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ABSTRACT
Many new chemical compounds are reported each year in patent
documents, leading to increasing demand for methods for automatic
information extraction of chemical compounds and reactions from
patents. Chemical patents often detail a number of similar com-
pounds that have a common substructure and can be synthesized in
analogous ways, and therefore contain many references connecting
descriptions of similar chemical reactions, to avoid redundancy in
describing common reaction conditions. This leads to the problem
of reaction reference resolution, where, given a reaction description,
we need to identify links to other reaction descriptions it refers to.
In this paper, we formally introduce the task and propose baseline
methods to address it in analogy with co-reference resolution. To
evaluate the performance, we create a large-scale silver-standard
dataset based on a commercial database of chemical reactions. The
experimental results show that the approach based on a state-of-
the-art co-reference resolution method struggles to outperform a
simple heuristic in detecting reference links, demonstrating the diffi-
culty of the proposed task and its fundamentally different nature to
co-reference resolution.
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1 INTRODUCTION
Patents represent a critical source of information about new chemi-
cal compounds, and lead journal publications in both volume and
time [2]. Patents provide not only the name and characteristics of
new chemical compounds, but also the reaction details for their
synthesis, including starting materials, product, reagents, catalysts,
solvents, and the conditions of the reactions such as temperature
and time. Databases such as Reaxys®1 and CASREACT [5] store
a large volume of such chemical reaction information. Given the
commercial and research value of the information in patents, as well
as the large numbers of available patents, developing methods for
automatic information extraction from chemical patents has been a
focus of recent research [17, 24].

A text mining system for chemical reaction information extraction
should aim to obtain details of each reaction, requiring: (1) the
identification of specific spans of text describing reactions; and (2)
the extraction of the compounds participating in, and the conditions
of, a reaction. The second step involves named entity recognition [6,
8, 13, 16, 24], relation extraction [15, 31], entity linking [3, 27], and
event extraction [8, 24, 30], which have been explored intensively in
previous studies. A relatively small number of studies have addressed
the chemical reaction extraction task as a whole [1, 10, 19, 21].

The first step of locating all information relevant to a chemical re-
action has received relatively little attention. This step is a challenge
as it requires processing very long and semantically unstructured
documents, in which a number of similar chemical reactions are
presented. Yoshikawa et al. [32] proposed the chemical reaction
detection task to locate descriptions of individual chemical reactions
in patents, and achieved promising results using a contextualized
document modeling method. Jessop et al. [10] also addressed the de-
tection of chemical reaction descriptions in a heuristic way. However,
previous work has not addressed the important step of resolving ref-
erences between reaction descriptions. In general, a chemical patent
reports a number of similar compounds that have a common chemi-
cal substructure and can be synthesized in analogous ways. Synthesis
steps that are common across similar reactions may be described

1https://www.reaxys.com. Copyright ® 2021 Elsevier Life Sciences IP Limited. Reaxys®

is a trademark of Elsevier Life Sciences IP Limited, used under license.
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only once, and the paragraphs describing individual reactions refer
back to those descriptions to provide specific details without re-
peating information. In our dataset described below, approximately
17% of reaction descriptions contain references to other reaction
descriptions.

To fill this gap in previous work and take a step towards an
end-to-end method for chemical reaction information extraction,
this paper focuses on the task of reaction reference resolution. Our
contributions are three-fold:
• We define the new task of reaction reference resolution, where,

given a reaction description, we aim to identify other reaction
descriptions it refers to.
• In the absence of a large-scale gold-standard dataset, we lever-

age Reaxys®, a large commercial chemical reaction database,
to create a silver-standard dataset, of a size that supports the
development of not only traditional rule-based methods but
also neural network models.
• We propose several baseline methods for the task and eval-

uate them on our silver-standard dataset. The baselines in-
clude an extension of the state-of-the-art end-to-end neural
co-reference resolution method of Lee et al. [20]. Experimen-
tal results show that, while it successfully detects reaction
descriptions that refer to other textual spans, it struggles to
relate them correctly.

2 TASK DESCRIPTION
In this section, we formally introduce the reaction reference resolu-
tion task. We assume a pipeline system where, given the Description
section of a patent, text spans corresponding to individual reaction
descriptions are extracted in advance (following the methods of
Jessop et al. [10] or Yoshikawa et al. [32]). Then, in a second step,
all relationships between reaction descriptions that are relevant are
identified to fully locate the details of each reaction. The output of
this task could then be passed to a targeted information extraction
system to pull out individual reaction details.

