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Abstract—Component Based Software Engineering (CBSE) is
a development discipline based on the availability of software
components, that are described and indexed for internal or
external, present or future, reuse. Although the creation of
reusable components is requested to be designed from scratch,
this is often time consuming and expensive. An alternative is to
extract such components from pre-existing OO software.

In this work, we compare two different community detection
algorithms to perform components extraction from existing
software. Considering ‘components’ as ‘communities’, the aim
is to evaluate how independent, yet cohesive, the components
are, when extracted by community detection algorithms.

Using a small sample of 3 Java systems, we show how the
components can be extracted based on structural information.
Furthermore, we consolidate the extracted components using
semantic information, to ensure their cohesion. We use three
document representation techniques to evaluate the internal
cohesion of components.

The results show that both algorithms perform well with each
having their own strengths. Leiden extracts less cohesive, but
better separated, and better clustered components that depend
less on similar ones. Infomap, on the other side, creates more
cohesive, slightly overlapping clusters that are more likely to
depend more on other semantically similar components.

Index Terms—Components Identification, Community Detec-
tion, Components Semantic Analysis

I. INTRODUCTION

CBSE is an alternative to Object-Oriented (OO) develop-
ment that aims to make it easier to develop easily reusable and
understandable software by using components [1]. In order to
become useful, CBSE has to produce a repository containing
enough components, so that developers do not have to rewrite
them from scratch [2], [3]. An interesting new development
for CBSE has been the transition from monolithic applications
to microservices-based architectures [4].

An alternative to pre-developed and designed components is
to extract them from pre-existing software. As an example of
this approach, [5] proposed an architecture recovery approach
called ROMANTIC, helped by human experts. Similarly, using
particle swarm optimization, [6] proposed a method that
uses a meta-heuristic search-based clustering. Frequent usage
patterns propelled instead the search heuristics in [7].

Other papers, although not necessarily focusing on com-
ponent reuse, provided algorithms for component extraction:

[8], [9] proposed a metric called MQ to measures edge
density of graphs, to help in the module selection. The use
of graph clustering was often used for the same purpose in
later publications [10], [11].

The aim of this paper is to evaluate how well-formed the
components are when they are automatically extracted by
community-detection algorithms [12]. Based on the extracted
‘communities as modules’, we aim to test the cohesiveness of
those communities (of features) in the context of the overall
software system. For the stated aim, we analysed a small
sample of three OSS Java projects (antlr4, avro, and openj9).
Those come from a larger sample1 of some 700 Java projects,
that will be analyzed as part of the first author’s PhD work.

The two objectives of this paper are (i) to evaluate the
effectiveness of extracting structure-informed modules from
a software system, and (ii) to detect whether the extracted
modules are semantically cohesive.

In order to assess the first objective, we used two community
detection algorithms, Infomap [13] and Leiden [14]. The
second objective is checked in two ways: at first we evaluated
whether there is low cohesion between different modules (e.g.,
semantic separation); additionally, we also checked whether
the identified modules are cohesive per-se. As part of the repli-
cation package, we make our source code publicly available2.

II. BACKGROUND

In the following section, we introduce the three steps in
this work: how we extracted the structural dependencies (II-A),
how we detected the software modules as ‘communities’ (II-B)
and how we assessed the cohesiveness of the modules (II-C).

A. Structural dependencies

The first step of our approach is the extraction of the
dependency graph for each project in our sample. Using
the Arcan [15] tool, we obtained the nodes and the edges
describing the dependencies between classes, where the edge
weight is the number of uses [16] of one class of the
other. We obtained the number of vertices and edges de-
scribed in Table I. For example, in antlr4, we have a depen-
dency between org.antlr.v4.automata.ParserATNFactory.java
and org.antlr.v4.tool.LexerGrammar.java as the former imports

1Awesome Java is a GiHub project that aggregates several hundreds of
curated Java projects, available at https://github.com/akullpp/awesome-java

2https://github.com/SasCezar/ComponentSemantics/tree/BENEVOLCopyright 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).
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the latter. We also note the weight of such dependency (in
this case, 1), that is used by Infomap and Leiden to create
communities.

