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Abstract
We propose a novel method to estimate metrics for a ranking policy, based on behavioral signal data (e.g. clicks or viewing of
video contents) generated by a second different policy. Building on [1], we prove the counterfactual estimator is unbiased,
and discuss its low-variance property. The estimator can be used to evaluate ranking model performance offline, to validate
and selection positional bias models, and to serve as learning objectives when training new models.
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1. Introduction
Ranking algorithms power large scale information re-
trieval systems. They rank web pages when users look
for information in search engines, or products when users
shop on e-retailers’ websites. Such systems process bil-
lions of queries on a daily basis; they also generate large
amount of logs. The logs capture online user behavior
(e.g., clicking URLs or viewing video contents) and can be
used to improve ranking algorithms. As a result, training
new ranking models from logs is a central task in Learn
To Rank theory and application; it is also often referred
to as learning from “implicit feedback” or “counterfactual
learn to rank” in literature (e.g., [1]).

Counterfactual learn-to-rank is complicated by the
presence of “positional bias”. Ranking algorithms deter-
mines the position of ranked documents. If the search
result page has a “vertical list” layout, the document with
rank of 1 is on top of the page; if the result page has a
horizontal layout, the document with rank of 1 is on top
left corner. When positional bias is present, a document
has a higher chance to be examined by user when ranked
higher. As a result, when user clicks a document, the
click (the “behavioral signal”) can be due to one of two
reasons: either the document is relevant for the given
query, or the document is on top of the list. When posi-
tional bias is present, document ranking and relevancy
jointly determine behavioral signals, making the signal a
noisy proxy for relevancy, the primary goal of ranking
optimization.

In the context of counterfactual learn-to-rank, we refer
to the algorithm generating the log data as the “behav-
ioral policy”. Data generated by behavioral policy is used
to train a hopefully better algorithm, called the “target
policy”. Research work in counterfactual learn-to-rank
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can be loosely grouped into training and evaluation. For
training, the question is how to properly use knowledge
in positional bias to train a target policy and maximize
relevancy. To start, positional bias models estimate prob-
ability for a document to be examined by a user in a given
position; the estimation is based on different user behav-
ioral models. Such models, often called “click models”,
have become widely available; see [2][3][4][5][6][7][8]
[9][10][11][12]. Built on positional bias models, the sem-
inal work of [1] and [13] established a framework to
optimize relevancy using noisy behavioral signal data,
proving unbiasedness results for ranking metrics with
additive form. For evaluation, the question is how to
evaluate the target policy, once trained. For industry
ranking applications, the gold standard for evaluation is
to A/B test target policy against behavioral policy, collect
data on both, and compare ranking metrics such as Aver-
age Precision and NDCG. This approach is restricted by
limited experimentation time. As an alternative, offline
evaluation like [9] predicts target policy ranking metrics
using data from behavioral policy.

The research discussed above, in particular [1] and
[9], has advanced our understanding to counterfactual
learn-to-rank significantly. Meanwhile, each line of re-
search has its pros and cons. Let us use [1] and [9] to
highlight. First of all, the two research focuses on differ-
ent subjects in a causal relationship. Borrowing a causal
lens where relevancy and positional bias jointly drive
behavioral signals, [1] focuses on relevancy, the “cause”
while [9] focuses on behavioral signals, the “effect”. It
is an open question whether the approach in [1] can be
extended to optimize behavioral signal-based metrics (e.g.
clicks). Secondly, the two research also differs in vali-
dation: once developed, models in [9] can be validated
by comparing offline evaluation and online experimen-
tation measurement. For [1], even if we can optimize
relevancy, we cannot easily evaluate how much improve-
ment is made, even with online experimentation. This
is because evaluating relevancy (and its improvement)
ultimately requires manual annotation; for large-scale
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online search engines that process billions of queries
daily, such effort is costly. Last but not least, [9] relies
on high-variance Inverse Propensity Scoring techniques
based on the entire ranking permutation (or “action”).
In ranking, the action space is large, for example there
are 100!/(100 − 20)! = 1.3 × 1039 ways to select 20
documents out of 100. As a result, action probabilities
are small. The ratio between two small probabilities can
generate extremely small or large ratios (high variance),
making the technique challenging to implement in prac-
tical situations. Rank-based propensity adjustment in
[1] using positional effect models has more desirable
variance property. Such difference is key to accuracy of
offline evaluation.

