CEUR-WS.org/Vol-2912/paper3.pdf

SearchSECO: A Worldwide Index of the Open
Source Software Ecosystem

Slinger Jansen
Utrecht University, The Netherlands
Lappeenranta University, Finland
slinger.jansen @uu.nl

Tijs van der Storm
University of Groningen, The Netherlands
CWI, The Netherlands
storm@cwi.nl

Abstract—Repository mining research is a data-intensive do-
main with a focus on source code. There are many ways to search
for code in the worldwide software ecosystem, but these search
methods are inefficient and only cover small parts of the software
ecosystem. One of the problems is granularity: it is possible to
search through code on a file-level and cover a significant part
of the software ecosystem or search for a line of code and only
cover a small part of the software ecosystem, but not both.

We propose SearchSECO: a language-agnostic search engine
and research platform that searches through abstract represen-
tations of source code methods. We use SearchSECO to search
across the worldwide software ecosystem and index the encoun-
tered methods. With SearchSECO, the field is advanced because
it (1) provides finer-grained and more efficient searches, (2) covers
more of the software ecosystem than other search mechanisms,
and (3) provides mechanisms for source code provenance.

I. INTRODUCTION

I

Reuse has been a blessing and a curse for modern software
engineering. While frequent replication of successful frag-
ments of code leads to initial high productivity, it may also be
one of the lead causes for technical debt, replication of bugs
and vulnerabilities, and poorly maintainable code. Fortunately,
through research, we have found many ways to identify code
clones and re-engineer them [1]].

A software ecosystem (SECO) is a set of actors functioning
as a unit and interacting with a shared market for software
and services, together with their relationships [2]. Society is
entirely dependent on a healthy worldwide SECO, as every
aspect of our society is dependent on software. We propose
a software provenance theory, where the provenance of each
software engineering artifact is known in the entire software
supply network. With software provenance, we can provide
guarantees about software artifacts’ quality, introducing a
novel layer of trust in the worldwide SECO.

Methods are typically a few code lines that express a set of
operations on an object, are contained in larger code files, and

Copyright 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

Siamak Farshidi
University of Amsterdam, The Netherlands
Utrecht University, The Netherlands
s.farshidi@uva.nl

Joost Visser
Leiden University
The Netherlands
j-m.w.visser @liacs.leidenuniv.nl

Georgios Gousios
Technical University Delft
The Netherlands
g.gousios @tudelft.nl

Magiel Bruntink
Software Improvement Group
The Netherlands
m.bruntink @sig.eu

correspond with the way a software object is conceptualized
by software engineers. This project aims to collect the source
code in the worldwide SECO and store it at the method
level, including the call graph of the code, in a Software
Method Knowledge Base (SMKB). This affords us to do a
structural analysis of the source code, for instance, to identify
vulnerability patterns in call graphs. SearchSECO makes the
worldwide SECO searchable at a finer level of granularity
than was possible before. This is a radical innovation in soft-
ware engineering research and, more specifically, repository
mining [3], as it enables high-performance worldwide code
searches that cross-cut language ecosystems [4].

This project is ambitious: we want to analyze more than
8 billion open-source ﬁlesﬂ and extract even more code frag-
ments from it [5]. The project is radical: we redesign trust in
the worldwide SECO through a theory of software provenance,
and if completed, software engineering will never be the
same again. But most importantly, the project has impact on
society: we provide full software provenance, thereby enabling
software producers to guarantee who touched the software,
and consumers knowing precisely where their software came
from, that it was ethically produced, and how vulnerable it is
in real-time.

II. MAPPING THE WORLDWIDE SOFTWARE ECOSYSTEM

We can map the full SECO with SearchSECO, as dependen-
cies between projects also need to be stored explicitly. With
these dependencies, it becomes possible to identify “rotten”
branches in the dependency tree, i.e., where one required
package high up in the dependency tree is determined vul-
nerable. From that point onward, all packages that depend on
the vulnerable package can also be considered compromised.

With the worldwide SECO mapped, we can perform all
kinds of network analysis, such as social analysis (who
works with whom? Who copies code from whom?), technical

ICurrently, the software heritage graph contains 8 billion source code files.