An input document is represented by a tuple 𝑑 = (𝑃, 𝑅), where 𝑃
is a sequence of paragraphs 𝑃 = (𝑝1, . . . , 𝑝 |𝑃 |) and 𝑅 is a sequence of
all textual spans of reaction descriptions 𝑅 = (𝑟1, . . . , 𝑟 |𝑅 |), dubbed
reaction spans. A reaction span 𝑟𝑖 is a sequence of consecutive
paragraphs, represented by the first and last indices of paragraphs of
the span 𝑟𝑖 = (start(𝑖), end(𝑖)). For each reaction span 𝑟𝑖 , the task is
to: (1) predict whether the reaction refers to one or more previous
reaction descriptions; and if so, (2) detect the reaction span(s) 𝑟 𝑗 (for
𝑗 < 𝑖) that 𝑟𝑖 refers to. Hereinafter, we call 𝑟 𝑗 the parent reaction
and 𝑟𝑖 the child reaction.

Figure 1 shows typical examples of reaction references. A refer-
ence relation is often indicated by an example ID, as in example (a),
or the compound label used in the previous reaction description, as
in example (b). However, it can also be the case that there is no direct
referential expression between reaction descriptions, as in example
(c). Therefore, we formulate the task as reference resolution between
reaction descriptions (paragraphs) rather than between a referring
expression such as Example 1 and its referent, as in traditional co-
reference resolution tasks. Subtasks (1) and (2) are analogous to the
mention detection and mention clustering subtasks of co-reference
resolution.

3 METHODS
In this section, we introduce a baseline neural model that captures the
context and detects reference relations between reaction descriptions.
As illustrated in Figure 2, our model is based on the end-to-end
neural co-reference model of Lee et al. [20]. The original model
takes a contextualized representation for each entity mention and
computes the likelihood that a pair of mentions is co-referential,
whereas our model extends it to a hierarchical architecture that first
encodes individual paragraphs and then feeds it to a document-level
encoder, so that the model can capture references between longer
text spans (i.e. multiple paragraphs).

3.1 Paragraph and Span Representation
Our model has a hierarchical architecture that first encodes each
paragraph and then encodes the entire document to obtain a contex-
tualized representation of each paragraph. We first encode each input
paragraph to obtain a context-independent paragraph encoding. A
paragraph 𝑝𝑡 consists of a sequence of words 𝑝𝑡 = {𝑤 (𝑡 )1 , . . . ,𝑤

(𝑡 )
|𝑝𝑡 |}.

Each word is represented by:

𝒙𝑡,𝑘 =WE(𝑤 (𝑡 )
𝑘
) ⊕ ELMo(𝑝𝑡 )𝑘

⊕ CC(𝑤 (𝑡 )
𝑘
) ⊕ NER(𝑝𝑡 )𝑘 , (1)

where WE(𝑤 (𝑡 )
𝑘
) ∈ R𝑑WE is a pretrained word embedding, ELMo(𝑝𝑡 )𝑘 ∈

R𝑑ELMo is a contextualized word embedding [25], CC(𝑤 (𝑡 )
𝑘
) ∈ R𝑑CC

is a CNN-based character-level word encoding, and NER(𝑝𝑡 )𝑘 ∈
R𝑑NER is a trainable embedding of the named entity label (here,
chemical compound type). The details of the embeddings and named
entity labels are provided in Section 5. We then encode 𝑝𝑡 into a
vector using a bidirectional LSTM:

𝒉𝑡 =
−−−−→
𝒉𝑡, |𝑝𝑡 | ⊕

←−−
𝒉𝑡,1, (2)

−−→
𝒉𝑡,𝑘 = LSTM(𝒙𝑡,𝑘 ,

−−−−→
𝒉𝑡,𝑘−1;\PF), (3)

←−−
𝒉𝑡,𝑘 = LSTM(𝒙𝑡,𝑘 ,

←−−−−
𝒉𝑡,𝑘+1;\PB), (4)

where \PF and \PB denote model parameters of the forward and the
backward LSTMs, respectively.

To obtain the representation of each reaction span, we first obtain
a contextualized representation of each paragraph using a document-
level bidirectional LSTM:

𝒉∗𝑡 =
−→
𝒉∗𝑡 ⊕

←−
𝒉∗𝑡 , (5)

−→
𝒉∗𝑡 = LSTM(𝒉𝑡 ,

−−−→
𝒉∗𝑡−1;\DF), (6)

←−
𝒉∗𝑡 = LSTM(𝒉𝑡 ,

←−−−
𝒉∗𝑡+1;\DB), (7)

where \DF and \DB denote model parameters of the forward and the
backward LSTMs, respectively. These paragraph representations are
combined to obtain each reaction span representation:

𝒈𝑖 = 𝒉∗start(𝑖) ⊕ 𝒉
∗
end(𝑖) . (8)