This paper brings the two lines of research together.
The main contribution is the unbiased estimation for
ranking metrics for behavioral signals. In this sense,
it is part of study on “effect” of ranking dynamics. By
focusing on the “effect”, it can be validated by offline
evaluation and experimentation. Meanwhile, it retains
the desirable unbiasedness properties [1] and [9], but
replaces high variance Inverse Propensity Scoring adjust-
ments with positional biases, borrowing the key insight
from [1]. Since the focus switches from cause to effect,
this requires new techniques and yields unbiased estima-
tors of a new kind. This unbiased estimator can serve
as the learning goal for new target policy and enables
offline/online evaluation. It can be also used to establish
a method to validate and select positional bias models, a
key input to counterfactual estimation framework.

2. Problem Set Up
Let 𝑞 be a random query. For 𝑞, the set of documents to
rank is 𝐷 = [𝑑1, 𝑑2, . . .]. A ranking policy 𝐶 assigns
ranks 𝑅 = [𝑟(𝑑1), 𝑟(𝑑2), . . .] for documents in 𝐷. 𝑅,
a random permutation of [1, . . . , ‖𝐷‖], determines the
position of products 𝐷 on web page. For example, in a
“vertical list” layout, the product with 𝑟 = 1 is on top
of the page. After presenting 𝐷 in order of 𝑅 to user,
we observe the behavioral signal 𝐵. A binary vector,
𝐵 = [𝑏(𝑑1), 𝑏(𝑑2), ...], where 𝑏(𝑑) = 1 if and only if
user engages with any 𝑑 ∈ 𝐷 (e.g., clicking a web page
or watching a video). Given a ranking vector 𝑅 and the
behavioral signal vector 𝐵, we define a ranking metric
of interest 𝑀 = 𝑀(𝑅,𝐵) such as Precision and DCG.

Table 1 shows a hypothetical example. For 𝑞 = 1,
𝐷 = [100, 200, 300] represents three documents to rank.
The behavioral policy 𝐶 ranks them as 𝑅𝐶 = [1, 2, 3],
i.e., to show document 100 first and 300 last. Seeing
the list, user ignores the top document 100 and clicks
the other two, i.e., 𝐵𝐶 = [0, 1, 1]. If we use Preci-
sion@3 to measure performance of ranking policy, we
get 𝑀(𝑅𝐶 , 𝐵𝐶) = 0.667. Saved in log, the data is used

Table 1
Illustrative Data Sample

Query Document Rank by 𝐶 Clicked? (1=yes) Rank by 𝑇

1 100 1 0 3
1 200 2 1 1
1 300 3 1 2

Figure 1: Causal relationship among the random variables

to train target policy 𝑇 later. The new policy ranks dif-
ferently, i.e., 𝑅𝑇 = [3, 1, 2]. This seems an improve-
ment. But user never sees the documents in order of
[200, 300, 100] and we don’t know if they will click dif-
ferently. In other words, 𝐵𝑇 is missing data. This is an
example of the causal inference, thus the name counter-
factual. Estimating 𝑀𝑇 = 𝑀(𝑅𝑇 , 𝐵𝑇 ) without observ-
ing 𝐵𝑇 is the central task for this paper.

All quantities defined above are random variables (or
vectors). The dependency among them are as follows:
query 𝑞 determines the document set 𝐷, i.e., 𝐷 = 𝐷(𝑞).
𝑞, 𝐷, and the ranking policy 𝐶 jointly determine the
rank vector 𝑅 = 𝑅(𝑞,𝐷,𝐶). 𝑞, 𝐷 and 𝑅 then jointly
determine the behavioral signal vector 𝐵 = 𝐵(𝑞,𝐷,𝑅).
Last but not least 𝑅 and 𝐵 determine 𝑀 = 𝑀(𝐵,𝑅).
The table below visualizes the structural causal model.

