to
specify tests that exercise intended use cases beginning-to-end. We suggest a
test-driven approach, where scenarios are added just to a degree that satisfies
the next test case. This way, it is possible to arrive at a specification with
a trust that all use cases are covered. When changes break previous tests,
it is immediately clear what change affected which steps of which previous
use cases. Test-driven specification can be combined with realizability check-
ing. The latter may uncover problematic cases that are not covered by the
tests, for example untested combinations of inputs that lead to unforeseen
combinations of active scenarios.

5 Scenario Modeling Language for Kotlin (SMLK)

Even though significant work went into building SML and tool support in Sce-
narioTools, we felt that eventually these tool developments would not help to
make scenario-based modeling techniques better accepted in practice. SML and
ScenarioTools could not fulfill the following requirements:
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1. Provide richer means for programming within the scenarios: For
example, doing things like filtering a list or querying complex conditions,
can be done with ScenarioTools, but only indirectly by calling external
methods. SML is extensible, but extending it to a fully-fledged programming
language would be a major effort.

2. Better integration with other libraries or frameworks: Integrating
the ScenarioTools execution engine with external frameworks, such as a
driving simulator or Android apps [15], is possible, but requires a cumber-
some development of integration layers.

3. Lightweight and fast execution: The ScenarioTools execution engine
is heavy-weight as it depends on EMF. Moreover, because the engine is based
on the interpretation of SML/EMF models, it has a relatively high memory
footprint and sometimes initial startup times of a few seconds.

In addressing these requirements, we created an SML-like internal DSL in
Java [28], based on the behavioral programming framework for Java, BPJ [22].
The approach, however, was too verbose. A few years later, Kotlin struck our
attention, mainly for two reasons: First, Kotlin supports co-routines, which are
lightweight threads that are less resource-intensive than Java threads. There-
fore, they seemed a natural candidate for executing many concurrent scenarios.
Second, Kotlin provides many features for building concise internal DSLs 1.

Exploiting these features, we created the Scenario Modeling Language for
Kotlin (SMLK)2. In SMLK, multiple scenarios can be executed as a scenario
program. Following the behavioral programming approach [23] a scenario pro-
gram is executed as follows: The active scenarios execute their code indepen-
dently until they reach synchronization points where each scenario can requests,
wait-for or forbid events from happening. A central event selection algorithm se-
lects an event that is requested by at least one scenario and not forbidden by any
other scenario. All scenarios requesting or waiting for that event are then noti-
fied and can again independently execute their behavior until reaching the next
synchronization point. This process is repeated until all scenarios terminate.

Figure 2 shows an example of an SMLK scenario for a simple hierarchical
name lookup system: a client can send a request to a server to obtain the name
for a user ID. If the requested server does not have any name stored locally
for the given user ID, it will request servers one hierarchy level below. If one
of the servers has the name, it will be returned upwards in the hierarchy to
the requesting client. Otherwise the client receives an “unknown” response. The
shown scenario may be triggered for multiple servers in a server hierarchy.

The client-server interaction illustration to the left of Fig. 2 is a screenshot
from a JavaFX-based interaction animator application that animates the mes-
sage interaction between objects3.
1 see for examplehttps://www.baeldung.com/kotlin/dsl
2 see https://bitbucket.org/jgreenyer/smlk/
3 the animator project Git repository: https://bitbucket.org/jgreenyer/

smlk-animator/; the hierarchical name lookup system example Git repository:
https://bitbucket.org/jgreenyer/smlk-animator-project-template/

https://www.baeldung.com/kotlin/dsl
https://bitbucket.org/jgreenyer/smlk/
https://bitbucket.org/jgreenyer/smlk-animator/
https://bitbucket.org/jgreenyer/smlk-animator/
https://bitbucket.org/jgreenyer/smlk-animator-project-template/
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scenario(Server::getUserName.symbolicEvent()){ :/ trigger: server receives getUserName req. 
    val requestingClient = it.sender as IClient
    val userID = it.parameters[0] as String
    val server = it.receiver
    val userName = server.userIDToUserNameProperty[userID]

    if(userName := null){
        request(server sends requestingClient.serverResponse("$userID:$userName"))
    }else{
        for(slaveServer in server.slaveServers){
            request(server sends slaveServer.getUserName(userID))
            val responseEvent = waitFor(server receives IClient::serverResponse)
            val responseValue = responseEvent.parameters[0] as String
            if (!responseValue.endsWith("<Unknown>")) {
                request(server sends requestingClient.serverResponse(responseValue))
                terminate() :/ do not wait for further slave server responses
            }
        }
        request(server sends requestingClient.serverResponse("$userID:<Unknown>"))
    }
}

Fig. 2. An example SMLK scenario of a simple hierarchical name lookup system with
interaction animator UI screenshot

SMLK integrates with JUnit and supports a test-driven scenario-specification
methodology [42,44] and combining inter-component scenarios with component-
specific scenarios [41,43].

