
Scenario-Based Modeling and Programming of
Distributed Systems (Extended Abstract)

Joel Greenyer1[0000−0003−0347−0158]

FHDW Hannover, 30173 Hannover, Germany
joel.greenyer@fhdw.de

Abstract. Software systems become increasingly distributed and inter-
connected. Single functions are usually realized by the interaction of mul-
tiple components, while single components participate in fulfilling mul-
tiple functions. During early development, engineers often design new
functionalities by first taking an inter-component, interaction-oriented
perspective, which must be mapped to a single-component implementa-
tion perspective later. This extended abstract reviews past and ongoing
work on scenario-based modeling and programming techniques, which
support engineers in this process. We also discuss new opportunities for
applying these techniques as well as open research challenges.

Keywords: Scenario-Based Design · Reactive Systems · Behavioral
Programming

1 Introduction

From micro-services information systems to cyber-physical systems-of-systems,
software-intensive systems become increasingly distributed and interconnected.
In these systems, single functions are usually realized by the interaction of mul-
tiple components, while single components often participate in fulfilling multi-
ple functions. During the design of these systems, engineers often first take a
birds-eye, inter-component view on how components shall interact in order to
fulfill a certain function. Typically sequence diagrams or interaction overview
diagrams are modeled during this phase to support design decision-making and
communication. At some stage, these inter-component models must be mapped
to specifications and, finally, implementations of the individual components.

Scenario-based modeling techniques aim at supporting engineers in this pro-
cess. One goal of these techniques is to facilitate the transition from inter-
component- to component-specific behavior specifications, and doing so itera-
tively. The second goal is to support the engineer with behavior analysis tech-
niques already during the inter-component behavior modeling stage, so that
engineers can make more informed early design decisions.

Copyright © 2021 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

242 J. Greenyer

In this extended abstract, we give a brief review of the existing work in this
context, with a pinch of personal experience and opinion. In particular, we cover
own past and current work on the Scenario Modeling Language (SML) and the
Scenario Modeling Language for Kotlin (SMLK), a Kotlin-based internal DSL for
scenario-based programming. Concluding, we discuss open research directions.

2 Related Work

Early research on scenario-based modeling was centered around Message Se-
quence Charts (MSC) [26], which also influenced UML Sequence Diagrams. A
number of approaches suggested techniques for deriving state-based models from
individual MSCs [31, 39] and high-level MSCs [30], which are MSCs extended
with control-flow constructs. Other approaches considered deriving state-based
models in a setting where multiple MSC diagrams could be active at the same
time [29, 34], and it was soon recognized that there needed to be a way to de-
scribe constraints how scenarios are allowed to overlap. Some approaches used
event pre- and post-conditions [40], others required the definition of the com-
ponent states within the scenarios [8,9], temporal logic constraints [4,37,38]. or
proposed modeling positive and negative scenarios [24].

Addressing the problem of specifying overlapping scenarios, Damm and Harel
introduced Live Sequence Charts (LSC) [5], which recognized that there is a
difference between scenarios that should be possible to occur, and scenarios that
express rules on the behavior that must always be satisfied. These scenario kinds
are called existential resp. universal scenarios. Moreover, in universal scenarios
it should be possible to distinguish between events that must occur and events
that may occur or act as triggers for subsequent must-occur events. These are
called hot (must occur) resp. cold (may occur) events. Likewise, hot and cold
conditions can model mandatory- or interrupt conditions.

Based on LSC, the Play-In/Play-Out approach was developed [21]. with the
vision to interactively “play” with a system to teach it possible, allowed, or for-
bidden behaviors, in the form of LSC diagrams. These LSC specification can then
be executed using the Play-Out algorithm. There were numerous approaches to
synthesize state-based models from LSC specifications [2, 20, 32, 33], and check-
ing whether this is at all possible; combinations of must-happen and must-not-
happen requirements can render LSC specifications unrealizable, meaning that no
implementation of the specification exists. Our own work included realizability-
checkig and synthesis techniques for timed LSC specifications [10,18], and LSC-
based product line specifications [12, 19]. Also the Petri Nets community sug-
gested analysis techniques for LSCs, for example analyzing LSC specifications
by mapping to Colored Petri Nets (CPN) [27] or by a procedure for composing
Petri Nets from LSC-inspired Petri Net fragments [7].

With Behavioral Programming (BP) [23], the idea of LSCs was transferred
to general-purpose programming languages, for example Java, JavaScript or
C++. BP allows programmers to program behavior by loosely coupled behav-
ioral threads (b-threads), where each b-thread can add behavior or constrain the
behavior of other b-threads, allowing for a flexible composition of behavior.