The randomness in the system comes from multiple
sources: distribution of 𝑞, conditional distribution of can-
didate set 𝐷|𝑞, conditional distribution of 𝑅|𝑞,𝐷,𝐶 , and
conditional distribution 𝐵|𝑞,𝐷,𝑅. The only exception
is that no distribution is needed on 𝑀 |𝑅,𝐵. Given 𝑅
and 𝐵, the value of 𝑀 is deterministic for most practical
ranking systems and metrics.

Because the analysis involves two policies, we always
specify the policy generating the data. That is, we use
𝑅𝑇 to denote ranks generated by policy 𝐶 , use 𝐵𝑇 to de-
note the behavioral signal generated when showing 𝐷 in
order of 𝑅𝑇 to user, and 𝑀𝑇 = 𝑀(𝐵𝑇 , 𝑅𝑇 ) to denote
the ranking metrics calculated. This helps distinguish
between random variables under different policies. We
omit other dependencies in notations when confusion
can be avoided.



3. The Unbiased Counterfactual
Estimator

In this section we define the counterfactual estimator and
prove its unbiasedness. We first present the main results
in Section 3.1, prove the unbiased results in Section 3.2,
and discuss technical details in Section 3.3.

3.1. Main Result
We first define assumptions necessary for defining the
estimators and proving unbiasedness. First

Assumption 3.1. For a policy 𝐶 , conditional on
the ranking vector 𝑅𝐶 and behavioral signal 𝐵𝐶 ,
𝑀𝐶(𝑅𝐶 , 𝐵𝐶) are conditionally independent of 𝑞 and 𝐷,
i.e., 𝑀𝐶(𝑅𝐶 , 𝐵𝐶) ⊥⊥ 𝑞,𝐷|𝑅𝐶 , 𝐵𝐶

This is easily satisfied for most ranking metrics such
as MRR, MAP, Precision, and NDCG.

Next, similar to [1] [9][13], we assume the ranking
metric of interest is linearly decomposable, i.e.,

Assumption 3.2. 𝑀𝐶(𝑅𝐶 , 𝐵𝐶) =∑︀
𝑑∈𝐷 𝐿(𝑟(𝑑))𝑏𝐶(𝑑), where 𝐿(𝑟) is a determinis-

tic function of rank 𝑟.

For Precision@3, 𝐿(𝑟) = 1 if 𝑟 ≤ 3, and 0 otherwise.
For 𝑑 ∈ 𝐷, 𝑏𝐶(𝑑) is a binary random variable and

𝐸[𝑏𝐶(𝑑)] is the click probability. Similar to [9] and [10],
we make the following assumption based on position-
based click model (PBM)[6]:

Assumption 3.3. 𝐸𝐵𝐶 |𝑞,𝐷[𝑏𝐶(𝑑)] = 𝜂(𝑟𝐶(𝑑))𝛾(𝑑, 𝑞),
where 𝜂(𝑟) > 0 is the probability of examining a certain
rank 𝑟. 𝛾(𝑑, 𝑞) is probability of click conditional on being
examined.

When using data generated by behavioral policy 𝐶 to
train a new policy 𝑇 , we also assume 𝑇 and 𝐶 to share
nothing in common except inputs 𝑞 and 𝐷. For example,
the output of one policy is not used as input to another:

Assumption 3.4. Given two policies 𝑇 and 𝐶 , 𝑅𝑇 and
𝑅𝐶 are conditionally independent given 𝑞 and 𝐷, i.e.,
𝑅𝑇 ⊥⊥ 𝑅𝐶 |𝑞,𝐷.