SMLK can also be used to specify traffic scenarios, similar to OpenSCE-
NARIO4 or Traffic Sequence Charts [6], which are aimed at modeling tests for
autonomous vehicles. Figure 3 shows a composed SMLK scenario that specifies
a simple traffic scenario of one vehicle overtaking and then cutting a second
vehicle 5. Here, SMLK is integrated with SUMO; the box on the right of Fig. 3
shows snapshots of the resulting visual simulation output produced by SUMO.

This example shall demonstrate the flexibility that SMLK offers in composing
such scenarios: The main scenario cutIn starts by waiting until the overtaking
vehicle approaches the second vehicle. This is performed by a sub-scenario wait-
UntilDistanceSmallerThan that, as a parameter, can receive a scenario that
is executed in each step while waiting for the distance condition to render true.
Here, this is used to ensure that the overtaking vehicle is faster than the vehicle
to be overtaken. The distance is calculated by a sub-scenario getDistance that
waits for the vehicles’ position events, and then returns the difference.

Of course, multiple such scenarios can be executed in parallel to direct and
coordinate the movement of many vehicles.

6 Conclusion and Open Research Challenges

We hope that we could provide an interesting, albeit self-biased, overview on the
past work on and current state of scenario-based modeling techniques. Further
4 https://www.asam.net/project-detail/asam-openscenario-v20-1/
5 inspired by https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_

OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html#_cut_in

https://www.asam.net/project-detail/asam-openscenario-v20-1/
https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html#_cut_in
https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html#_cut_in
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suspend fun Scenario.cutIn( overtakingVehicle: SumoVehicle, 
overtakenVehicle : SumoVehicle, overtakingDistance : Double, cutInDistance : Double, 
...) { 

 
    waitUntilDistanceSmallerThan(overtakenVehicle, overtakingVehicle, overtakingDistance){ 
        val overtakenVehicleSpeed = waitFor(overtakenVehicle.getSpeed()).result().! 
        request (overtakingVehicle.setSpeed(overtakenVehicleSpeed + overtakingSpeedDelta)) 
    } 
    request(overtakingVehicle.changeLane(1)) 
    waitUntilDistanceSmallerThan(overtakenVehicle, overtakingVehicle, passingDistance) 
    waitUntilDistanceGreaterThan(overtakenVehicle, overtakingVehicle, cutInDistance) 
    request(overtakingVehicle.changeLane(0)) 
    accelerateVehicle(overtakingVehicle, slowSpeed, slowDownDuration, slowDuration) 
}

suspend fun Scenario.waitUntilDistanceSmallerThan(
v1: SumoVehicle, 
v2:SumoVehicle, 
distance: Double, 
nestedBehavior: suspend Scenario.() .> Unit = {}) {

    do {
        val currentDistance = abs(getDistance(v1, v2))
        nestedBehavior.invoke(this)
    } while(currentDistance .= distance)
}

suspend fun Scenario.getDistance(v1: SumoVehicle, v2:SumoVehicle) : Double {
    val executedEvents = unordered(

waitedForEvents = v1.getLanePosition() union v2.getLanePosition())
as List<ObjectEvent.*,*.>

    return executedEvents[0].result() as Double - executedEvents[1].result() as Double
}
...

...

...

...

Fig. 3. An example of composing SMLK scenario for specifying traffic scenarios that
can be executed in the SUMO traffic simulator

research is yet required to evaluate and improve these techniques. We conclude
with a list of three interesting research directions:

1. Evaluation using larger-scale case studies: The existing literature of
scenario-based modeling/programming techniques only reports on small- and
medium-size case studies. It is time to exercise the development of more
complex distributed cyber-physical systems or micro-service systems in order
to reflect on the strengths and weaknesses of scenario-based techniques.

2. Improve realizability checking techniques and comprehensibility of
the results: We highlighted the benefit and problems of formal realizability
checking techniques. There are different ways in which these techniques could
be improved. For example, could synthesized strategies or counter-strategies
be presented to the user in more concise forms instead of producing huge
state graph models? Could program repair techniques be applied in order to
suggest scenario specification repairs if realizability checking fails?

3. Specify and simulate traffic scenarios for testing autonomous sys-
tems: This seems a fitting area for applying scenario-based specification
techniques as they support a step-by-step operational description of what
shall happen in some places while also allowing for a more abstract, non-
deterministic specification of behavior elsewhere. Tailoring tests for autono-
mous vehicles that effectively and efficiently test behaviors of interest and
support assessing residual risks [25,35] is a great challenge. Could controller
synthesis and learning techniques support test engineers in this process?
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