Scenario-Based Modeling and Programming of Distributed Systems 243

3 Scenario Modeling Language (SML)

With the goal of extending existing LSC modeling techniques and experiment-
ing with analysis algorithms, we developed the textual Scenario Modeling Lan-
guage (SML), along with the Eclipse/EMF-based tool suite ScenarioTools.
We chose a textual language for improved usability over a graphical notation.

SML extends LSC with the capability to model assume/guarantee specifica-
tions, where guarantee scenarios specify how a system must react to environ-
ment events and assumption scenarios specify how the environment behaves.
This gives SML an expressive power comparable GR(1) [1], a subset of LTL. A
GR(1) specification is an implications of two generalized Büchi properties. For
example, we can specify that cars must always be able to pass crosswalks in a
traffic system assuming that each crosswalk is always eventually free of pedes-
trians. ScenarioTools implements a GR(1) game solving algorithm [3] for
realizability checking and controller synthesis. Moreover, SML extends previous
LSC modeling techniques with features for modeling dynamic topology systems,
which are systems with evolving structure [14].

Figure 1 shows an example of a Car-to-X system for coordinating cars that
approach an obstacle blocking one lane of a two-lane road. The left illustrates two
example scenarios with their SML counterpart shown on the right. SML speci-
fications are typed over a domain class model (top right). For a more extensive
description of SML and the example, we refer to the original paper [14].

approaching
obstacle on narrow

passage lane
obstacle control

obstacle control

1

2

approaching an obstacle
on the blocked lane

show stop
or go

3

before
obstacle is
reached

Scenario 1 “Dashboard of the car approaching
on the blocked lane shows STOP or GO”

1approaching an obstacle
on the blocked lane

entering
(Dis)Allowed2

register 4

is narrow area free?
(any car registered
for approach from
the other side?)

obstacle control

3

5
show stop

or go

Scenario 2 “Control station checks for car approaching
on the blocked lane whether entering is allowed or not”

approaching
obstacle on
blocked lane

Domain
class
model

SML
Scenarios

guarantee scenario CarGetsSignalBeforeReachingObstacle
bindings [oc = cp.obstacleCtrl] {

cp -> car.approachingObstacle()

alternative {
strict oc -> car.enteringAllowed

} or {
strict oc -> car.enteringDisallowed

}

cp -> car.obstacleReached()
}

guarantee scenario CarRegistersAtObstacle
bindings [oc = cp.obstacleCtrl] {

cp -> car.approachingObstacle()
strict urgent car -> oc.register()

alternative [oc.passingCar == null] {
strict urgent oc -> oc.setPassingCar(car)
strict urgent oc -> car.enteringAllowed()

} or [oc.passingCar != null] {
strict urgent oc -> oc.waitingCars.add(car)
strict urgent oc -> car.enteringDisallowed()

}
}

Fig. 1. Car-to-X SML specification example

244 J. Greenyer

Based on ScenarioTools, we experimented with different analysis tech-
niques, for example symbolic execution [17], or automatic repair techniques [36].

4 Some Lessons Learned

The work on ScenarioTools and various examples [11, 13, 15, 16] has taught
us several lessons:

1. LSC-/SML-style specification techniques indeed offer an intuitive way of
modeling reactive behavior. They are more flexible and requirements-oriented
than state-based models, but also more easily comprehensible than temporal
logics due to offering a more step-by-step modeling style.

2. Constructs that forbid behavior should be used sparingly and carefully, as
otherwise contradictions will be introduced easily. Strict messages (or hot
messages in LSC), which are messages that, when enabled, forbid events
appearing elsewhere in the scenario, are harmful in bigger scenarios, because
one quickly looses the understanding in what constraints they actually imply.
It is better to specify forbidden messages explicitly.

3. Simulation and formal realizability checking techniques are helpful in finding
specification flaws. And specification flaws, just like bugs in other programs,
are guaranteed to be introduced sooner or later.

4. For complex problems, it is difficult to understand the output generated by
realizability checks. Even with interactive counter-play-out techniques that
help the user by simulation to understand how the environment can force a
violation, it may be difficult to understand the cause of the problem.