TABLE I: Size of the analyzed projects in terms of vertices
(documents) and edges (dependency between documents).

antlr4 avro openj9

# Nodes 384 292 910
# Edges 2,386 1,175 3,865

B. Community detection via graph clustering
The second step of our approach uses the relationships

identified by the structural dependencies as input for the
Community Detection (CD) algorithms. CD (or graph clus-
tering) approaches have been used for various tasks in the
software engineering domain besides component identifica-
tion. Examples include aiding the transition from monolithic
applications to microservices architectures [4], architecture
reconstruction [17], and refactoring of software packages [18].

In this step we compare two different types of community
detection algorithms, Infomap and Leiden: both are popular
and effective clustering tools that have been deployed in
different domains. Table II summarises, for the three systems,
the number of identified components by the two algorithms.

a) Infomap [13]: is an algorithm based on random
walks and Huffman coding [19]. They frame the problem of
partitioning the graph into communities as a code optimization
problem. To find an efficient code, they look for a partition
that minimizes the expected description length of a random
walk in the graph. In the resulting partition, a community is
made of a group of nodes among which information flows
quickly and easily.

b) Leiden [14]: is an improvement of Louvain [20],
with Leiden guaranteeing well connected communities. They
maximise the community modularity by isolating modules
with the most dense internal connections (i.e., higher cohesion)
and the least amount of connections between outside nodes
(i.e., lowest coupling). Leiden (and so Louvain) starts by
assigning different communities to each vertex. They merge
the nodes iteratively, based on the gain in modularity (if there
is no gain, the node remains in its current community). The
procedure stops when, moving a node into another community,
there is no further gain in the modularity.

Table II summarises the number of components (e.g., the
communities) as extracted by the Infomap and Leiden algo-
rithms. As visible, Leiden is consistently extracting more (but
smaller) components, whereas Infomap can aggregate more
classes in the same (larger) component.

TABLE II: Nr of components extracted by Leiden and Infomap

antlr4 avro openj9

Leiden 7 12 26
Infomap 3 6 16

C. Semantic cohesion from source code

The third step of our approach is based on the extraction
of semantic cohesion and separation within the source code.
We used two popular natural language processing techniques,
TF-IDF and BERT.

a) TF-IDF: is a measure that reflects the importance of
a word in a document based on a collection of documents.
It is the ratio between the number of times the word appears
in the document and the amount of information that word
provides. The latter is obtained by dividing the total number
of documents by the number of documents containing the
term and then taking the logarithm. TF-IDF does not capture
the position in the text, semantics, co-occurrences in different
documents, meaning that the created representations are useful
as lexical level features. However, unlike BERT, its vocabulary
adapts to the collection. The final representation of a collection
(in our case a software project) is a document-term matrix,
where the columns are the terms, and the rows documents.

b) BERT [21]: is a state-of-the-art neural network model
for learning dense vector representation of words (embed-
dings). It makes use of the Transformer [22], an encoder-
decoder architecture that uses attention [23] to learn contextual
relations between words in a text. BERT representations are
contextual, meaning that word’s representation is based on
the other words in the sentence (context). We can obtain an
embedding of a sentence or document by taking the vector of
the first (special) token. In this paper we used the Hugging
Face’s bert-base-uncased pre-trained model [24]. Although
this pre-trained model has a vocabulary optimized for natural
text, we also adopted a subword segmentation technique called
WordPiece [25] (e.g. playing becomes play + #ing). While this
still provides additional bits of information, some technical
words are nevertheless poorly tokenized (e.g. servlet becomes
ser + #v + #let).