Q o
S| g 2| o=
212 (2% |©
= = o = =
ElE|ec|2|28|5 %
SIE | |5|5|2 =
©n O | » = | v | = <
General Properties Funding (Proprietary/Public/Community) Co Pu | Co | Pr | Pr | Pu| Pr
Parses code Y N N Y |N|Y N
Works in a distributed manner Y Y N N | N | N N
Source code level Search source code lines N Y Y N|Y |N N
Search abstract syntax tree Y N N N | N | N N
Method level Search call graph Y N N N | N|Y N
Search methods by hash Y N N N [N | N N
Search method meta-data Y N N N | N | N N
Author relationships File authorship Y Y N N | N | N Y
Method authorship Y N N N | N | N N
Project/Package level Project Information Y Y Y Y | N |Y Y
Monitors package releases Y N N Y |N|Y Y
Package dependency tree Y N N Y N Y N
Licensing information Y N N N |N|Y Y

TABLE T
No other project performs abstract syntax tree code searches across source code methods, while that is urgently needed for RSEs. SearchSECO also stores
more meta-data than others. SHG is the Software Heritage Graph. GL and GH are Gitlab and Github

analysis (what is the essential package worldwide?), and bus-
factor analysis (which crucial packages have very few software
engineers?). We can support open-source software engineers
with further research about:

« Relationships between methods.

— Study method co-evolution across projects - At present,
it is impossible to track methods that have been copied
and co-evolved reliably. With SearchSECO, empirical
software engineering researchers track method frag-
ments evolution over time.

— Weaknesses tracked, fixes propagated - With vul-
nerability databases such as Google’s https://www.
vulncode-db.com/, it becomes possible to rapidly iden-
tify syntactically equivalent method fragments that
contain vulnerabilities [6].

« Relationships between authors.

— Fine grained authorship - Using commit data from the
different repositories, we store meta-data about method
authorship. For instance, this enables us only to notify
authors who have worked on a particular method and
not all authors who have edited a particular code file.

— Copy-paste behavior - It is almost impossible to assess
which authors copy their methods from where. With
SearchSECO, it is possible to identify which methods
are copied from StackOverflow.com| [7]].

« Relationships between software projects.

— Establish package dependencies and cohesion - we
analyze dependencies between packages and assess
how strongly two components are coupled. Combining
and analyzing these data makes it possible to create
trust models around projects, which indicate the trust-
worthiness of packages and projects and make it easier
for engineers to select packages in the SECO.

— License violations - Methods are stored with their li-

cense information, enabling license violation detection.

A final interesting outcome is that it becomes possible to
identify code fragments on StackOverflow.com and how they
are copied into existing projects, similar to other works [8]],
[9]. It even becomes possible to notify software engineers who
have copied fragments from |StackOverflow.com! that have been
updated or fixed.

We expect the SearchSECO database to be instrumental
in identifying new vulnerabilities and malware in software
code. We aim for the SMKB to identify new source code
problems, thereby contributing to (insight into) a safer SECO.
We use several techniques for achieving this objective. First,
we use machine learning techniques to predict code mutations
of source code fragments to search for mutated code clones.
Secondly, we use pattern matching techniques to explore
software call graphs to search for vulnerabilities and malware,
as many malware and viruses follow similar call graph pat-
terns [10]. If vulnerabilities and malware are detected, we use
the SearchSECO platform to notify the producers of packages
and users of these packages through a notification system.

III. REALIZATION

A workflow blueprint is provided in Figure [T, where it
is illustrated how new data sources can be explored and
processed to become part of the SMKB. The jobs that are
to be done, such as regular synchronization with Gitlab and
the Software Heritage Graph, can be distributed across the
community members. In this way, the community updates and
maintains the SMKB.

We follow four lines of inquiry to construct SearchSECO.
First, we develop parsing techniques and work distribution
mechanisms for exploring the worldwide SECO. Secondly, we
store the methods in the SMKB. Thirdly, we analyze the data
in the SMKB using basic data analysis techniques. Fourthly,

https://www.vulncode-db.com/
https://www.vulncode-db.com/
StackOverflow.com
StackOverflow.com
StackOverflow.com

4 SHG Spider N
Project 1
o Project 2 %]
I - T2
7)) : n g / Project Processor \
Projectp Artifact 1
\ /] Artifact 2 3 g Artifact Processor
2 i o =
4 Gitlab Spider I o : ao g ,
Artifact p = 5 Language Recognizer
[_Project1 | \ % 2| 2 Method extractor
5 E ~ ~ 8 % Call graph extractor
(0] . : Site Spider é :'tg AST extractor
N Project r o |_Atifact 1 > 5| < Hasher
= Artifact 2 o8 =
n g H »©
= a
. Artifact q
- G J
X Spider Method Finder Method Committer
Project 1 Method II
> Project 2 Visthiod Stack
5 dentfaton
Project r Report

Fig. 1. The extraction process follows a three-step process. First, projects are identified on different project forums, such as the Software Heritage Graph,
Gitlab, and other project repositories. Different artifacts are extracted from web sites such as stackoverflow.com. Secondly, these projects are parsed into
artifacts from which fragments are extracted, including their out-calls to other methods. Thirdly, this information is stored in the SMKB.

we employ artificial intelligence to perform graph mining on
the worldwide SECO graph.