5. It is difficult to trust formal checks alone. Even if realizability checking re-
turns a positive result, it is often difficult to understand which behaviors are
or are not possible under the specification. The pragmatic approach is to
specify tests that exercise intended use cases beginning-to-end. We suggest a
test-driven approach, where scenarios are added just to a degree that satisfies
the next test case. This way, it is possible to arrive at a specification with
a trust that all use cases are covered. When changes break previous tests,
it is immediately clear what change affected which steps of which previous
use cases. Test-driven specification can be combined with realizability check-
ing. The latter may uncover problematic cases that are not covered by the
tests, for example untested combinations of inputs that lead to unforeseen
combinations of active scenarios.

5 Scenario Modeling Language for Kotlin (SMLK)

Even though significant work went into building SML and tool support in Sce-
narioTools, we felt that eventually these tool developments would not help to
make scenario-based modeling techniques better accepted in practice. SML and
ScenarioTools could not fulfill the following requirements:

Scenario-Based Modeling and Programming of Distributed Systems 245

1. Provide richer means for programming within the scenarios: For
example, doing things like filtering a list or querying complex conditions,
can be done with ScenarioTools, but only indirectly by calling external
methods. SML is extensible, but extending it to a fully-fledged programming
language would be a major effort.

2. Better integration with other libraries or frameworks: Integrating
the ScenarioTools execution engine with external frameworks, such as a
driving simulator or Android apps [15], is possible, but requires a cumber-
some development of integration layers.

3. Lightweight and fast execution: The ScenarioTools execution engine
is heavy-weight as it depends on EMF. Moreover, because the engine is based
on the interpretation of SML/EMF models, it has a relatively high memory
footprint and sometimes initial startup times of a few seconds.

In addressing these requirements, we created an SML-like internal DSL in
Java [28], based on the behavioral programming framework for Java, BPJ [22].
The approach, however, was too verbose. A few years later, Kotlin struck our
attention, mainly for two reasons: First, Kotlin supports co-routines, which are
lightweight threads that are less resource-intensive than Java threads. There-
fore, they seemed a natural candidate for executing many concurrent scenarios.
Second, Kotlin provides many features for building concise internal DSLs 1.

Exploiting these features, we created the Scenario Modeling Language for
Kotlin (SMLK)2. In SMLK, multiple scenarios can be executed as a scenario
program. Following the behavioral programming approach [23] a scenario pro-
gram is executed as follows: The active scenarios execute their code indepen-
dently until they reach synchronization points where each scenario can requests,
wait-for or forbid events from happening. A central event selection algorithm se-
lects an event that is requested by at least one scenario and not forbidden by any
other scenario. All scenarios requesting or waiting for that event are then noti-
fied and can again independently execute their behavior until reaching the next
synchronization point. This process is repeated until all scenarios terminate.

Figure 2 shows an example of an SMLK scenario for a simple hierarchical
name lookup system: a client can send a request to a server to obtain the name
for a user ID. If the requested server does not have any name stored locally
for the given user ID, it will request servers one hierarchy level below. If one
of the servers has the name, it will be returned upwards in the hierarchy to
the requesting client. Otherwise the client receives an “unknown” response. The
shown scenario may be triggered for multiple servers in a server hierarchy.

The client-server interaction illustration to the left of Fig. 2 is a screenshot
from a JavaFX-based interaction animator application that animates the mes-
sage interaction between objects3.
1 see for examplehttps://www.baeldung.com/kotlin/dsl
2 see https://bitbucket.org/jgreenyer/smlk/
3 the animator project Git repository: https://bitbucket.org/jgreenyer/

smlk-animator/; the hierarchical name lookup system example Git repository:
https://bitbucket.org/jgreenyer/smlk-animator-project-template/

https://www.baeldung.com/kotlin/dsl
https://bitbucket.org/jgreenyer/smlk/
https://bitbucket.org/jgreenyer/smlk-animator/
https://bitbucket.org/jgreenyer/smlk-animator/
https://bitbucket.org/jgreenyer/smlk-animator-project-template/

246 J. Greenyer

scenario(Server::getUserName.symbolicEvent()){ :/ trigger: server receives getUserName req.
 val requestingClient = it.sender as IClient
 val userID = it.parameters[0] as String
 val server = it.receiver
 val userName = server.userIDToUserNameProperty[userID]

 if(userName := null){
 request(server sends requestingClient.serverResponse("$userID:$userName"))
 }else{
 for(slaveServer in server.slaveServers){
 request(server sends slaveServer.getUserName(userID))
 val responseEvent = waitFor(server receives IClient::serverResponse)
 val responseValue = responseEvent.parameters[0] as String
 if (!responseValue.endsWith("<Unknown>")) {
 request(server sends requestingClient.serverResponse(responseValue))
 terminate() :/ do not wait for further slave server responses
 }
 }
 request(server sends requestingClient.serverResponse("$userID:<Unknown>"))
 }
}

Fig. 2. An example SMLK scenario of a simple hierarchical name lookup system with
interaction animator UI screenshot

SMLK integrates with JUnit and supports a test-driven scenario-specification
methodology [42,44] and combining inter-component scenarios with component-
specific scenarios [41,43].

