
On Modelling Cloud Native Applications

Kent Inge Fagerland Simonsen

TietoEVRY
Email: kent.simonsen@tietoevry.com

Abstract. Cloud Native Applications (CNAs) have become a popular
class of applications intended to run on cloud platforms. In this poster
we will explore using a sub-class of Coloured Petri Nets to model CNAs.

Introduction Cloud Native Applications (CNAs) are quickly becomming one of
the major application patterns for internet based applications. Although there
is no generally accepted definition of CNAs, they do share some common prop-
erties [3]. Furthermore, most CNAs are comprised of a limited, albeit evolving,
set of component types. Among the components types mentioned in [1] are: Mi-
croservices, Severless Applications, Event Hubs, Data Stores, and various Hosted
Services. Our goal to use these elements as building blocks in order to model a
large portion of CNAs.

In previous works, we have presented a sub-class of Coloured Petri Nets
(CPNs) [2] called Pragmatics Annotated CPNs (PA-CPNs) [4].PA-CPNs have
been used to model and generate code for network protocols. This is achieved by
annotating models with so-called pragmatics that informs the code generator
what code to generate for a given element. Furthermore, by restricting the mod-
elling language to a set of clearly defined structures on each level of hierarchical
models, the code generator is able to put the pragmatics in the right context.

Modelling Cloud Native Applications When modelling CNAs, we propose that
the top level should include the major components of the CNA. Figure 1 shows
how the top level of a simple CNA model might look. Each component is repre-
sented by a substitution transition and annotated with pragmatics that describes
the service. In the figure we can see a serverless application represented by the
Serverless App substitution transition. The serverless application is triggered
by an http trigger (http requests) or by an event trigger (events). The server-
less application has two outputs, one to a database Database, and one to an event
engine Event engine. The events emitted from Serverless App are processed
by the Event engine component which is annotated with event engine. The
processed events are used to trigger the MicroService App component, which
represents a microservice. Finally, the microservice writes to a second persistence
components File Store which represents a file system.

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

Figure 2 shows the page that is represented by the Serverless App sub-
stitution transition. On this page there are two functions, Func and Durable

Func, that are represented by substitution transitions. The functions are anno-
tated with function type: function and function orchestration. Additionally
the functions are annotated with with the type of trigger that will cause each
of the functions to be executed: httpTrigger that triggers on http events and
eventTrigger that is triggered by receiving an event.

Http Requests
<<http_requests>>

events
<<events>>

e1
<<event_queue>>

topic3
<<event_topic>>

Database
buffer

file buffer

Serverless
App

<<serverless_app>>

Function AppFunction App

Database
<<persistence>>

DB1DB1

EventEngine
<<event_engine>>

EventEngineEventEngine

MicroService
App

<<microservice_app>>

MicroService AppMicroService App

File Store
<<file_store>>

File StoreFile Store

Fig. 1: The top level of an ex-
ampl CNA.

topic2
<<event_topic>>
In

db buffer

Out

topic1
<<http_topic>>
In

e1
<<event_queue>>

Out

Func
<<httpTrigger>>

<<function>>

FuncFunc

Durable Func
<<eventTrigger>>

<<function_orchestration>>

Durable FuncDurable Func

Out

Out

In

In

Fig. 2: The top level of an ex-
ampl CNA.

Discussion We believe that we can create a subclass of CPNs that allow us
to model CNAs by using the ideas and techniques from PA-CPNs applied to
CNAs. Furthermore, the models could, similarly to PA-CPNs, be used to gener-
ate infrastructure and application code for CNAs without imposing restrictions
on the languages and technologies used in the implementation and operation of
the CNAs. Finally, the models should also be amenable to formal verification.

In the future, we plan to precisely define the CPN subclass for CNAs, create
tools for code generation for both infrastructure and application code and explore
possibilities for verification of CNAs using these models. Further on, we hope
to be able create tools that are useful for industry to both model and generate
application and infrastructure code for CNAs.

References

1. D. Gannon, R. Barga, and N. Sundaresan. Cloud-native applications. IEEE Cloud
Computing, 4(5):16–21, 2017.

2. K. Jensen and L.M. Kristensen. Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer, 2009.

3. N. Kratzke and P.C. Quint. Understanding cloud-native applications after 10 years
of cloud computing-a systematic mapping study. Journal of Systems and Software,
126:1–16, 2017.

4. K.I.F. Simonsen. Code Generation from Pragmatics Annotated Coloured Petri Nets.
PhD thesis, Technical University of Denmark, 2014.

