
Translation Validation of Scheduled Conditional
Behavior using Petri Net based Program Models

Rakshit Mittal1,2 and Soumyadip Bandyopadhyay1,3

1 BITS Pilani, KK Birla Goa Campus, Goa, 403726 India
2 Telecom Paris, Institut Polytechnique de Paris, 91120 France

3 Hasso-Platner Institute, Potsdam, 14482 Germany

High-Level Synthesis (HLS) tools and schedulers are large and complex
systems. More often than not, they are developed without formal proofs. In
spite of rigorous testing, bugs do occur in these tools. These bugs may result in
generation a target code that is not semantically equivalent to the original code.
Ensuring the correctness of the translations performed by these HLS tools like
compilers and schedulers is necessary for their reliability. Translation validation
is the process of verifying that the target code generated by these translations of
the HLS tools is semantically equivalent to the original code. Our paper targets
the translation validation of the scheduling phase of these HLS tools.

Path-based equivalence checking (PBEC) approaches have made significant
progress in translation validation. Such approaches have been developed for vari-
ous modelling paradigms like Control and Data Flow Graphs (CDFG), Petri net,
etc. The CDFG based approach reported in [1] can handle the transformation
using costly value propagation based method. Being value based and with the
inherent ability of emulating instruction level parallelism, we enhance the valida-
tion method using Petri net-based model[2] such that costly value propagation
is not required for equivalence checking. Our approach aims to establish equiva-
lence between the two scheduled behaviors by proving the equivalence between
the paths present in the Petri nets of these two behaviors.

Motivating Example: Through a motivating example we describe the equiv-
alence checking between two codes depicted in Figs. 1 (a) and (b). The cor-
responding models are depicted in Figs. 1 (c) and (d). In a general program
with loop/s, we do not know how many times the loop/s will be executed.
To analyze translations involving loops, it is necessary to express the CPN
model’s computations (with a possibly infinite number of loop traversals) into
a finite number of paths. This is done by identifying cut-points. The in-ports
(place with no pre-transition), the out-ports (place with no post-transition),
the places with back edge and, the places (bifurcation points) with more than
one post-places are all cut-points. A path-constructor module identifies these
cut-points and gives us the set of paths. In Figure 1 (c), the set of cut-points
is {p1, p2, p3, p4, p5, p6, p7, p8, p10, p11, p12, p14}. The set of paths, Π0 = {α1 =
〈{t1}〉, α2 = 〈{t2}〉, α3 = 〈{t3}〉, α4 = 〈{t4}〉, α5 = 〈{t5}〉, α6 = 〈{t6}〉. Note
that a path is a sequence of maximally parallelizable transitions from a set of

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

Fig. 1. Illustrative example

cut-points to a cut-point without intermediary cut-points. Similarly in Fig. 1(d),
cut-points are {p′1, p′2, p′3, p′4, p′5, p′6, p′7, p′8, p′9, p′11, p′12, p′13, p′15}; the path cover,
Π1 = {β1 = 〈{t′1}〉, β2 = 〈{t′4}〉, β3 = 〈{t′3}〉, β4 = 〈{t′2}〉, β5 = 〈{t′5}, {t′7}〉,
β6 = 〈{t′6}〉, β7 = 〈{t′7}〉, β8 = 〈{t′8}〉}.

The notion of equivalence checking is as follows: “∀ paths ∈ Π0 ∃ an equiv-
alent path in Π1 and vice-versa”. A path-based equivalence checking module
takes these sets of paths for both the Petri net models, and using the concept of
path merging as well as extension of paths that we have developed, checks for
equivalence between the paths and returns a Yes/No answer for the semantic
equivalence between source and translated programs. The module does not give
a false positive result, but since the approach is not complete, a ‘No’ answer is
interpreted as ‘Can’t Say’. Equivalence between two expressions is checked using
the Z3 SMT solver [3]. Using this approach the set of equivalent pairs of paths
is {〈α1, (β1 · β4)〉, 〈α2, β2||β3〉, 〈α3, β5〉, 〈α4, β6〉, 〈α5, β7〉, 〈α6, β8〉}

Capabilities and limitations: Our approach can handle several uniform and
non-uniform code optimizing and parallelizing transformations for scalar pro-
grams. The major limitation of our method is that it cannot validate array
handling programs. The method also incapable to validate loop shifting class of
transformations.

References

1. Chouksey, R., Karfa, C.: Verification of scheduling of conditional behaviors in high-
level synthesis. IEEE Trans. on Very Large Scale Integration (VLSI) Systems (2020)

2. Mittal, R., Banerjee, R., Sarkar, S., Bandyopadhyay, S.: Translation validation of
loop involving code optimizing transformations using petri net based models of
programs. In: PNSE 2020. vol. 2651, pp. 138–146. CEUR-WS.org (2020)

3. Moura, L.D., Bjørner, N.: Z3: an efficient smt solver. In: TACAS’08/ETAPS’08
Proceedings of the Theory and Practice of Software. pp. 337–340 (2008)

	Translation Validation of Scheduled Conditional Behavior using Petri Net based Program Models