SMLK can also be used to specify traffic scenarios, similar to OpenSCE-
NARIO4 or Traffic Sequence Charts [6], which are aimed at modeling tests for
autonomous vehicles. Figure 3 shows a composed SMLK scenario that specifies
a simple traffic scenario of one vehicle overtaking and then cutting a second
vehicle 5. Here, SMLK is integrated with SUMO; the box on the right of Fig. 3
shows snapshots of the resulting visual simulation output produced by SUMO.

This example shall demonstrate the flexibility that SMLK offers in composing
such scenarios: The main scenario cutIn starts by waiting until the overtaking
vehicle approaches the second vehicle. This is performed by a sub-scenario wait-
UntilDistanceSmallerThan that, as a parameter, can receive a scenario that
is executed in each step while waiting for the distance condition to render true.
Here, this is used to ensure that the overtaking vehicle is faster than the vehicle
to be overtaken. The distance is calculated by a sub-scenario getDistance that
waits for the vehicles’ position events, and then returns the difference.

Of course, multiple such scenarios can be executed in parallel to direct and
coordinate the movement of many vehicles.

6 Conclusion and Open Research Challenges

We hope that we could provide an interesting, albeit self-biased, overview on the
past work on and current state of scenario-based modeling techniques. Further
4 https://www.asam.net/project-detail/asam-openscenario-v20-1/
5 inspired by https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_

OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html#_cut_in

https://www.asam.net/project-detail/asam-openscenario-v20-1/
https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html#_cut_in
https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html#_cut_in

Scenario-Based Modeling and Programming of Distributed Systems 247

suspend fun Scenario.cutIn(overtakingVehicle: SumoVehicle,
overtakenVehicle : SumoVehicle, overtakingDistance : Double, cutInDistance : Double,
...) {

 waitUntilDistanceSmallerThan(overtakenVehicle, overtakingVehicle, overtakingDistance){
 val overtakenVehicleSpeed = waitFor(overtakenVehicle.getSpeed()).result().!
 request (overtakingVehicle.setSpeed(overtakenVehicleSpeed + overtakingSpeedDelta))
 }
 request(overtakingVehicle.changeLane(1))
 waitUntilDistanceSmallerThan(overtakenVehicle, overtakingVehicle, passingDistance)
 waitUntilDistanceGreaterThan(overtakenVehicle, overtakingVehicle, cutInDistance)
 request(overtakingVehicle.changeLane(0))
 accelerateVehicle(overtakingVehicle, slowSpeed, slowDownDuration, slowDuration)
}

suspend fun Scenario.waitUntilDistanceSmallerThan(
v1: SumoVehicle,
v2:SumoVehicle,
distance: Double,
nestedBehavior: suspend Scenario.() .> Unit = {}) {

 do {
 val currentDistance = abs(getDistance(v1, v2))
 nestedBehavior.invoke(this)
 } while(currentDistance .= distance)
}

suspend fun Scenario.getDistance(v1: SumoVehicle, v2:SumoVehicle) : Double {
 val executedEvents = unordered(

waitedForEvents = v1.getLanePosition() union v2.getLanePosition())
as List<ObjectEvent.*,*.>

 return executedEvents[0].result() as Double - executedEvents[1].result() as Double
}
...

...

...

...

Fig. 3. An example of composing SMLK scenario for specifying traffic scenarios that
can be executed in the SUMO traffic simulator

research is yet required to evaluate and improve these techniques. We conclude
with a list of three interesting research directions:

1. Evaluation using larger-scale case studies: The existing literature of
scenario-based modeling/programming techniques only reports on small- and
medium-size case studies. It is time to exercise the development of more
complex distributed cyber-physical systems or micro-service systems in order
to reflect on the strengths and weaknesses of scenario-based techniques.

2. Improve realizability checking techniques and comprehensibility of
the results: We highlighted the benefit and problems of formal realizability
checking techniques. There are different ways in which these techniques could
be improved. For example, could synthesized strategies or counter-strategies
be presented to the user in more concise forms instead of producing huge
state graph models? Could program repair techniques be applied in order to
suggest scenario specification repairs if realizability checking fails?

