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Abstract. The reachability problem for Petri nets is the task to decide,
for a given Petri net N and a marking m, whether m can be reached from
the initial configuration of N by firing a valid sequence of transitions.
In this paper, we show that the reachability problem for acyclic join-free
Petri nets is NP-complete.

1 Introduction

The concept of Petri nets goes back to Carl Adam Petri [5, 24] and has been fur-
ther developed in the following years, particularly by the contributions of Anatol
Holt [15] and the group around him. Today, Petri nets are a well-established
language for modeling concurrent processes and distributed systems. Different
dialects of Petri nets and their extensions such as, for example, 1-safe Petri nets,
colored Petri nets or timed Petri nets, have applications in several areas such as,
for example, performance evaluation [27]; communication protocols [3, 26]; mod-
eling and analysis of distributed software systems [19, 25]; synthesis of speed
independent asynchronous cicuits [13]; modeling and verification in hardware
design [2, 7].

Petri net analysis deals, for example, with the task to deduce behavioral
properties of the model like reachability, liveness or deadlock, and is subject of
a dedicated annual contest [1].

In this paper, we deal with a special instance of a central algorithmic problem
of Petri net analysis: The reachability problem for Petri nets is the task to decide,
for a given Petri net N and a marking m, whether m is reachable from the initial
configuration of N by firing a sequence of transitions of N .

In theoretical computer science, this problem has been investigated for many
years from both the computability and the complexity point of view: while the
decidability status of the problem has been open for a long time, it was fi-
nally shown in [21] that a decision algorithm exists, and several works aimed at
improved and less complex decision methods [18, 20]. Unfortunately, the reach-
ability problem for Petri nets is intrinsically hard to solve: while its was already

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).



124 Ronny Tredup and Sophie Wallner

proven to be EXPSPACE-hard in [6], a recent work showed that the problem
needs even a tower of exponentials of time and space [8].

However, from the complexity point of view, better results can be obtained for
structural restricted Petri nets: for example, the complexity of the reachability
problem boils down to PSPACE-complete for 1-safe Petri nets; the problem is
NP-complete for acyclic Petri nets [4], for acyclic 1-safe Petri nets [28], and for
conflict-free Petri nets [16] as well. On the other hand, the reachability problem is
solvable in polynomial-time for S-systems and marked graphs [14, 5], and 1-safe
conflict-free Petri nets [4].

Free-choice Petri nets define one of the most important sub-classes of Petri
nets. The reachability problem generally remains EXPSPACE-hard for these
nets, but becomes PSPACE-complete for 1-safe free-choice Petri nets, and it is
NP-complete for live 1-safe free-choice Petri nets [12]. Moreover, the problem
is polynomial for reversible free-choice Petri nets [10], and for cyclic extended
free-choice systems [11], and for sound extended free-choice workflow nets [30].

Join-free Petri nets build a particular yet useful subclass of Petri nets and
allow every transition to have at most one input place [9, 17, 29]. To the best
of our knowledge, the complexity status of the reachability problem has not
yet been characterized for this class. In this paper, we partially close this gap
by showing that the reachability problem for acyclic join-free Petri nets is NP-
complete: On the one hand, the problem inherits NP-membership from the more
general class of acyclic Petri nets [28]. On the other hand, we show by a reduction
of a particular Sat-problem, namely Cubic Monotone 1 in 3 3Sat, that the
reachability problem for acyclic join-free Petri nets is NP-hard, even if the the
net is additionally free-choice, that is, its arc weights are restricted to zero and
one.

The paper is structured as follows: The next Section 2 provides basic defini-
tions and supports them with some examples. After that, Section 3 provides the
announced hardness result. Finally, Section 4 briefly closes the paper.

2 Preliminaires

In this section, we introduce relevant basic notions around Petri nets and show
some examples.

Definition 1 (Petri Nets). A Petri net, also Petri net, N = (P, T, f,m0)
consists of finite and disjoint sets of places P and transitions T , a (total) flow
f : ((P × T ) ∪ (T × P ))→ N and an initial marking m0 : P → N.