A. Parsing Worldwide Software Ecosystem

We create a parser infrastructure that rapidly extracts meth-
ods and calls graphs from source code. Currently, we have
parsers available for Java, C, and C++, using technology
from the related FASTEN projecﬂ through srcML (https:
//srcml.org), and possibly also using Rascal [[11]].

First, we perform language parametric clone detection.
Vuddy [12] is a tool for high-performance clone-detection for
C. Using generic language technology, we will extend Vuddy
to support other languages in the SECO. Vuddy operates at the
function level; using the metaprogramming system Rascal we
will develop a generic front-end to Vuddy based on existing
and new parsers to support other languages than C/C++.

Secondly, we develop generic models for cross-language
dependencies. To track dependencies induced by call-graphs
and other relations (e.g., inheritance), we will develop generic,
cross-language models to represent such dependencies. Rascal
already supports the extensible M3 model [13], for single-
language source projects. We will extend this to support
modeling source code facts across different programming
language SECOs, as well as the representation of metadata
such as authorship, provenance, and versioning.

Thirdly, we use Al-assisted development of robust,
extraction-oriented parsers. We require parsers for program-
ming languages that might not yet exist. For instance, Rascal’s

Zhttps://www.fasten-project.eu/

current standard library includes robust parser front-ends for
Java and C/C++. However, developing parsers for full pro-
gramming languages requires significant effort. We will inves-
tigate new Al-based techniques to (semi-)automatically derive
parsers using a combination of grammar inference techniques
and corpus analysis. These parsers might not be accurate
enough for developing a compiler but will be sufficiently fine-
grained to extract function bodies and identify call sites.

Fourthly, we aim to do “Diff ’-based parsing and extraction.
The volume of code in the SECO that needs to be analyzed
is huge and continuously evolving. Altogether parsing and
analyzing the code of software projects from scratch will not
scale. To have repository spiders monitor and analyze repos-
itories continuously, we will develop techniques for “diff”-
based parsing and extraction. Instead of parsing/analyzing
full source files, these techniques will analyze the difference
between versions of files (e.g., as derived from Github) and
incrementally update the SMKB.

B. Storage and Retrieval of Worldwide Code Clones

We start by exploring the different manners in which code
clones can be extracted from a software project. We are in-
spired by Vuddy [12], a tool that extracts methods from C and
C++, extracts their Abstract Syntax Tree (AST), and hashes
this tree. It has excellent performance for larger codebases,
such as the one proposed in SearchSECO. We want to explore
whether methods are the ideal code clones or whether we can
use alternatives, such as groupings of variables in a method.
Also, we want to explore whether other objects also need to

https://srcml.org
https://srcml.org
https://www.fasten-project.eu/

be hashed, such as headers in header files and comments.
Vuddy is available as open-source as a tool called hmark
(https://github.com/iotcube/hmark).

We aim for clones to be “addressable” through an abstract
representation, such as their AST, but also through meta-data
that is stored about them, such as their project title, method
signature, and version release. These data enable us to address
the same fragment in different versions to identify whether a
particular vulnerability is present in multiple versions of the
same package.

We need to rapidly retrieve clones from our extensive index
of code clones, which we envision to store at least several
billions of code clones. We identify hashing techniques that
best suit this purpose. Furthermore, we can index commercial
software without its actual source code, leaving the organiza-
tions’ premises by only storing hashes.

We use machine learning to predict how a code clone
may mutate in the future. By generating such data, we can
develop a technique that stores hashes of those mutations
as well, to identify more code clones [14]. While this is
highly experimental, we believe we may be able to catch more
vulnerabilities this way.

C. Collect Source Code for Analysis

We collect source code for analysis from existing source
code databases. We need the database to be filled with code
fragments and trust data to prove that our proof of concept
works. We plan to use the multitude of existing reposito-
ries with archival software knowledge, such as the Software
Heritage Graph [15] and GHTorrent [16] and use similar
techniques for de-duplication of the massive amounts of data
from those platforms. However, this is a big challenge: the
Software Heritage Graph, one of the largest open-source code
databases, currently contains 8 billion code files, including
at least as many methods. We take a distributed approach to
develop a job scheduler and a client that different teams in the
project can run to perform the data collection and analysis.