3. Specify and simulate traffic scenarios for testing autonomous sys-
tems: This seems a fitting area for applying scenario-based specification
techniques as they support a step-by-step operational description of what
shall happen in some places while also allowing for a more abstract, non-
deterministic specification of behavior elsewhere. Tailoring tests for autono-
mous vehicles that effectively and efficiently test behaviors of interest and
support assessing residual risks [25,35] is a great challenge. Could controller
synthesis and learning techniques support test engineers in this process?

248 J. Greenyer

Acknowledgements The work on SML, ScenarioTools and the modeling and
analysis of dynamic topology systems was funded by grant no. 1258 of the German-
Israeli Foundation for Scientific Research and Development (GIF). The work was
the result of a fruitful collaboration notably with David Harel, Assaf Marron,
Shlomi Steinberg, Daniel Gritzner, Nils Glade, Timo Gutjahr, Florian König,
Eric Wete, Jianwei Shi, and Larissa Chazette. The work on test-driven scenario
specification employing SMLK is the result of a collaboration with Carsten
Wiecher. Integrating SMLK with SUMO for traffic system specifications was
supported by Maximilian Hölscher.

References

1. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Saar, Y.: Synthesis
of reactive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (May 2012).
https://doi.org/10.1016/j.jcss.2011.08.007

2. Bontemps, Y., Heymans, P., Schobbens, P.Y.: From live sequence charts to state
machines and back: a guided tour. IEEE Transactions on Software Engineering
31(12), 999–1014 (2005). https://doi.org/10.1109/TSE.2005.137

3. Chatterjee, K., Dvorák, W., Henzinger, M., Loitzenbauer, V.: Condition-
ally Optimal Algorithms for Generalized Büchi Games. In: Faliszewski, P.,
Muscholl, A., Niedermeier, R. (eds.) 41st International Symposium on Math-
ematical Foundations of Computer Science (MFCS 2016). Leibniz IntProceed-
ings in Informatics (LIPIcs), vol. 58, pp. 25:1–25:15. Dagstuhl, Germany (2016).
https://doi.org/http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.25

4. Damas, C., Lambeau, B., van Lamsweerde, A.: Scenarios, goals, and state ma-
chines: A win-win partnership for model synthesis. In: Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing. p. 197–207. SIGSOFT ’06/FSE-14, Association for Computing Machinery,
New York, NY, USA (2006). https://doi.org/10.1145/1181775.1181800

5. Damm, W., Harel, D.: Lscs: Breathing life into message sequence
charts. Formal Methods in System Design 19(1), 45–80 (Jul 2001).
https://doi.org/10.1023/A:1011227529550

6. Damm, W., Kemper, S., Möhlmann, E., Peikenkamp, T., Rakow, A.: Using traf-
fic sequence charts for the development of havs. In: European Congress on Em-
bedded Real Time Software and Systems 2018. 9th European Congress on Em-
bedded Real Time Software and Systems (ERTS 2018) (2018), https://hal.
archives-ouvertes.fr/hal-01714060/file/ERTS_2018_paper_17.pdf

7. Fahland, D.: Oclets — scenario-based modeling with petri nets. In: Franceschi-
nis, G., Wolf, K. (eds.) Applications and Theory of Petri Nets, Lecture Notes
in Computer Science, vol. 5606, pp. 223–242. Springer Berlin Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02424-5_14

8. Giese, H., Henkler, S., Hirsch, M., Klein, F.: Nobody’s perfect: Interactive synthesis
from parametrized real-time scenarios. In: Proceedings of the 2006 International
Workshop on Scenarios and State Machines: Models, Algorithms, and Tools. p.
67–74. SCESM ’06, Association for Computing Machinery, New York, NY, USA
(2006). https://doi.org/10.1145/1138953.1138967

9. Giese, H., Tissen, S.: The SceBaSy Plugin for the Scenario-Based Synthesis of
Real-Time Coordination Patterns for Mechatronic UML. In: Proceedings of the
3rd International Fujaba Days 2005, Paderborn, Germany (2005)

https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1109/TSE.2005.137
https://doi.org/http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.25
https://doi.org/10.1145/1181775.1181800
https://doi.org/10.1023/A:1011227529550
https://hal.archives-ouvertes.fr/hal-01714060/file/ERTS_2018_paper_17.pdf
https://hal.archives-ouvertes.fr/hal-01714060/file/ERTS_2018_paper_17.pdf
https://doi.org/10.1007/978-3-642-02424-5_14
https://doi.org/10.1145/1138953.1138967