Definition 2 (Preset, postset). The nodes of a Petri net N = (P, T, f,m0)
are P ∪ T . The preset of a node x is defined by •x = {y | f(y, x) > 0}, the
postset of x is defined by x• = {y | f(x, y) > 0}. Notice that •x ∩ x• is not
necessarily empty. For a transition t, the pre-places are all places in •t; the
post-places are all places in t•. Pre-transitions and post-transitions for a place
are defined analogously.
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Subclasses of Petri nets. Within the class of Petri nets, we can determine
various subclasses, which differ in their flow relation structure: A Petri net
N = (P, T, f,m0) is called acyclic if its underlying directed graph G = (V,E)
with vertices V = P ∪ T and edges E = {(x, y) | x, y ∈ V, f(x, y) > 0} has
no directed circuits. Moreover, N is join-free, if every transition t has at most
one pre-place, that is, | • t| ≤ 1. If the co-domain of the flow f is restricted
to {0, 1}, then N is called plain. Furthermore, N is free-choice, if it is plain
and, additionally, if it holds for two arbitrary distinct transitions t and t′ ∈ T :
•t ∩ •t′ 6= ∅ ⇒ •t = •t′. This means that if two transitions share one pre-place,
then they share all pre-places. Notice that a plain join-free Petri net is free-choice
by triviality, since in this case there is no transition with several pre-places.

Figure 1 shows the net N that is obviously acyclic and join-free and free-
choice as well.

p0

p1

p2

p3

t0

t1

t2

Fig. 1. The acyclic, join-free Petri net N , which is also free-choice.

The behavior of a Petri net is defined by the transition rule.

Definition 3 (Transition Rule). Let N = (P, T, f,m0) be a Petri net. Tran-
sition t is enabled in marking m if ∀p : m(p) ≥ f(p, t). Firing a Transition
t leads from marking m to marking m′ if t is enabled in m and ∀p : m′(p) =

m(p)− f(p, t) + f(t, p), denoted as m
t−→ m′.

Definition 4 (Firing Sequence, Reachability Set). Let N = (P, T, f,m0)
be a Petri net and m,m′ some (not necessarily distinct) markings of N . We say
a sequence (of transitions) σ = ω ∈ T ∗ can fire at m and its firing leads to m′,

denoted by m
σ−→ m′ if and only if either σ = ε and m = m′ or σ = ωa, where

ω ∈ T ∗ and a ∈ T , and there is a marking m′′ of N such that m
ω−→ m′′ and

m′′
a−→ m′. We call RS(N) = {m | ∃σ ∈ T ∗ : m0

σ−→ m} the reachability set (of
N), which contains all of N ’s reachable markings.

Definition 5 (Set of transitions of a sequence). Let N = (P, T, f,m0) be
a Petri net and let σ ∈ T ∗. We define the set Sσ of transitions of σ inductively
as follows: If σ = ε, then Sσ = ∅ and, otherwise, if σ = ωa with ω ∈ T ∗ and
a ∈ T , then Sσ = {a} ∪ Sω.

Using the transition rule, a Petri net induces a labeled transition system,
called the reachability graph.
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Definition 6 (Labeled Transition System, Reachability Graph). A (de-
terministic) transition system TS = [S, s0, R,A] is a directed labeled graph with
the set of nodes S (called states), an initial state s0 ∈ S, and a transition re-
lation R ⊆ S × A× S with some set of actions A. The reachability graph of a
Petri net N is a transition system, where the set of states is RS(N), m0 serves

as the initial state and (m, t,m′) ∈ R iff m
t−→ m′.

In this paper, we consider the following instance of the reachability problem:

Reachability For Acyclic Join-Free Petri Nets
Input: A tuple (N,m) where N = (P, T, f,m0) is an acyclic and join-free

Petri net and m is a marking of N .

Question: Does there exist a firing sequence σ ∈ T ∗ such that m0
σ−→ m?

An example shall illustrate this problem.

Example 1. Let N be the given net in Figure 1 with the initial marking m0 =
(1, 0, 0, 0) whereas, with a little abuse of definition, the tuple is an abbreviation of
m0(pH0

) = 1,m0(pH1
) = m0(pH2

) = m0(pH3
) = 0. In m0, only t0 is activated.

Firing t0 leads to marking m1 = (0, 1, 1, 0). The marking m2 = (0, 0, 0, 2) is
reachable, because the firing sequence t0t1t2 leads us from m0 to m2. On the
contrary, marking m3 = (1, 0, 0, 1) is not reachable, as for producing tokens on
pH3 , we need to consume the token from pH0 first to activate the transition t1
and t2.

3 Hardness Result

The following theorem provides the main result of this paper:

Theorem 1. Reachability for Acyclic Join-free Petri Nets is NP-
complete.

The remainder of this paper is dedicated to the proof of Theorem 1: First
of all, by a result of [23], if N = (P, T, f,m0) is an acyclic Petri net and m a
marking, then m is reachable from m0 if and only if the well-known state equa-
tion m = m0 + C · x has a non-negative integer solution x. In other words, the
reachability problem is reducible to the problem Linear Integer Program-
ming, which is well-known to be NP-complete. Hence, the reachability problem
for acyclic join-free Petri nets belongs to NP.