3.2 Training Objectives
Our goal is to identify the parent reaction span for each child re-
action span. As described in Section 2, this can be further divided
into two subtasks: predicting whether the given span is a child of
some reaction span, and linking the child spans to their parent spans.
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ID Text

(a) Reference with the example ID

RX1 Example 26 11-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-𝛼-[N-((S)-1-carboxy-(R)-hydroxypropyl)carbamoyl]-4-...
1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-[N-((R)-𝛼-carboxy-4-hydroxybenzyl) carbamoylmethoxy]- 2,3,4,5-tetrahydro-1,2,5-benzothiadiazepine (Example 18; 100mg, 0.152mmol)
was dissolved in ...

RX2 Example 27 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-𝛼-[N-((S)-1-carboxy-2-, methylpropyl)carbamoyl]-4-
The title compound was synthesized by the procedure described in Example 26 starting from ...

(b) Reference with the compound label

RX1 A mixture of the obtained ester, ... was stirred under argon and heated at 110◦ C. for 24 h. ... Column chromatography of the residue (silica gel-hexane/ethyl acetate, 9:1) gave Compound
B11, ...
...

RX2 Using 2-ethoxyethanol and following the procedure for Compound B11 gave Compound B13, bis(2-ethoxyethyl) 3,3’-((2-(bromomethyl)-2-((3-((2-
ethoxyethoxy)carbonyl)phenoxy)methyl)propane-1,3-diyl)bis(oxy))dibenzoate, (3.82 g, 35% yield). ...

(c) Reference with no direct referential expression

RX1 III: 5-fluoro-N2-(4-methyl-3-propionylaminosulfonylphenyl)-N4-[4-(prop-2-ynyloxy)phenyl]-2,4- pyrimidinediamine mono-sodium salt
5-Fluoro-N2-(4-methyl-3-propionylaminosulfonylphenyl)-N4-[4-(prop-2-ynyloxy)phenyl]-2,4-pyrimidinediamine, II, (0.125 g, 0.258 mmol) was suspended in ...

The following compounds were made in a similar fashion to those above.

RX2 IV: 5-Fluoro-N2-[4-methyl-3-(N-propionylaminosulfonyl)phenyl]-N4-[4-(2-propynyloxy)phenyl]-2,4-pyrimidinediamine Potassium Salt ...

RX3 V: 5-Fluoro-N2-[4-methyl-3-(N-propionylaminosulfonyl)phenyl]-N4-[4-(2-propynyloxy)phenyl]-2,4-pyrimidinediamine Calcium Salt ...

Figure 1: Abbreviated examples of reaction references: (a) reference with the example ID [29], (b) reference with the compound label
[26], (c) reference with no direct referential expression [22].

Figure 2: Illustration of our model architecture.

To evaluate the difficulty of these individual subtasks, we propose
several model variants that differ in training objectives and decoding
methods. Specifically, we train our model using either a binary clas-
sification objective that only models whether a reaction span is child
or not, or an end-to-end objective that also models which span the
child refers to. In decoding, our model uses either a heuristic method
or the learned end-to-end model to identify the parent reaction for
each child reaction span.

Binary classification objective. The notation 𝑦𝑖 = 0 indicates the
special case where the span 𝑟𝑖 does not refer to any preceding spans.
The binary classification objective models whether or not a reaction

span is a child of at least one preceding reaction span:

𝜋NN (𝑖) := Pr(𝑦𝑖 ≠ 0 | 𝑑) = 𝜎 (𝑓 (𝑖)), (9)

where 𝜎 denotes the sigmoid operator, and 𝑓 (𝑖) is a span scoring
function that computes the likelihood of the 𝑖-th span being a child,
using a feed-forward network:

𝑓 (𝑖) = 𝒘⊤C-NN FFNN(𝒈𝑖 ) + 𝑏C-NN . (10)

Given the training dataset 𝐷 = (𝑑1, . . . , 𝑑 |𝐷 |), the model is trained
to minimize the following binary cross-entropy loss:

LBIN = −
∑

𝑑=(𝑃,𝑅)∈𝐷

|𝑅 |∑
𝑖=1

(
1𝑦𝑖≠0 log𝜋

NN (𝑖)

+1𝑦𝑖=0 log(1 − 𝜋NN (𝑖))
)
. (11)

End-to-end objective. The end-to-end objective models not only
the likelihood of a span being a child, but also which span the child
span refers to. Analogous to Lee et al. [20], we aim to model the
conditional probability distribution for document 𝑑 as a product of
multinomials for individual spans:

Pr(𝑦1, . . . , 𝑦 |𝑅 | | 𝑑) =
|𝑅 |∏
𝑖=1

Pr(𝑦𝑖 | 𝑑) . (12)