The main result of the paper states that:

Theorem 3.1. Define

𝑌 (𝑅𝐶 , 𝑅𝑇 , 𝐵𝐶) =
∑︁

𝑑∈𝐷 and 𝑏𝐶(𝑑)=1

𝐿(𝑟𝑇 (𝑑))
𝜂(𝑟𝑇 (𝑑))

𝜂(𝑟𝐶(𝑑))

(1)
Let 𝑄𝐶 be queries randomly sampled from the query uni-
verse where policy 𝐶 is applied. Under Assumptions 3.1,
3.2, 3.3, and 3.4,

1

‖𝑄𝐶‖
∑︁

𝑞∈𝑄𝐶

𝑌 (𝑅𝐶 , 𝑅𝑇 , 𝐵𝐶) (2)

is an unbiased estimator for 𝐸𝑞,𝐷,𝑅𝑇 ,𝐵𝑇 [𝑀𝑇 (𝑅𝑇 , 𝐵𝑇 )],
i.e.,

𝐸𝑞,𝐷,𝑅𝑇 ,𝐵𝑇 [𝑀
𝑇 (𝑅𝑇 , 𝐵𝑇 )] = 𝐸

⎡⎣ 1

‖𝑄𝐶‖
∑︁

𝑞∈𝑄𝐶

𝑌 (𝑅𝐶 , 𝑅𝑇 , 𝐵𝐶)

⎤⎦
(3)

where the expectation on the right hand side is taken over
query set 𝑄𝐶 , 𝐷 for every 𝑞 ∈ 𝑄𝐶 ,𝑅𝑇 over 𝑞,𝐷, 𝐵𝑇

over 𝑞,𝐷,𝑅𝑇 , and 𝑅𝐶 over 𝑞,𝐷.

Let us use the same example in Table 1 to illustrate
how the estimator is computed. Assume we have the
following positional bias estimates: 𝜂(1) = 0.9, 𝜂(2) =
0.7, 𝜂(3) = 0.5 (as a reminder, such estimates can be
made available via statistical estimation procedures; see
[12] and references within for implementation). Recall
that ranking vector 𝑅𝐶 = [1, 2, 3] and behavioral sig-
nal 𝐵𝐶 = [0, 1, 1]. For the metric of Precision@3,
𝑀𝐶 = 0.667. For policy 𝑇 , we observed 𝑅𝑇 but not 𝐵𝑇 .
So we use 𝑅𝑇 , 𝑅𝐶 , and 𝐵𝐶 and equation (1) to compute
the following estimate: 𝑌 = (0+1× 𝜂(1)

𝜂(2)
+1× 𝜂(2)

𝜂(3)
)/3 =

0.895. Averaging 𝑌 s over queries in 𝑄𝐶 yields the coun-
terfactual estimator (2).

3.2. Proof of Unbiasedness
We now set up a series of unbiasedness results, eventually
leading to proof of Theorem 3.1.

Lemma3.2. Let𝑇 and𝐶 be two stochastic policies. Under
Assumptions 3.1, 3.2, 3.3, and 3.4, 𝑌 (𝑅𝐶 , 𝑅𝑇 , 𝐵𝐶) is an
unbiased estimator for 𝐸𝐵𝑇 |𝑞,𝐷,𝑅𝑇 [𝑀𝑇 ], i.e.,

𝐸𝐵𝑇 |𝑞,𝐷,𝑅𝑇 [𝑀(𝑅𝑇 , 𝐵𝑇 )] = 𝐸𝐵𝐶 |𝑞,𝐷,𝑅𝐶 ,𝑅𝑇 [𝑌 (𝑅𝐶 , 𝑅𝑇 , 𝐵𝐶)]
(4)

Proof. Via Assumptions 3.1, 3.2 and 3.3

𝐸𝐵𝑇 |𝑞,𝐷,𝑅𝑇 [𝑀
𝑇 ] =

∑︁
𝑑∈𝐷

𝐿(𝑟𝑇 (𝑑))𝐸𝐵𝑇 |𝑞,𝐷,𝑅𝑇 [𝑏
𝑇 (𝑑)]

(5)
By Assumption 3.3,

𝐸𝐵𝑇 |𝑞,𝐷,𝑅𝑇 [𝑏
𝑇 (𝑑)] = 𝜂(𝑟𝑇 (𝑑))𝛾(𝑑, 𝑞)