III. EXTRACTING THE DOCUMENTS EMBEDDINGS

The extraction of features representing the documents is
performed in three different ways:

a) Embeddings from package- and class-names: The first
feature extraction uses BERT to perform an embedding of
the cleaned text of the package and class name. The cleaning
consists of splitting the package name by the dots; following,
we remove the first two elements of the list as they represent
the organization that developed the software. The final step
is to split the camel case strings into words and remove
java keywords. For example org.antlr.v4.tool.LexerGrammar
becomes ”v4 tool lexer grammar” which is used as input to
BERT to create the embedding.

b) Embeddings from source code: The second feature
extraction method uses BERT again; however, this time, we
perform the embedding on the set of identifiers extracted
from the source code file. For the extraction of the identifiers
contained in the source code, we used the tree-sitter parser
generator tool3. It makes easy to get the identifiers, without

3https://github.com/tree-sitter/tree-sitter
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keywords, from the annotated Concrete Syntax Tree created
using a grammar for Java code. We clean the identifiers as
before, and remove common Java terms that do not add much
semantically (e.g., ‘main’, ‘println’, etc). Figure 1 shows an
example of the preprocessing.

Fig. 1: Input and output for the extraction of the identifiers set
of the source code.

c) TF-IDF bag of words from source code: The last
feature extraction method that we use is a modification of the
second. Instead of using BERT for the creation of the doc-
ument embedding, we use TF-IDF. For each of the analysed
systems, we limit the vocabulary size to the top 1, 000 terms.

IV. EXPERIMENTS AND RESULTS

Our experiments are designed to evaluate different commu-
nity detection algorithms in terms of semantic cohesion of
components and separation between different components.

A. Semantic Cohesion

We first evaluate the internal semantic cohesion of com-
ponents using the cosine similarity. This should indicate how
cohesive are the components found by the community detec-
tion algorithm. Given two vectors, the cosine similarity ranges
between +1, and −1. With +1 meaning that the two vectors
have the same orientation, −1 that their meaning is opposite,
and 0 that they are orthogonal.

We perform a pairwise similarity between all the vectors
describing the nodes in the community and then take the
average. The average of the components mean similarity for
each project is presented in Table III. We can notice that there
is a large difference in the similarity scores between BERT
and TF-IDF. This is also present in the other analysis. This
is due to the different type of representation obtained by the
two methods, TF-IDF is sparse and only syntactic, making it
more difficult for the latter to obtain high similarity scores for
documents that contain different words with similar meaning.

The analysis shows that the components extracted from both
Leiden and Infomap have a high cohesion with each of the
three features. While both have a high cohesion, Infomap gives
more cohesive components 5 out of 9 times.

TABLE III: Average cohesion of components

BERT
TF-IDF

Project Package Document

Leiden Infomap Leiden Infomap Leiden Infomap

antlr4 0.8672 0.8804 0.8932 0.9055 0.3096 0.3661
avro 0.8171 0.8487 0.9197 0.9256 0.4617 0.4491
openj9 0.8767 0.8645 0.9097 0.9043 0.4466 0.4371

B. Semantic Separation

The extracted components should have low semantic sim-
ilarity. This is measured by the cosine similarity between
the representing vectors of each community. Since each
component is composed of many nodes, each with its own
embedding, the community vector is obtained aggregating in a
single vector all the information, and using the mean function.

Table IV presents the results for the semantic separation.
Leiden has lower values in 7 out of 9 cases when compared to
Infomap. When contextualized with the results of the semantic
cohesion, we have a similar result as before. The average
external separation is smaller than the internal 2 out of 9
for Infomap and 3 for Leiden. We can see visually both
the semantic cohesion and separation in Figures 2. One of
Infomap’s components is significantly larger than the others
(also in the other projects), and this distorts both the cohesion
and separation. For this reason we need to compute a clustering
measure, the Silhouette, using the nodes and not an aggregated
representation.