The probability of each preceding span being the parent of the given
span is computed as follows:

𝜋NN ( 𝑗, 𝑖) := Pr(𝑦𝑖 = 𝑗 | 𝑑)

=exp(𝑠 ( 𝑗, 𝑖))/
𝑖−1∑
𝑗 ′=0

exp(𝑠 ( 𝑗 ′, 𝑖)), (13)

where 𝑠 ( 𝑗, 𝑖) denotes the score of the likelihood that span 𝑟𝑖 refers
to preceding span 𝑟 𝑗 . The score is computed using the pair of corre-
sponding span representations:

𝑠 ( 𝑗, 𝑖) = 𝒘⊤P-NN𝜙 𝑗,𝑖 + 𝑏P-NN, (14)

𝜙 𝑗,𝑖 = FFNN(𝒈 𝑗 ⊕ 𝒈𝑖 ⊕ (𝒈 𝑗 ◦ 𝒈𝑖 ) ⊕ Dist( 𝑗, 𝑖)) (15)

for 𝑗 > 0, where ◦ denotes element-wise multiplication. Dist( 𝑗, 𝑖)
denotes the distance embedding, whose definition follows that of
Lee et al. [20]. We define 𝑠 (0, 𝑖) = 0 for any 𝑖, corresponding to

12
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the case where 𝑟𝑖 has no reference. As we assume that the reaction
spans are provided as part of the input, our model does not require
span likelihood scores as used in the original co-reference resolution
formulation. In another departure from the co-reference resolution
setting, in our case the number of span pairs to be considered is
tractable,2 meaning we do not need to perform candidate pruning.

Given the training dataset 𝐷 = (𝑑1, . . . , 𝑑 |𝐷 |), the model is trained
to minimize the negative log-likelihood loss against the true parent
spans, where 𝑌 ∗

𝑖
denotes the set of all correct parent span indices:

LE2E = −
∑

𝑑=(𝑃,𝑅)∈𝐷

|𝑅 |∑
𝑖=1

log
∑
𝑗∈𝑌 ∗

𝑖

Pr(𝑦𝑖 = 𝑗 | 𝑑) . (16)

Note that our model is trained to predict only one parent for each
child, although a child can have multiple parent spans. We observed
that more than 90% of the child reaction spans in our dataset have
only a single parent, and this simplification has very limited effect
on performance. We can easily extend our model to allow multiple
parent spans by modeling the link probability for each candidate
parent span independently. Specifically, we can replace the softmax
operation in Equation (13) with the sigmoid activation, and the loss
function Equation (16) with the binary cross-entropy loss.

Decoding. To decode with the model trained with the end-to-
end objective, we use the maximum index (including 0, i.e. no
reference) as the predicted parent index of a reaction span; we refer
to this method as “E2E”. For the model trained with the binary
classification objective (Equation (11)), we use a simple heuristic
to predict the parent reaction spans, called “IMMPREV”: reaction
spans that are classified as a child reaction span are linked to the
immediately-preceding previous span that is not classified as a child
span.

4 SILVER-STANDARD DATASET
To the best of our knowledge, there is no publicly available dataset
for reaction reference. Manually annotating a dataset of chemical
reaction reference requires expert knowledge of chemistry and in-
volves document-wise annotation of patents, with a single document
often containing hundreds of paragraphs. As a more viable alterna-
tive, we create a silver-standard dataset from Reaxys®, a large-scale
commercial chemical reaction database which contains a large quan-
tity of reaction information associated at the document level with
patents. While our dataset relies on a proprietary database, we be-
lieve that our methodology can generalize to similar patent silver
standards generated using comparable reaction databases.

Reaxys® contains information of chemical reactions associated
with their location information, i.e., the patents and the paragraphs
where their reaction processes are described. To avoid exhaustive
manual extraction of the full reaction details for all compounds
described in a patent, construction process of Reaxys® database is
streamlined through reuse of the conditions of a reaction for similar
reactions described in the same patent. For this reason, the database
includes internal reference links between similar reactions that share
reaction conditions. As such, the mapping process from the database
to our silver-standard dataset is straightforward: we simply map each
reaction into one or more paragraph sequences (reaction spans) using

2𝑂 ( |𝑅 |2) , where |𝑅 | < 50 for more than 90% of the dataset.

# Documents 143
# Paragraphs 39,437
# Reaction spans 3,072
# Child reaction spans 549
# Tokens / Paragraph 73.7

Table 1: Evaluation dataset statistics. Tokenization is based on
OSCAR4 [11].

the location information and then use the reference links to label
corresponding pairs of reaction spans. There are some limitations
due to the fact that the database is not originally intended to be used
for document processing. For example, the link information is not
always complete, especially when multiple references are involved.3

It is for this reason that we consider the annotations a silver-standard,
with moderate recall and high precision.