Defining a shorthand

Ψ =
𝐿(𝑟𝑇 (𝑑))

𝐿(𝑟𝐶(𝑑))

𝜂(𝑟𝑇 (𝑑))

𝜂(𝑟𝐶(𝑑))

, it follows that

𝐸𝐵𝑇 |𝑞,𝐷,𝑅𝑇 [𝑀
𝑇 ]

=
∑︁
𝑑∈𝐷

𝐿(𝑟𝑇 (𝑑))𝜂(𝑟𝑇 (𝑑))𝛾(𝑑, 𝑞)

=
∑︁
𝑑∈𝐷

𝐿(𝑟𝐶(𝑑))𝜂(𝑟𝐶(𝑑))𝛾(𝑑, 𝑞)Ψ



=
∑︁
𝑑∈𝐷

𝐿(𝑟𝐶(𝑑))𝐸𝐵𝐶 |𝑞,𝐷,𝑅𝑇 [𝑏
𝐶(𝑑)]Ψ

=
∑︁
𝑑∈𝐷

𝐿(𝑟𝐶(𝑑))𝐸𝐵𝐶 |𝑞,𝐷,𝑅𝑇 ,𝑅𝐶 [𝑏𝐶(𝑑)]Ψ

= 𝐸𝐵𝐶 |𝑞,𝐷,𝑅𝑇 ,𝑅𝐶

[︃∑︁
𝑑∈𝐷

𝐿(𝑟𝐶(𝑑))𝑏𝐶(𝑑)Ψ

]︃

= 𝐸𝐵𝐶 |𝑞,𝐷,𝑅𝑇 ,𝑅𝐶

⎡⎣ ∑︁
𝑏𝐶(𝑑)=1

𝐿(𝑟𝑇 (𝑑))
𝜂(𝑟𝑇 (𝑑))

𝜂(𝑟𝐶(𝑑))

⎤⎦
= 𝐸𝐵𝐶 |𝑞,𝐷,𝑅𝑇 ,𝑅𝐶 [𝑌 (𝑅𝐶 , 𝑅𝑇 , 𝐵𝐶)]

The third step in the derivation is due to Assumption 3.3;
the fourth step is due to Assumption 3.4.

Lemma 3.3. Under Assumptions 3.1, 3.2, 3.4, and 3.3,

𝐸𝑞,𝐷,𝑅𝑇 ,𝐵𝑇 [𝑀(𝑅𝑇 , 𝐵𝑇 )]

= 𝐸𝑞,𝐷,𝑅𝐶 ,𝐵𝐶 ,𝑅𝑇 [𝑌 (𝑅𝐶 , 𝑅𝑇 , 𝐵𝐶)]

Proof. By Assumption 3.4, 𝑅𝑇 and 𝑅𝐶 are conditionally
independent. As a result, 𝑀𝑇 (𝑅𝑇 , 𝐵𝑇 ) is also condi-
tionally independent from 𝑅𝐶 . Therefore

𝐸𝐵𝑇 |𝑞,𝐷,𝑅𝑇 [𝑀
𝑇 (𝑅𝑇 , 𝐵𝑇 )]

= 𝐸𝐵𝑇 |𝑞,𝐷,𝑅𝑇 ,𝑅𝐶 [𝑀𝑇 (𝑅𝑇 , 𝐵𝑇 )]

Combining this equation with Lemma 3.2 yields

𝐸𝐵𝑇 |𝑞,𝐷,𝑅𝑇 ,𝑅𝐶 [𝑀𝑇 (𝑅𝑇 , 𝐵𝑇 )]

= 𝐸𝐵𝐶 |𝑞,𝐷,𝑅𝐶 ,𝑅𝑇 [𝑌 (𝑅𝐶 , 𝑅𝑇 , 𝐵𝐶)]

The expectations on both sides of the above equa-
tion are conditioned on the same joint distribution of
𝑞,𝐷,𝑅𝑇 , 𝑅𝐶 . Taking expectation over both sides of the
equation yields:

𝐸𝑞,𝐷,𝑅𝑇 ,𝑅𝐶 ,𝐵𝑇 [𝑀
𝑇 (𝑅𝑇 , 𝐵𝑇 )]

= 𝐸𝑞,𝐷,𝑅𝑇 ,𝑅𝐶 ,𝐵𝐶 [𝑌 (𝑅𝐶 , 𝑅𝑇 , 𝐵𝐶)] (6)

Again using Assumption 3.4, we can remove 𝑅𝐶 from
the expectation on 𝑀𝑇 in left hand side of equation (6).
This yields

𝐸𝑞,𝐷,𝑅𝑇 ,𝐵𝑇 [𝑀
𝑇 (𝑅𝑇 , 𝐵𝑇 )]

= 𝐸𝑞,𝐷,𝑅𝑇 ,𝑅𝐶 ,𝐵𝐶 [𝑌 (𝑅𝐶 , 𝑅𝑇 , 𝐵𝐶)]

Theorem 3.1 can now be proved as follows:

Proof. Since 1
‖𝑄𝐶‖

∑︀
𝑞∈𝑄𝐶

𝑌 is sample mean of
𝑌 , it is an unbiased estimator of the true mean
𝐸𝑞,𝐷,𝑅𝑇 ,𝑅𝐶 ,𝐵𝐶 [𝑌 ] which, by Lemma 3.3, equal to
𝐸𝑞,𝐷,𝑅𝑇 ,𝐵𝑇 [𝑀𝑇 (𝑅𝑇 , 𝐵𝑇 )]. Thus it is an unbiased esti-
mator of 𝐸𝑞,𝐷,𝑅𝑇 ,𝐵𝑇 [𝑀𝑇 (𝑅𝑇 , 𝐵𝑇 )].

3.3. Technical Discussion
Theorem 3.1 holds when both 𝑇 and 𝐶 are deterministic
policies, without Assumption 3.4. The proof is omitted
due to space limit. In practical ranking systems, output of
one ranker is frequently incorporated into another. This
violates Assumption 3.4, which requires two policies to
share nothing except inputs.

The unbiased estimator looks different from its coun-
terpart in equation (4) of [1], where the positional bias
appears only once. It is easy to understand the differ-
ence with a causal view: the common assumption in [1]
and the current work is that relevancy and positional
bias jointly drive behavioral signals. When it comes to
estimation, we are interested in different subjects. [1]
is interested in estimating relevancy (the cause) from
clicks (the effect). So it has the 1/𝑄 factor to cancel out
the positional bias from behavioral policy. The present
work is interested in estimating metrics defined on be-
havioral signal (the effect) on target policy, from data
generated by a behavioral policy policy (a second effect).
Two positional bias terms are thus needed to cancel the
effect.

The counterfactual estimators (2) aims to avoid the
high variance challenge facing other IPS estimators, e.g.,
in [9]. It is a common practice to use IPS estimators to
construct estimates for metrics of interest. While such
estimators enjoy the desirable property of unbiasedness,
their variance profile is of concern. The core of any
IPS estimator is the ratio for a ranking 𝑅 to be selected
by two different policies 𝑇 and 𝐶 , i.e., Pr𝑇 (𝑅|𝑞,𝐷)/
Pr𝐶(𝑅|𝑞,𝐷). In practice, the ranking space is (combi-
natorially) large and action probabilities are small. Di-
viding one small number over another can generate ex-
tremely small or large ratios. When any policy is deter-
ministic, Pr𝑇 (𝑅|𝑞,𝐷) is ill-defined. The problem gets
worse when the behavioral and target policy differ signifi-
cantly, i.e, when accurate offline performance evaluation
is needed most. As a result, the ratio can have high
variance; this prevents IPS estimators from being useful
in industry applications. The current approach solves
this problem. Counterfactual estimation using equation
(2) no longer needs the high variance action probability
ratio. Instead it uses the ratio between positional bias
estimates (𝜂), a function of rank positions. The ratio of 𝜂
empirically has much less variance than estimated action
probability ratio.