Consequently, in order to complete the proof of Theorem 1, it remains to
show that Reachability for Acyclic Join-free Petri Nets is NP-hard.
The proof of the NP-hardness is based on a polynomial-time reduction of the
following particular Sat-problem, which is known to be NP-complete from [22]:
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Cubic Monotone 1 in 3 3Sat (CM 1 in 3 3Sat)
Input: A pair (V, F ) consisting of a set V of boolean variables and a

set F = {C0, . . . , Cn−1} consisting of 3-variable-clauses, such
that Ci = {Xi0 , Xi1 , Xi2} ⊆ V and i0 < i1 < i2 for all
i ∈ {0, . . . , n − 1}. Every variable X ∈ V appears in exactly
three different clauses.

Question: Does there exist a one-in-three model for (V, F ), i.e. a set S ⊆ V
such that |S ∩ Ci| = 1 for all i ∈ {0, . . . , n− 1}?

Example 2. The instance (V, F ) of CM 1 in 3 3Sat with set of variables
V = {X0, X1, . . . , X5} and set of 3-variable-clauses F = {C0, C1, . . . , C5}, where

– C0 = {X0, X1, X2}
– C1 = {X0, X1, X3}
– C2 = {X0, X1, X5}

– C3 = {X2, X3, X4}
– C4 = {X2, X4, X5}
– C5 = {X3, X4, X5}

allows a positive decision, since S = {X0, X4} is a one-in-three model for (V, F ).

Notice that the number of variables and the number of clauses are equal for
any arbitrary instance of CM 1 in 3 3Sat. This concludes from the problem
definition of CM 1 in 3 3Sat, as every variable occurs exactly in three different
clauses and each clause consists of three different variables.

In the remainder of this paper, unless explicitly stated otherwise, let (V, F ) be
an arbitrary but fixed input of CM 1 in 3 3Sat, where V = {X0, X1, . . . , Xn−1}
and F = {C0, C1, . . . , Cn−1} such that Ci = {Xi0 , Xi1 , Xi2} and i0 < i1 < i2 for
all i ∈ {0, . . . , n− 1}.

Our reduction uses the following simple yet crucial fact:

Fact 1. If S ⊆ V is a one-in-three model for F , then |S| = n
3 .

Proof. Let S be a one-in-three model for F . Since every variable of V occurs in
exactly three distinct clauses and, moreover, |S∩Ci| = 1 for all i ∈ {0, . . . , n−1},
we have that |F | = 3|S|. This implies |S| = n

3 .

The reduction. In order to prove the hardness part of Theorem 1, we trans-
late the instance (V, F ) into an input (N,m) of Reachability for Acyclic
Join-free Petri Nets such that there is a one-in-three model for (V, F ) if and
only if m is reachable from the initial marking of N .

For the Petri net N , we introduce the following components:

– for every i ∈ {0, . . . , n− 1}, the place pCi
that represents the clause Ci and

is initially marked by one token: m0(pCi) = 1;
– for every i ∈ {0, . . . , n− 1}, the initially empty place pXi : m(pXi) = 0;
– for every i ∈ {0, . . . , n− 1}, three transitions t0Xi

, t1Xi
and t2Xi

that represent
the three occurrences of the variable Xi in the clauses of F : if C`0 , C`1 , C`2
with `0 < `1 < `2 ∈ {0, . . . , n − 1} are exactly the clauses that contain Xi,
then, for all j ∈ {0, 1, 2}, it is pC`j

the unique pre-place of the transition tjXi
,
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where f(pC`j
, tjXi

) = 1; moreover, for all j ∈ {0, 1, 2}, the place pXi
is the

only post-place of tjXi
, where f(tjXi

, pXi
) = 1;

– for every i ∈ {0, . . . , n − 1}, three other helper-transitions t0Hi
, t1Hi

, t2Hi
and

two helper-places pHi
and qHi

, such that
• f(t0Hi

, pHi
) = 1 and f(t0Hi

, pXi
) = 1,

• f(pHi
, t1Hi

) = 1 and f(t1Hi
, qHi

) = 1 and f(t1Hi
, pXi

) = 1,
• f(qHi

, t2Hi
) = 1 and f(t2Hi

, pXi
) = 1,

• m(pHi
) = m(qHi

) = 0.