A job scheduler is developed that maintains its list of
jobs to be done. Worker nodes can pick up these jobs in
the ecosystem. This work will be based on the CrossFlow
infrastructure [17], as developed in the CrossMiner project.
Examples of automated tasks are:

1) Spider an existing project repository for updates

2) Extract code fragments from Stackoverflow

3) Parse a new project and identify the languages used

4) Send out alerts to owners of encountered code fragments
5) Check whether evidence of a code fragment still exists

These automated tasks will be incentivized to ensure positive
contributions to the community. Some jobs may stay in the
scheduler for a long time; as for these jobs, the correct parser
may not yet be available and still needs to be developed. In
this way, we can easily prioritize which parser needs to be
most urgently built.

Participants that use the ecosystem use it to search the
SMKB for code fragments. However, new projects need to be

parsed, extracted, and stored in the SMKB as well. Further-
more, unique language ecosystems need to be added, and large
project repositories need to be mined. Incentivized participants
in the ecosystem must perform these tasks. For this, worker
nodes must be developed that can perform automated tasks.

Once the clients are ready, the data collection can begin,
and the database can be filled. The industry stakeholders
will want to see that the database is working, so we want
to use it first. We will start by analyzing several large projects
(Linux, for instance) so that we are ensured to have relevant
and urgently needed data. We aim to lean on the repository
mining and BENEVOL community for spreading the workload
across different researchers. Throughout the project, we will
collect data about software engineers in the SECO. However,
as SearchSECO does not make the SMKB a surveillance
instrument, we must use design principles that do not easily
link software engineers to their identity information.

D. Al Assisted Graph Mining for Vulnerabilities

We use graph mining and other techniques for classifying
vulnerabilities from vulnerability databases, to identify new
vulnerabilities in existing and newly added code. There are
two parts to this. First, we want to structure known vul-
nerabilities so that the vulnerabilities and permutations of
such vulnerabilities can best be found in our code database.
Secondly, we want to establish ways to automatically propose
fixes. Using existing vulnerability codebases such as VulnCode
(https://www.vulncode-db.com/), we will try to detect existing
vulnerabilities in source code and alert the owners of the code
about the vulnerability. Other projects have demonstrated that
this approach is successful in detecting vulnerabilities [18]].

Using the FASTEN project call graph (ecosystem-wide
caller-callee relationships), we can pinpoint vulnerabilities at
the method level and explore their propagation across their
ecosystem. This enables pattern-based graph searches that can
be used to detect malware [[19]].

The severity of vulnerabilities in code depends on several
factors. If the code has been fixed in a newer release, its
severity is relatively low. However, if any other packages
depend on this code, for instance, using dependency data from
the FASTEN project and its vulnerability, we can warn the
creators about the vulnerability.

As the fixes in vulnerability databases are typically well
structured and relatively easy to fix, we could automatically
generate pull requests for the code to be fixed. Furthermore,
if the tooling developed in this project is adopted widely, we
could warn about vulnerable code at the time of a commit.

IV. CONCLUSION

We proudly present SearchSECO to index all software
methods in the worldwide SECO. With SearchSECO, we
aim to serve future empirical software engineering researchers
with new tools and data to conquer new research challenges.
Furthermore, we hope that our innovations can lead to a safer
and more secure worldwide SECO. With this paper, we hope
to gather feedback and ideas from the BENEVOL community
to implement and improve SearchSECO.

https://github.com/iotcube/hmark
https://www.vulncode-db.com/

ACKNOWLEDGMENT

The SearchSECO project, which is part of the SecureSECO
initiative, is currently supported by Gitlab, the Software Im-
provement Group (SIG), the Lisk Center, Cisco, Centric,
and KPN Security. See |SecureSECO.org/partners for more
information. SecureSECO is endorsed by the Secure Software
Alliance, the Vereniging Software Engineering Nederland
(Versen.nl), and the Blockchain Coalition. We are also in
contact with the eSciences center, SurfSARA, and DANS,
whom we see as strategic partners in designing our computing
and data storage resources.

We would like to thank all the SecureSECO student team
members for their ideas in this paper: Venja Beck, Floris
Jansen, Fang Hou, Elena Baninemeh, Luuk van Driel, Jozef
Siu, Swayam Shah, Donny Groeneveld, and Tom Peirs.