We follow the work of Yoshikawa et al. [32] for patent document
selection and obtaining reaction span information. We use the same
set of patents, and extract the text from the description section of
each patent. We split the dataset into five partitions, and perform
five-fold cross validation, using three partitions for training, one for
validation, and one for testing in each fold. We report the average
performance across the five folds. An example and the statistics
of the dataset are presented in Figure 3 and Table 1, respectively.
We also sampled a small portion of our dataset and classified the
reaction references based on the three types described in Figure 1.
Among the sampled reaction references, 72% are references with
the example ID, 20% are references with the compound label, and
8% are references with no direct referential expression.

5 EXPERIMENTAL DETAILS
5.1 Baseline Methods
In addition to the neural model described in Section 3, we introduce
additional baselines, including heuristics and a traditional machine
learning method using bag-of-words features.

Pattern matching baseline. We observe that there are high-precision
patterns in child reactions that indicate their parent reaction spans.
Namely, the parent reaction is often mentioned by its “example ID”
such as Example 1, Preparation 1, or Step 1. An example is given in
Figure 1(a). Based on this observation, we develop a rule-based base-
line using regular expressions to detect such example ID patterns.
For each reaction span that contains such a pattern, we search the
preceding spans in reverse chronological order until we find a span
that contains the example label in its heading or at the beginning of
the text body.

Immediate previous baseline. Another naïve baseline is to link
all reaction spans except the first, to the immediately previous span,
i.e. 𝑦𝑡 = 𝑡 − 1. We label this method “NAIVE-IMMPREV”. We also
include an oracle variant, “ORACLE-IMMPREV”, which uses the true
labels for the subtask of child span detection (i.e. the oracle provides
a perfect decision as to whether a reaction span is a child of other
reaction spans or not), and performs parent–child linking by linking

3Reactions that refer to multiple reaction steps usually have a link to only the final step
of the reaction sequence.
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par_id RX parent_id text

117 9 -1 General procedure for the synthesis of aryl N-(guanidino)imines N’-arylhydrazones 7Aa-Ag and 8Aa. ...

118 -1 Characterization of compounds 7Aa-Ag and 8Aa:

119 10 -1 E)-2-((4’-((E and Z)-(2-(2-Chlorophenyl)hydrazono)methyl)-[1,1’-biphenyl]-4-yl)methylene)hydrazine- ...
120 Yield: 70%; mp 328-330°C. 1H NMR, (400 MHz, DMSO-d6) 𝛿 6.81 (dt, J=8.4 and 1.6 Hz, 1H, H-4”), ...

121 11 10 (E)-2-((4’-((E and Z)-(2-(2-Bromophenyl)hydrazono)methyl)-[1,1’-biphenyl]-4-yl)methylene)hydrazine- ...
122 Yield: 64%; mp >380°C. 1H NMR (400 MHz, DMSO-d6) 𝛿 6.75 (dt, J=8.4 and 1.6 Hz, 1H, H-4”), ...

123 12 10 (E)-2-((4’-((E)-(2-(4-Fluorophenyl)hydrazono)methyl)-[1,1’-biphenyl]-4-yl)methylene)hydrazine- ...
124 Yield: 88%; mp >380°C. 1H NMR (400 MHz, DMSO-d6) 𝛿 7.07 (d, J=7.6 Hz, 2H, H-2”), ...

Figure 3: An example of our silver-standard dataset. Only a fraction of the patent document is shown due to the space limitation. The
columns represent paragraph ID (par_id), reaction ID (RX), parent reaction ID (parent_id), and paragraph text (text). “-1”
in the reaction ID means that the paragraph is not a part of a reaction description. “-1” in the parent reaction ID means that the
reaction span does not have a parent reaction span.

each given child span to its immediately preceding non-child span,
similarly to the IMMPREV decoding method from Section 3.2. By
assuming the annotations for child spans as given, we can measure
the complexity of the parent–child linking task separately from the
child span detection task.