Scenario-Based Modeling and Programming of Distributed Systems 249

10. Greenyer, J.: Scenario-based Design of Mechatronic Systems. Ph.D. thesis, Univer-
sity of Paderborn, Paderborn (October 2011)

11. Greenyer, J., Bar-Sinai, M., Weiss, G., Sadon, A., Marron, A.: Modeling and
programming a leader-follower challenge problem with scenario-based tools. In:
Hebig, R., Berger, T. (eds.) Proceedings of MODELS 2018 Workshops co-located
with ACM/IEEE 21st International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS 2018), Copenhagen, Denmark, October, 14, 2018.
CEUR Workshop Proceedings, vol. 2245, pp. 376–385. CEUR (2018)

12. Greenyer, J., Brenner, C., Cordy, M., Heymans, P., Gressi, E.: Incrementally syn-
thesizing controllers from scenario-based product line specifications. In: Proceed-
ings of the 2013 9th Joint Meeting on Foundations of Software Engineering. p.
433–443. ESEC/FSE 2013, Association for Computing Machinery, New York, NY,
USA (2013). https://doi.org/10.1145/2491411.2491445

13. Greenyer, J., Chazette, L., Gritzner, D., Wete, E.: A scenario-based MDE process
for dynamic topology collaborative reactive systems – early virtual prototyping of
Car-to-X system specifications. In: Schaefer, I., Cleophas, L., Felderer, M., Becker,
S., Böhm, W., Fahland, D., Fill, H., Heinrich, R., Kirchner, K., Köhler-Bußmeier,
M., Konersmann, M., Mayr, H.C., Moldt, D., Oberweis, A., Reher, F., Riebisch,
M., Sauer, S., Schlingloff, H., Thalheim, B., Vogelsang, A., Weißbach, R., Weyer,
T. (eds.) Proceedings Workshops zur Modellierung in der Entwicklung von kollab-
orativen eingebetteten Systemen (MEKES), Joint Proceedings of the Workshops
co-located with Modellierung 2018, Braunschweig, Germany, February 21, 2018.
CEUR Workshop Proceedings, vol. 2060, pp. 111–120. CEUR-WS.org (2018)

14. Greenyer, J., Gritzner, D., Katz, G., Marron, A.: Scenario-based modeling and
synthesis for reactive systems with dynamic system structure in ScenarioTools.
In: de Lara, J., Clarke, P.J., Sabetzadeh, M. (eds.) Proceedings of the MoDELS
2016 Demo and Poster Sessions, co-located with ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems (MoDELS 2016).
vol. 1725, pp. 16–32. CEUR (2016)

15. Greenyer, J., Gritzner, D., Katz, G., Marron, A., Glade, N., Gutjahr, T., König,
F.: Distributed execution of scenario-based specifications of structurally dynamic
cyber-physical systems. Procedia Technology (Proceedings of the 3nd Interna-
tional Conference on System-Integrated Intelligence: Challenges for Product and
Production Engineering, SysInt 2016) (2016), 3rd International Conference on
System-Integrated Intelligence: Challenges for Product and Production Engineer-
ing (SysInt 2016)

16. Greenyer, J., Gritzner, D., Shi, J., Wete, E.: A scenario-based MDE process for
developing reactive systems: A cleaning robot example. In: Burgueño, L., Cor-
ley, J., Bencomo, N., Clarke, P.J., Collet, P., Famelis, M., Ghosh, S., Gogolla,
M., Greenyer, J., Guerra, E., Kokaly, S., Pierantonio, A., Rubin, J., Ruscio, D.D.
(eds.) Proceedings of MODELS 2017 Satellite Events, co-located with ACM/IEEE
20th International Conference on Model Driven Engineering Languages and Sys-
tems (MODELS 2017). CEUR Workshop Proceedings, vol. 2019, pp. 71–80. CEUR
(2017)

17. Greenyer, J., Gutjahr, T.: Symbolic execution for realizability-checking of scenario-
based specifications. In: 2017 ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems (MODELS). pp. 312–322 (2017).
https://doi.org/10.1109/MODELS.2017.35

18. Greenyer, J., Kindler, E.: Compositional synthesis of controllers from scenario-
based assume-guarantee specifications. In: Moreira, A., Schätz, B., Gray, J., Val-

https://doi.org/10.1145/2491411.2491445
https://doi.org/10.1109/MODELS.2017.35

250 J. Greenyer

lecillo, A., Clarke, P. (eds.) Model-Driven Engineering Languages and Systems:
Proceedings of the ACM/IEEE 16th International Conference (MODELS 2013),
Lecture Notes in Computer Science, vol. 8107, pp. 774–789. Springer Berlin Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-41533-3_47