The current framework can be generalized in three
different ways. First, it naturally extends to contex-
tual ranking problems, where 𝑞 represents not only
the search query, but also all context information avail-
able for ranker. Secondly, it can be generalized to opti-
mize query/document specific rewards. This makes it
easy when different documents have different economic
value. Assumption 3.2 can be relaxed to 𝑀(𝑅,𝐵) =



∑︀
𝑑∈𝐷 𝐿(𝑟(𝑑), 𝑞,𝐷)𝑏(𝑑) , where 𝐿(𝑟, 𝑞,𝐷) is a deter-

ministic function of rank 𝑟, query 𝑞, and document
set 𝐷. Last but not least, the probability of examina-
tion 𝜂 and condition click probability 𝛾 can depend
on query 𝑞 and candidate document set 𝐷. That is,
Assumption 3.3 can be relaxed to 𝐸𝐵𝑇 |𝑞,𝐷[𝑏𝑇 (𝑑)] =

𝜂(𝑟𝑇 (𝑑), 𝑞,𝐷)𝛾(𝑑, 𝑞,𝐷). Same is true for Assumption
3.4.

4. Validating and Selecting
Positional Bias Models

The unbiased counterfactual estimator has three poten-
tial uses: to evaluate offline ranking performance, to
validate and selection positional bias estimates, and to
serve as loss (or reward in reinforcement learning set-
ting) in training new ranking models. Some have been
covered by literature. See [9] for discussion on offline
ranking performance evaluation and [1] for discussion
on training loss improvement. The rest of this section fo-
cuses on validating and selecting positional bias models,
an area not covered in past works. positional bias models
can be developed in many ways, dependent upon theory
(e.g., underlying statistical model, the causal structure,
inclusion and exclusion of predictive features), data, and
estimation processes. When there is one model, the ques-
tion is how correct it is. When there are multiple models,
the question is how to select the best one for a specific
use case.

Using the counterfactual estimator, a method can be
developed to validate and selection of positional bias
models. It is based on the following idea: we already
have one unbiased estimator of 𝐸[𝑀𝑇 ] using positional
bias estimates as input; they are 𝑌 s defined in equa-
tions (1) and (2). If we find a second unbiased estimators
for 𝐸[𝑀𝑇 ] without using positional bias estimates, the
difference between the two estimators can be used to
evaluate correctness of positional bias models. Two un-
biased estimates of the same quantity (the population
mean) should converge. In fact, if we run policy 𝐶 on a
set of queries 𝑄𝑇 , 𝐸[𝑀𝑇 ] can be directly estimated as

𝐸𝑄𝑇

[︁
1

‖𝑄𝑇 ‖
∑︀

𝑞∈𝑄𝑇
𝑀(𝑅𝑇 , 𝐵𝑇 )

]︁
.

The model validation process takes three steps: data
collection, estimation, and testing. The first step is to
collect data via an online ranking experiment. The ex-
periment should have two treatment groups (C and T),
each with a different ranking policy. We then observe
behavioral signals (e.g. clicks) for both groups. For ev-
ery query in T, we also rank the documents with policy
C in “shadow mode” and log the ranking from C, even
though we don’t know which documents would have
been clicked had policy C been applied. The second step
is to use the data to compute two unbiased estimators

previously defined. In the third step, we use the two
estimates to construct a model validation test. A sim-
ple approach is to treat the sample mean estimator as
the “ground truth”, as long as the sample size of data
is big enough. The difference between two estimators
can thus be used to quantify the correctness of model.
A method with more statistical rigor is to treat the two
estimates as group means of random variables with esti-
mated standard deviations. Standard hypothesis testing
readily applies.

5. Conclusion
We built a counterfactual estimator for ranking metrics
defined on behavioral signals. The estimator is unbiased
and has low variance. We discuss its usage in selecting
and validating positional bias models. This estimator can
be applied to ranking models with strong counterfactual
effect.
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