Bag-of-words baseline. We also implement a simple bag-of-words
classifier. For each reaction span 𝑟𝑖 , we construct a vector 𝒙𝑖 of
vocabulary size |𝑉 |, where each element is the frequency of the
corresponding term in the paragraph. We calculate the score of each
span being a child as follows:

𝜋BOW (𝑖) := Pr(𝑦𝑖 ≠ 0 | 𝑑)
=𝜎 (𝒘⊤C-BOW𝒙𝑖 + 𝑏C-BOW), (17)

where 𝜎 denotes the sigmoid function. For each span 𝑟𝑖 that is clas-
sified as a child, we calculate the score of every preceding span 𝑟 𝑗
being the parent of 𝑟𝑖 as:

𝜋BOW ( 𝑗, 𝑖) := Pr(𝑦𝑖 = 𝑗 |𝑦𝑖 ≠ 0, 𝑑) (18)

=exp(𝑠BOW ( 𝑗, 𝑖))/
𝑖−1∑
𝑗 ′=1

exp(𝑠BOW ( 𝑗 ′, 𝑖)),

𝑠BOW ( 𝑗, 𝑖) =𝒘⊤P-BOW (𝒙𝑖 ⊕ 𝒙 𝑗 ⊕ 𝒙 𝑗,𝑖 ) + 𝑏P-BOW, (19)

where 𝒙 𝑗,𝑖 is a one-hot vector of the words appearing in both 𝑟 𝑗 and
𝑟𝑖 . The model is trained to optimize the following joint loss function,
with an L2 regularization term:

LBOW =
∑

(𝑃,𝑅)∈𝐷
(𝐿bin (𝑃, 𝑅) + 𝐿link (𝑃, 𝑅)), (20)

𝐿bin (𝑃, 𝑅) = −
|𝑅 |∑
𝑖=1

(
1𝑦𝑖≠0𝜋

BOW (𝑖)

+1𝑦𝑖=0 (1 − 𝜋BOW (𝑖))
)
, (21)

𝐿link (𝑃, 𝑅) = −
∑

𝑖 :𝑦𝑖≠0
log

∑
𝑗∈𝑌 ∗

𝑖

𝜋BOW ( 𝑗, 𝑖) . (22)

5.2 Implementation Details and Optimization
Each paragraph is tokenized using the OSCAR4 tokenizer [11],
which was developed for the chemical domain. We use embed-
dings from word2vec skip-gram [23] (𝑑WE = 200) and ELMo [25]
(𝑑ELMo = 1024) for the WE and ELMo embeddings in Equation (1),
respectively, both trained on chemical patent documents [33]. For
the character-level word encodings, we apply a character CNN with

Method P R F1
NAIVE-IMMPREV .189 1.00 .315
Pattern matching .876 .545 .660
Bag-of-words .882 .617 .688

RREFBINARY .926 .866 .893
RREFE2E .897 .791 .839

Table 2: Results of the baseline methods on child reaction span
detection in terms of precision (P), recall (R), and F-score
(F1). The scores are the average of five-fold cross validation.
“RREFBINARY ” and “RREFE2E ” indicate our neural model
with the binary classification objective and the end-to-end ob-
jective, respectively.

30 trigram filters to generate 25d character embeddings. For the NER
features, we use a named entity recognizer based on the Reaxys®

Gold chemical tag set [33], and assign 10d trainable embeddings
to the token-level labels. We use 5d trainable embeddings for the
distance embeddings in 𝑠 ( 𝑗, 𝑖). In the FFNN layer in 𝑓 (𝑖) and 𝑠 ( 𝑗, 𝑖),
we use a 2-layer feed-forward network with 150d hidden layers and
a ReLU activation. We optimized the number of LSTM layers and
hidden state dimensionalities for the two bidirectional models via
grid search on the validation set.

The models are trained using the Adam optimizer [14], with
dropout and gradient clipping ≤ 5.0. The dropout rate, applied evenly
across the model, is selected from {0.3, 0.5} based on the validation
data. The minibatch size is 1, and the model is trained for up to 150
epochs, with early stopping.

6 RESULTS AND DISCUSSION
6.1 Main Results

Child span detection. Table 2 shows the results of the baseline
methods on child span detection, which is the performance in terms
of binary classification predicting whether each reaction span is a
child of another reaction span or not. The neural methods obtain
high F-scores over 0.8, whereas the bag-of-words classifier shows
only a small gain over the rule-based baseline. This suggests that this
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Method P R (Rm) F1 (Fm
1 )

NAIVE-IMMPREV .026 .145 (.133) .044±.011 (.043)
Pattern matching .332 .207 (.188) .252±.096 (.237)
Bag-of-words .302 .236 (.217) .258±.173 (.244)

RREF BINARY -IMMPREV .595 .560 (.506) .576±.130 (.545)
RREF E2E .390 .347 (.316) .367±.155 (.349)

ORACLE-IMMPREV .706 .706 (.643) .706±.088 (.672)

Table 3: End-to-end performance of the baseline methods in
terms of precision (P), recall (R), and F-score (F1). Rm and
Fm
1 are calculated taking multiple references into account.