19. Greenyer, J., Molzam Sharifloo, A., Cordy, M., Heymans, P.: Features meet scenar-
ios: modeling and consistency-checking scenario-based product line specifications.
Requirements Engineering 18(2), 175–198 (2013). https://doi.org/10.1007/s00766-
013-0169-4, http://dx.doi.org/10.1007/s00766-013-0169-4

20. Harel, D., Kugler, H.: Synthesizing state-based object systems from LSC specifi-
cations. Foundations of Computer Science 13:1, 5–51 (2002)

21. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer (2003)

22. Harel, D., Marron, A., Weiss, G.: Programming coordinated behavior in
java. In: D’Hondt, T. (ed.) ECOOP 2010 – Object-Oriented Program-
ming. pp. 250–274. Springer Berlin Heidelberg, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14107-2_12

23. Harel, D., Marron, A., Weiss, G.: Behavioral programming. Comm. ACM 55(7),
90–100 (2012). https://doi.org/10.1145/2209249.2209270

24. Haugen, Ø., Husa, K.E., Runde, R.K., Stølen, K.: STAIRS towards formal design
with sequence diagrams. Software & Systems Modeling 4(4), 355 (Oct 2005).
https://doi.org/10.1007/s10270-005-0087-0

25. Hollander, Y.: Estimating the residual risk of adas / av (Feb 2021), https://blog.
foretellix.com/2021/02/01/estimating-the-residual-risk-of-adas-av/

26. ITU: ITU-TS Recommendation Z.120: Message Sequence Charts (MSC) (1996)
27. Khadka, B., Mikolajczak, B.: Transformation from live sequence charts to colored

petri nets. In: Proceedings of the 2007 Summer Computer Simulation Conference.
p. 673–680. SCSC ’07, Society for Computer Simulation International, San Diego,
CA, USA (2007)

28. König, F.W.H.: Szenariobasierte Programmierung und verteilte Ausführung
in Java. Master’s thesis, Leibniz Universität Hannover, Software Engineer-
ing Group (2017), http://jgreen.de/wp-content/documents/msc-theses/2017/
Koenig2017.pdf

29. Koskimies, K., Systa, T., Tuomi, J., Mannisto, T.: Automated sup-
port for modeling OO software. IEEE Software 15(1), 87–94 (1998).
https://doi.org/10.1109/52.646888

30. Krüger, I.: Distributed System Design with Message Sequence Charts. Ph.D. thesis,
Technische Universität München, Institut für Informatik (2000)

31. Krüger, I., Grosu, R., Scholz, P., Broy, M.: From MSCs to statecharts. In: DIPES
’98: Proceedings of the IFIP WG10.3/WG10.5 International Workshop on Dis-
tributed and Parallel Embedded Systems. pp. 61–71. Kluwer Academic Publishers,
Norwell, MA, USA (1999)

32. Kugler, H., Plock, C., Pnueli, A.: Controller synthesis from LSC requirements. In:
Chechik, M., Wirsing, M. (eds.) Proceedings of the 12th International Conference
of Fundamental Approaches to Software Engineering, FASE 2009, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2009,
York, UK, March 22-29, 2009. Lecture Notes in Computer Science, vol. 5503, pp.
79–93. Springer (2009)

33. Kugler, H., Segall, I.: Compositional Synthesis of Reactive Systems from Live Se-
quence Chart Specifications. In: Proceedings of the 15th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, TACAS

https://doi.org/10.1007/978-3-642-41533-3_47
https://doi.org/10.1007/s00766-013-0169-4
https://doi.org/10.1007/s00766-013-0169-4
http://dx.doi.org/10.1007/s00766-013-0169-4
https://doi.org/10.1007/978-3-642-14107-2_12
https://doi.org/10.1145/2209249.2209270
https://doi.org/10.1007/s10270-005-0087-0
https://blog.foretellix.com/2021/02/01/estimating-the-residual-risk-of-adas-av/
https://blog.foretellix.com/2021/02/01/estimating-the-residual-risk-of-adas-av/
http://jgreen.de/wp-content/documents/msc-theses/2017/Koenig2017.pdf
http://jgreen.de/wp-content/documents/msc-theses/2017/Koenig2017.pdf
https://doi.org/10.1109/52.646888