TABLE IV: Average similarity between components

BERT
TF-IDF

Project Package Document

Leiden Infomap Leiden Infomap Leiden Infomap

antlr4 0.9384 0.9448 0.9705 0.9729 0.4679 0.5649
avro 0.8677 0.8741 0.9329 0.9545 0.3336 0.4740
openj9 0.8523 0.8421 0.9425 0.9401 0.2256 0.2315

C. Silhouette

The average similarity scores above do not give a global
idea of how well the nodes are grouped together semantically.
We can get a combined measure of both the internal cohesion
and external separation by using the Silhouette coefficient.
This is a measure of how similar an object is to its own
cluster (cohesion), as compared to other clusters (separation).
The values range from +1 (i.e., perfect cluster assignment) to
−1 (i.e., each element is assigned to the wrong cluster). A
value of 0 indicates overlapping clusters. The silhouette can
be computed using various distance metrics, like the Euclidean
distance: in the experiments below, we use the cosine distance,
defined as 1− cos similarity.

The silhouette results are presented in Table V. The results
give a better overview of the previous analysis. We can see that
Leiden gets consistently better results than Infomap (8 times).
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(b) Infomap

Fig. 2: avro’s TF-IDF features reduced to two dimensions. The spatial position of the node represents its semantic, the color
(and label) the component it belongs to. Leiden’s communities 2, 5, and 0 are scattered, while the others are more cohesive.
In Infomap community 0 spans the entire semantic space, while communities 3, 1, and 2 are cohesive.

This is caused by more semantically sparse components as it
can also be noticed in Figure 2b.

TABLE V: Silhouette scores for the extracted communities

BERT
TF-IDF

Project Package Document

Leiden Infomap Leiden Infomap Leiden Infomap

antlr4 +0.0707 +0.0750 +0.0152 +0.0084 +0.1028 +0.0783
avro +0.0292 −0.0420 −0.0069 −0.1385 +0.1263 +0.0470
openj9 +0.0497 −0.0104 −0.0502 −0.0882 +0.1184 +0.0585

D. Correlation Between Dependencies and Similarity

The final analysis measures the correlation between the
number of dependencies connecting the components and their
semantic similarity. We would like this score to be slightly
negative, since having similar components with high depen-
dency might indicate that the algorithm splits a component
into two, or that in the project there are two components that
perform different parts of the same tasks. A slightly negative
value instead, will reflect that the components interact less
with more similar ones.

For this experiment, we measured first the number of
edges between each community in a pairwise fashion. In this
case, we consider the edges as undirected and use the total
amount of dependencies between communities. Moreover, we
measured the semantic similarity between components, and,
as for the semantic separation, we used the mean of the
embeddings of each vector as the component representation.

We compute the correlation of the two variables using
Pearson’s r. The results for each project are shown in Table VI.
For both Leiden and Infomap there is no significant correlation
between the semantic similarity of components and their level

of dependencies. However, Infomap has two negative values,
even if overall it is lower only 4 times, and only on the smaller
projects. This is caused by it having a large component with
many nodes that span across a wide semantic space.

TABLE VI: Pearson’s r for the number of dependencies
between components and the semantic similarity.

BERT
TF-IDF

Project Package Document

Leiden Infomap Leiden Infomap Leiden Infomap

antlr4 0.1188 0.0049 0.2299 0.2681 −0.0150 −0.1108
avro 0.2762 0.1145 0.2065 0.2361 0.0705 −0.0405
openj9 0.1614 0.1766 0.1249 0.1472 0.1263 0.1813

V. CONCLUSION

In this work we compared two different community de-
tection algorithms for the software components identification
task. We evaluated them using three different representation
methods and showed the characteristics of each algorithm.
Leiden extracts less cohesive, but better separated, and bet-
ter clustered components that depend less on similar ones.
Infomap, on the other hand, creates more cohesive, slightly
overlapping clusters that are more likely to depend more on
other semantically similar components.

Beside the small sample size, an issue with our approach is
that the aggregated scores, and the small differences between
the internal and external similarity, give only a shallow idea
of what the algorithms identify.

As future work, we plan to qualitatively evaluate each of the
extracted components individually, and to asses possible auto-
matic refinements to the content of the components based on
their semantics. Furthermore, components should be assigned
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a topic to make them easily understandable and accessible.
Finally, we plan to enlarge the analysis to the entire set of
projects contained in the Awesome Java curated set.
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