CONTRIBUTION STATEMENT

This paper was composed by Slinger Jansen, who has
brought the research teams together to create the concepts
behind SearchSECO. Siamak Farshidi has assisted in writing
the article, creating Table [l and proof reading the work.
Tijs van der Storm, Georgios Gousios, Magiel Bruntink, and
Joost Visser were, in no particular order, responsible for the
subsections in the Realization Section. Furthermore, they have
contributed greatly to the development of the SearchSECO
project and the SecureSECO initiative.

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

M. Bruntink, A. Van Deursen, R. Van Engelen, and T. Tourwe, “On the
use of clone detection for identifying crosscutting concern code,” IEEE
Transactions on Software Engineering, vol. 31, no. 10, pp. 804-818,
2005.

S. Jansen, M. A. Cusumano, and S. Brinkkemper, Software Ecosystems:
Analyzing and Managing Business Networks in the Software Industry.
Edward Elgar Publishing, 2013.

T. Siddiqui and A. Ahmad, “Data mining tools and techniques for mining
software repositories: A systematic review,” in Big Data Analytics.
Springer, 2018, pp. 717-726.

A. Serban, M. Bruntink, and J. Visser, “Graphrepo: Fast exploration in
software repository mining,” Arxiv 2008.04884, 2020.

G. Rousseau, R. Di Cosmo, and S. Zacchiroli, “Software provenance
tracking at the scale of public source code,” Empirical Software Engi-
neering, 2020.

J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: learning to
fix bugs automatically,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1-27, 2019.

L. An, O. Mlouki, F. Khomh, and G. Antoniol, “Stack overflow: A code
laundering platform?” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), Feb 2017,
pp. 283-293.

R. Abdalkareem, E. Shihab, and J. Rilling, “On code reuse from
stackoverflow: An exploratory study on android apps,” Information and
Software Technology, vol. 88, pp. 148-158, 2017.

S. Baltes and S. Diehl, “Usage and attribution of stack overflow code
snippets in github projects,” Empirical Software Engineering, vol. 24,
no. 3, pp. 1259-1295, 2019.

T. Wiichner, A. Cistak, M. Ochoa, and A. Pretschner, “Leveraging
compression-based graph mining for behavior-based malware detection,”
IEEE Transactions on Dependable and Secure Computing, vol. 16, no. 1,
pp. 99-112, 2017.

P. Klint, T. van der Storm, and J. J. Vinju, “Rascal: A domain specific
language for source code analysis and manipulation,” in Ninth IEEE
International Working Conference on Source Code Analysis and Manip-
ulation (SCAM). 1EEE Computer Society, 2009, pp. 168—177.

S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach for
vulnerable code clone discovery,” in 2017 IEEE Symposium on Security
and Privacy (SP). 1EEE, 2017, pp. 595-614.

B. Basten, M. Hills, P. Klint, D. Landman, A. Shahi, M. Steindorfer,
and J. Vinju, “M 3. a General Model for Code Analytics in Rascal,” in
Proceedings of the first International Workshop on Software Analytics,
SWAN, 2015.

C. Ragkhitwetsagul and J. Krinke, “Siamese: scalable and incremental
code clone search via multiple code representations,” Empirical Software
Engineering, pp. 1-49, 2019.

A. Pietri, D. Spinellis, and S. Zacchiroli, “The software heritage graph
dataset: Public software development under one roof,” in Proceedings
of the 16th International Conference on Mining Software Repositories,
ser. MSR "19. IEEE Press, 2019, pp. 138-142.

G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a firehose,”
in 2012 9th IEEE Working Conference on Mining Software Repositories
(MSR). 1EEE, 2012, pp. 12-21.

D. Kolovos, P. Neubauer, K. Barmpis, N. Matragkas, and R. Paige,
“Crossflow: a framework for distributed mining of software repositories,”
in 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). 1EEE, 2019, pp. 155-159.

N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Detection
of recurring software vulnerabilities,” in Proceedings of the IEEE/ACM
international conference on Automated software engineering, 2010, pp.
447-456.

X. Hu, T.-c. Chiueh, and K. G. Shin, “Large-scale malware indexing
using function-call graphs,” in Proceedings of the 16th ACM conference
on Computer and communications security, 2009, pp. 611-620.

SecureSECO.org/partners
Versen.nl

	Introduction
	Mapping the Worldwide Software Ecosystem
	Realization
	Parsing Worldwide Software Ecosystem
	Storage and Retrieval of Worldwide Code Clones
	Collect Source Code for Analysis
	AI Assisted Graph Mining for Vulnerabilities

	Conclusion
	References