The reduction yields the Petri net N = (P, T, f,m0) with places and transitions
as follows:

P = {pC0 , pC1 , . . . , pCn−1} ∪ {pX0 , pX1 , . . . , pXn−1} ∪ {pH0 , qH0 , . . . , pHn−1 , qHn−1},
T = {t0X0

, t1X0
, t2X0

, t0X1
, t1X1

, t2X1
, . . . , t0Xn−1

, t1Xn−1
, t2Xn−1

}
∪ {t0H0

, t1H0
, t2H0

, t0H1
, t1H1

, t2H1
, . . . , t0Hn−1

, t1Hn−1
, t2Hn−1

}.

Notice that the resulting net is plain and thus also free-choice. Let the mark-
ing m, whose reachability is shown to be equivalent to the existence of a one-
in-three model for (V, F ), be defined by m(pX0

) = · · · = m(pXn−1
) = 3 and

m(p) = 0 for all p ∈ P \ {pX0
, . . . , pXn−1

}.
The following example will make the reduction technique more clear:

Example 3. For the instance (V, F ) of CM 1 in 3 3Sat presented in Example 2,
we build the Petri net N , illustrated in Figure 2.

pC0 pC1 pC2 pC3 pC4 pC5

pX0 pX1 pX2 pX3 pX4 pX5

pH0 pH1 pH2 pH3 pH4 pH5

t0X0
t1X0

t2X0
t0X1

t1X1
t2X1

t0X2
t1X2

t2X2
t0X3

t1X3
t2X3

t0X4
t1X4

t2X4
t0X5

t1X5
t2X5

t0H0
t0H1

t0H2
t0H3

t0H4
t0H5

t1H0
t1H1

t1H2
t1H3

t1H4
t1H5

qH0 qH1 qH2 qH3 qH4 qH5

t2H0
t2H1

t2H2
t2H3

t2H4
t2H5

Fig. 2. The Petri net N according to the reduction for the CM 1 in 3 3Sat-instance
of Example 2.

In the following, we argue that the reduction actually satisfies the function-
ality introduced. The following lemma proves that if (V, F ) allows a positive
decision, then so does (N,m):

Lemma 1. If there is a one-in-three model for F , then m is a reachable marking
of N .
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Proof. Recall that any one-in-three model for F has exactly n
3 elements by

Fact 1. Let i0, . . . , in3−1 ∈ {0, . . . , n − 1} be n
3 pairwise distinct indices, such

that S = {Xi0 , . . . , Xin
3

−1
} is a one-in-three model for F , that is, for all i ∈

{0, . . . , n − 1}, it holds S ∩ Ci = {Xi`} for some ` ∈ {0, . . . , n3 − 1}. Moreover,
let j0, . . . , j 2n

3 −1
∈ {0, . . . , n − 1} be the 2n

3 pairwise distinct indices such that

{Xj0 , . . . , Xj 2n
3

−1
} = V \S. We now show, that the marking m is reachable from

the marking m0 of N by a firing sequence, which can be derived from S. Initially,
only the clause places pC0

, . . . , pCn−1
are marked with one token each. Therefore,

for every ` ∈ {0, . . . , n3 − 1}, the transitions t0Xi`
, t1Xi`

, t2Xi`
, which represent the

occurrences of the variable Xi` in the clauses of F , are all activated. Since S
is a one-in-three model, for all j, ` ∈ {0, . . . , n3 − 1} and all h, k ∈ {0, 1, 2}, the
following is true: if (j, h) 6= (`, k), then •tXh

ij

∩ •tXk
i`

= ∅. Hence, the following

sequence can fire at m0 (and results in the marking m1, defined below):

σ1 = t0Xi0
t1Xi0

t2Xi0︸ ︷︷ ︸
m1(pXi0

)=3

t0Xi1
t1Xi1

t2Xi1︸ ︷︷ ︸
m1(pXi1

)=3

. . . t0Xi n
3

−1
t1Xi n

3
−1
t2Xi n

3
−1︸ ︷︷ ︸

m1(pXin
3

−1
)=3

For all ` ∈ {0, . . . , n3 − 1} and all j ∈ {0, 1, 2}, firing tjXi`
consumes the only

token from its unique pre-place and produces exactly one token on its unique
post-place pXi`

. Consequently, firing the transition sequence σ1 leads from m0 to
the marking m1, such that m1(pXi`

) = 3 for all ` ∈ {0, . . . , n3 −1} and m1(p) = 0
for all other places p ∈ P \ {pXi0

, . . . , pXi n
3

−1
}.