Scenario-Based Modeling and Programming of Distributed Systems 251

2009, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2009, York, UK, March 22-29, 2009. pp. 77–91 (2009)

34. Maier, T., Zündorf, A.: The Fujaba Statechart Synthesis Approach. In: Proceed-
ings of the 2nd International Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools, ICSE 2003 (2003)

35. Neurohr, C., Westhofen, L., Butz, M., Bollmann, M.H., Eberle, U., Galbas, R.:
Criticality analysis for the verification and validation of automated vehicles. IEEE
Access 9, 18016–18041 (2021). https://doi.org/10.1109/ACCESS.2021.3053159

36. Schmelter, D., Greenyer, J., Holtmann, J.: Toward learning realizable scenario-
based, formal requirements specifications. In: 2017 IEEE 25th International Re-
quirements Engineering Conference Workshops (REW), 4th International Work-
shop on Artificial Intelligence for Requirements Engineering (AIRE). pp. 372–378
(Sept 2017). https://doi.org/10.1109/REW.2017.14

37. Uchitel, S., Brunet, G., Chechik, M.: Behaviour Model Synthesis from Properties
and Scenarios. In: Proceedings of the 29th international Conference on Software
Engineering, ICSE ’07. pp. 34–43. IEEE Computer Society, Washington, DC, USA
(2007). https://doi.org/http://dx.doi.org/10.1109/ICSE.2007.21

38. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of Partial Behavior Models from
Properties and Scenarios. IEEE Transactions on Software Engineering 35(3), 384–
406 (2009). https://doi.org/10.1109/TSE.2008.107

39. Uchitel, S., Kramer, J.: A Workbench for Synthesising Behaviour Models from Sce-
narios. In: Proceedings of the 23rd International Conference on Software Engineer-
ing, ICSE 2001. pp. 188–197 (2001). https://doi.org/10.1109/ICSE.2001.919093

40. Whittle, J., Schumann, J.: Generating statechart designs from scenarios. In: Pro-
ceedings of the 22nd international conference on Software engineering, ICSE ’00.
pp. 314–323 (2000). https://doi.org/10.1109/ICSE.2000.870422

41. Wiecher, C., Greenyer, J.: Besos: A tool for behavior-driven and scenario-
basedrequirements modeling for systems of systems. In: Aydemir, F., Gralha, C.,
Abualhaija, S., Breaux, T., Daneva, M., Ernst, N., Ferrari, A., Franch, X., Ghana-
vati, S., Groen, E., Guizzardi, R., Guo, J., Herrmann, A., Horkoff, J., Mennig, P.,
Paja, E., Perini, A., Seyff, N., Susi, A., Vogelsang, A. (eds.) Joint Proceedings of
REFSQ-2021 Workshops, OpenRE,Posters and Tools Track, and Doctoral Sym-
posium, Essen, Germany, 12-04-2021. CEUR Workshop Proceedings, vol. 2857.
CEUR (2021)

42. Wiecher, C., Greenyer, J., Korte, J.: Test-driven scenario specification of auto-
motive software components. In: The 2nd International Workshop on Modeling
in Automotive Software Engineering, Proceedings of MODELS 2019 Workshops
(to appear), co-located with ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems (MODELS 2019), Munich, Germany,
September 2019. CEUR Workshop Proceedings, CEUR (2019)

43. Wiecher, C., Greenyer, J., Wolff, C., Anacker, H., Dumitrescu, R.: Iterative and
scenario-based requirements specification in a system of systems context. In:
Dalpiaz, F., Spoletini, P. (eds.) Requirements Engineering: Foundation for Software
Quality (REFSQ 2021). pp. 165–181. Springer International Publishing, Cham
(2021)

44. Wiecher, C., Japs, S., Kaiser, L., Greenyer, J., Dumitrescu, R., Wolff, C.: Scenar-
ios in the loop: Integrated requirements analysis and automotive system valida-
tion. In: Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings. MOD-
ELS ’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3417990.3421264

https://doi.org/10.1109/ACCESS.2021.3053159
https://doi.org/10.1109/REW.2017.14
https://doi.org/http://dx.doi.org/10.1109/ICSE.2007.21
https://doi.org/10.1109/TSE.2008.107
https://doi.org/10.1109/ICSE.2001.919093
https://doi.org/10.1109/ICSE.2000.870422
https://doi.org/10.1145/3417990.3421264

252 J. Greenyer

	Scenario-Based Modeling and Programming of Distributed Systems (Extended Abstract)