The scores are the average performance of five-fold cross val-
idation. The standard deviations are also displayed for F1.
“RREFBINARY-IMMPREV ” model is trained on the binary classi-
fication only and performs IMMPREV decoding. “RREFE2E ”
model is trained with the end-to-end objective. Note that
ORACLE-IMMPREV uses the true labels for detecting the child
spans and thus the evaluation is not end-to-end in a strict sense.

subtask is ML-feasible, noting that rich document representations
are needed to achieve reasonable performance.

End-to-end performance. Table 3 shows the performance on the
end-to-end task. As our methods assume a single parent for each
child span, we evaluate the performance with two different measures.
As the primary measure, we calculate the precision (P), recall (R),
and F-scores (F1) by regarding the prediction as correct if the model
predicts one of the true parents of the target reaction span. We
also report the recall (Rm) and F-score (Fm

1 ) based on the multiple
reference scenario, in which, if the target reaction span has multiple
true parents, the recall is calculated based on the total number of the
parents in the denominator.4

For the end-to-end task, RREFBINARY-IMMPREV performs better
than RREFE2E model, even though it is trained only with the bi-
nary classification objective and not trained on parent–child linking.
The RREFE2E model struggles to detect parent–child links effec-
tively, and achieves lower performance than the simple IMMPREV

decoding. Considering the fact that the RREFE2E model performs
comparably with RREFBINARY at child span detection, we hypothe-
size that even if the model is trained with the end-to-end objective, it
primarily learns to detect child reaction spans from non-child ones,
largely ignoring relations between other reaction spans.

These results reveal that it is the parent–child linking step rather
than the child detection step that makes reaction reference resolution
difficult. IMMPREV decoding is a strong baseline (0.706 F-score
given oracle child reaction spans), but there is significant room for
improvement. Despite its success in the traditional co-reference
resolution task, the RREFE2E method struggles to learn the pair-
wise relations between reaction spans. One of the main differences
between the traditional co-reference resolution task and the reac-
tion reference resolution task is text length: the target spans are
paragraph sequences in a long document rather than short word

4P = #(correct refs) / #(predicted refs),
R = #(correct refs) / #(spans with at least one true refs),
F1 = 2PR / (P + R) ,
Rm = #(correct refs) / #(all true refs),
Fm1 = F1 = 2PRm / (P + Rm)

sequences within a few sentences. A model that can more effectively
learn to capture relations between long text spans is left for future
work.

6.2 Error Analysis
Examples of the system output are shown in Figure 4, which corre-
sponds to the typical reference cases introduced in Figure 1, namely
(a) reference with the example ID, (b) reference with the compound
label, and (c) reference with no direct referential expression. Ob-
viously, the pattern matching baseline fails when the target span
does not mention the example label of its parent span. While the
performance of ORACLE-IMMPREV and RREFE2E is less tied to
specific reference cases, they can fail in many “easy” cases where
there is an explicit mention of the parent example ID, indicating
that it is difficult to learn such direct references without explicit
training signal that forces the model to attend to particular patterns.
The example in Figure 4 (c) is a special case that involves general
conditions: the first paragraphs describe the general procedure to
synthesize multiple similar compounds, and the examples of specific
compound names are listed in subsequent paragraphs. We can see
that RREFE2E fails to detect references to general conditions that
ORACLE-IMMPREV detects successfully. In some cases, RREFE2E
even fails to recognize them as a child reaction, which might be
because reference to general conditions is likely to be implicit, i.e.
the child description does not explicitly mention the example label
of its parent description.

7 RELATED WORK
Krallinger et al. [17] provide an extensive survey of information
retrieval and text mining for chemical literature, including extraction
of chemical reaction information from patents. Several systems have
been proposed that specifically target text mining from chemical
patents [9, 19, 28]. Previous work has mainly focused on extract-
ing chemical concepts and relations from individual paragraphs. In
the ChEMU 2020 evaluation lab [8], state-of-the-art methods for
chemical named entity recognition and event extraction were evalu-
ated on patent documents. Jessop et al. [10] propose a broader-scope,
multi-stage system called PatentEye, which first detects experimental
sections in the description part of a patent, and then passes individual
sections into downstream modules that extract reaction details (e.g.
title compound, reagents, and analytical data) from the input text.
Although they mention the presence of references between reaction
descriptions, they do not present specific ways to resolve them.