In order to obtain m, we extend σ1 by the sequence

σ2 = t0Hj0
t1Hj0

t2Hj0︸ ︷︷ ︸
m(pXj0

)=3

t0Hj1
t1Hj1

t2Hj1︸ ︷︷ ︸
m(pXj1

)=3

. . . t0Hj 2n
3

−1

t1Hj 2n
3

−1

t2Hj 2n
3

−1︸ ︷︷ ︸
m(pXj 2n

3
−1

)=3

It is easy to see, that σ2 can be fired at m1, since t0Hj`
does not have a pre-place

for all ` ∈ {0, . . . , 2n3 − 1}. Moreover, for every ` ∈ {0, . . . , 2n3 − 1}, the firing
of the subsequence t0Hj`

t1Hj`
t2Hj`

does nothing else than to put three tokens on

pXj`
: t0Hj`

puts a token on pHj`
and a token on pXj`

; after that t1Hj`
consumes

the token from pHj`
and puts a token on qHj`

and another one on pXj`
; finally,

t2Hj`
consumes the token from qHj`

and puts a third token on pXj`
. In particular,

m0
σ1σ2−−−→ m, which proves the lemma.

Conversely, by the following lemma, if (N,m) is a yes-instance, then (V, F )
is a yes-instance as well:

Lemma 2. Let σ ∈ T ∗ be a firing sequence of N that leads to the marking m
and let i ∈ {0, . . . , n− 1} be arbitrary but fixed.

1. If t0Hi
∈ Sσ, then tjXi

6∈ Sσ for all j ∈ {0, 1, 2}.
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2. If there is j ∈ {0, 1, 2} such that tjXi
∈ Sσ, then t0Xi

, t1Xi
, t2Xi

∈ Sσ.

3. The set S = {Xi | t0Xi
, t1Xi

, t2Xi
∈ Sσ} defines a one-in-three model for F .

Proof. (1): The transition t0Hi
puts a token on pHi and a token on pXi . Since

m(pHi
) = 0 and pHi

• = {t1Hi
}, we have that t1Hi

∈ Sσ. Similarly, transition t1Hi

puts a token on qHi
and on pXi

and as well. Since m(qHi
) = 0 and qHi

• = {t2Hi
},

the transition t2Hi
occurs in σ. Finally, since the firing of t2Hi

puts a token on
pXi

, and pXi
• = ∅, and m(pXi

) = 3, we have that •pXi
∩ Sσ = {t0Hi

, t1Hi
, t2Hi
}.

This implies the claim.

(2): Since tjXi
∈ Sσ, by (1), we have that t0Hi

6∈ Sσ, which certainly implies

t1Hi
6∈ σ and t2Hi

6∈ σ. Hence, by m(pXi
) = 3, we have that every of the transitions

t0Xi
, t1Xi

and t2Xi
has put a token on pXi

, which implies the claim.

(3): Recall that the i-th clause is given by Ci = {Xi0 , Xi1 , Xi2}. Since
m(pCi

) = 0, there are j ∈ {0, 1, 2} and k ∈ {0, 1, 2}, such that tkXij
∈ Sσ.

By (2), this implies t0Xij
, t1Xij

, t2Xij
∈ Sσ and thus Xij ∈ Ci ∩ S. In particular,

we have that S ∩ Ci 6= ∅.
If |Ci∩S| ≥ 2, then there are distinct j, ` ∈ {0, 1, 2} such that Xij , Xi` ∈ C∩

S. By definition of S, this implies t0Xij
, t1Xij

, t2Xij
∈ Sσ and t0Xi`

, t1Xi`
, t2Xi`

∈ Sσ
and, by the construction of N , this implies |pCi

• ∩Sσ| ≥ 2 as well. This is a
contradiction, since m0(pCi

) = 1 and •pCi
= ∅ and f(pCi

, t) = 1 for all t ∈ pCi
•.

Consequently, |Ci ∩ S| = 1.

Finally, by the arbitrariness of i, we have that |Ci ∩ S| = 1 for all i ∈
{0, . . . , n− 1}, which proves the claim.

Since the reduction is obviously polynomial and Reachability for Acyclic
Join-free Petri Nets belongs to NP, by Lemma 1 and Lemma 2, we have
proven Theorem 1.

4 Conclusion

In this paper, we show that the well-known reachability problem of Petri nets
is NP-complete for the class of acyclic join-free Petri nets, which are also free-
choice. The hardness-proof bases on the reduction of a particular SAT-problem.
The membership in NP heavily bases on the fact that the nets addressed are
acyclic. Hence, it remains future work to determine the complexity of the reach-
ability problem for join-free Petri nets that may contain cycles.
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