To our knowledge, the first study to take into account references in
reaction descriptions was by Ai et al. [1]. Their method automatically
extracts chemical reactions from the experimental section of papers
in chemistry journals, representing a reaction as a synthesis frame
containing arguments such as Product, Yield, Role, and Substance.
They employ template matching against parsed sentences to detect
phrases related to predefined reaction events. To facilitate copying
of relevant information between synthesis frames, they define two
types of inter-paragraph references, namely general procedures and
analogous syntheses. The paragraphs are linked based on certain
referring expressions such as example IDs and compound labels.
Overall, their system solely relies on handcrafted patterns and rules,
and thus the cases covered by the system are limited. Although their
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(a) Example ID

RX Text
23 Example 24 ...

...
25 Example 26 ...

26 Example 27 ...
The title compound was synthe-
sized by the procedure described in
Example 26 starting from ...

True 26→ 25
Pattern matching 26→ 25
ORACLE-IMMPREV 26→ 25
RREF E2E 26→ 23

(b) Compound label

RX Text
18 A mixture of the obtained ester, ... Column

chromatography of the residue (silica gel-
hexane/ethyl acetate, 9:1) gave Compound
B11, ...
...

20 Using 2-ethoxyethanol and following the
procedure for Compound B11 gave Com-
pound B13, ...

True 20→ 18
Pattern matching no reference
ORACLE-IMMPREV 20→ 18
RREF E2E 20→ 18

(c) No direct referential expression

RX Text
9 General procedure for the synthesis of aryl N-

(guanidino)imines N’-arylhydrazones 7Aa-Ag and 8Aa.
...
Characterization of compounds 7Aa-Ag and 8Aa:

10 (E)-2-((4’-((E and Z)-(2-(2-Chlorophenyl) hydrazono) methyl)-
... (7Aa)
Yield: 70%; mp 328-330◦ C. 1H NMR, ...

11 (E)-2-((4’-((E and Z)-(2-(2-Bromophenyl) hydrazono) methyl)-
... (7Ab)
Yield: 64%; mp > 380◦ C. 1H NMR ...

True 11→ 10
Pattern matching no reference
ORACLE-IMMPREV 11→ 10
RREF E2E 11→ 7

Figure 4: Abbreviated system output examples. Only parts of the patent documents are shown due to the space limitation. “RX” is
the reaction ID, and “True” is the label in the silver set. “X→ Y” indicates that the child reaction X refers to the parent reaction Y.

system is reported to produce results in the range of 80–90% for
simple synthesis paragraphs, and 60–70% for complex paragraphs,
details of their data set and evaluation procedures are not provided. It
is unclear whether these results would generalise to larger data sets
with more variability, and we cannot directly compare their approach
with ours.

Finally, we compare our task formulation with text alignment
task. Text alignment task [34] is arguably one of the most relevant
tasks to reaction reference resolution, as it requires understanding of
long documents and it has an application to citation recommenda-
tion [4, 12]. A key difference between text alginment task and our
reaction reference task is that text alignment task mainly focuses on
alignment of text portions in different documents, whereas our reac-
tion reference task targets to find inner-document references between
reaction descriptions. Our task requires not only understanding of
the content of each reaction description based on its contextual infor-
mation but also considering the document structure such as relative
position of reaction description pairs, as exemplified in Figure 1 (c).
A child reaction often omits a large part of the reaction description
(sometimes it is just a name of the target compound), unlike typical
inter-document references where the referer shares some common
context with the source document it refers to. Applying core ideas
from existing methods for text alignment task to reaction reference
task would be an interesting direction for future work.

8 CONCLUSION
We have introduced the chemical reaction reference resolution prob-
lem, a largely unexplored yet critical step in information extraction
of complete reaction details presented in chemical patents. We pro-
vided a formal specification of this task, built an evaluation corpus,
and adapted a neural co-reference architecture to this task, as well
as introducing several other baseline methods. Our neural method
achieved promising results for detecting (child) reaction descriptions
containing references, but identifying the precise (parent) reference
of child spans is challenging for the model. Key issues for future
work are more effective learning of reference patterns in reaction
descriptions, and better handling of long text spans, as well as long-
distance relations.

Some aspects of reaction reference are not well explored in this
paper. For example, we did not observe many examples involving
multiple references and references to general conditions in our silver-
standard dataset. This is partly because the database used to construct
our corpus is not designed for this use. Very recently, ChEMU [7],
a shared task of chemical information extraction was held and the
reaction reference resolution task was included as one of the key
tasks. As a part of the shared task, a dataset with gold annotation of
reaction reference was made publicly available. 5 We will evaluate
the performance of our baselines on the gold-standard dataset. In
addition, although we have cast the problem as a text processing task,
a more complete description of the reaction would involve the com-
bination of the textual body, figures, and tables in the patent. Thus, a
multi-modal version of the reaction reference task is a possible di-
rection to explore in the future. Another interesting extension of this
taks would be considering cross-document references of chemical
reactions.
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