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Abstract—Detecting the presence of bots in distributed soft-
ware development activity is very important in order to prevent
bias in large-scale socio-technical empirical analyses. In previous
work, we proposed a classification model to detect bots in GitHub
repositories based on the pull request and issue comments of
GitHub accounts. The current study generalises the approach to
git contributors based on their commit messages. We train and
evaluate the classification model on a large dataset of 6,922 git
contributors. The original model based on pull request and issue
comments obtained a precision of 0.77 on this dataset. Retraining
the classification model on git commit messages increased the
precision to 0.80. As a proof-of-concept, we implemented this
model in BoDeGiC, an open source command-line tool to detect
bots in git repositories.

Index Terms—bot detection, distributed software development,
classification model, empirical analysis

I. INTRODUCTION

Many open source software projects rely on development
bots or DevBots (hereafter referred to as bots for short) to
reduce the workload of project maintainers and contributors
[1]. These bots play a prominent role in the software devel-
opment process, especially in online coding platforms. Bots
submit pull requests (PR) to update dependencies [2], merge
PRs [3]], submit issues for different problems [3]], help in code
review [4], and commit code directly to the codebase [5]]. Some
studies propose new bots [[6]—[11]], while other studies aim to
help developers analysing the adoption of existing bots [4],
[12]], [13]].

The presence of bots might introduce bias in large-scale
socio-technical empirical studies, especially if these bots are
very active. To prevent such bias it is important to distinguish
human activity from bot activity in software development
projects. While it is fairly easy for project members to recog-
nise bots in their projects (since they can rely on their project-
specific knowledge and experience), this is not necessarily
the case for researchers, especially when they are carrying
out large-scale ecosystem-level studies involving hundreds of
thousands of distinct projects and accounts.

Previous studies have proposed methods to automatically
identify bots by taking into account specific bot characteristics.
Dey et al. 5] proposed an ensemble technique to identify bots
relying on git commit information such as commit messages,
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contributors name, and commit files. In a prior study [[14], we
proposed an automatic classification model to identify bots in
git repositories hosted in GitHub based on the content of PR
and issue comments.

This paper aims to evaluate the generalisability of the
classification model we proposed in [[14]] by applying it to
git commit messages. To do so, we evaluate the model on a
set of 6,922 contributors extracted from the dataset provided
by Dey et al. [5]. As will be shown, our classification model
is able to attain a good precision, even if it was trained on
PR and issue comments rather than on git commit messages.
Retraining the classifier specifically on git commit messages
slightly improves its precision. To ease the use of our model
by practitioners and researchers, we propose BoDeGiC, a
command-line tool to detect bots in git repositories.

II. BACKGROUND

In our previous work [14], we developed and proposed a
classification model and associated tool, called BoDeGH to
identify bots in GitHub repositories based on the comments
they made in PRs and issues. To train and evaluate this model,
we created a ground-truth dataset of GitHub contributors that
were manually labeled as bots and humans by three raters.
The evaluation of the model on the test set achieved a very
high overall accuracy.

In parallel to our prior research, Dey et al. [5]] conducted a
similar study aiming to identify bots in git repositories based
on git commit data. They created a ground-truth dataset based
on the World of Code (WoC) dataset [[15] containing 73M
git repositories. Their ground-truth dataset is composed of
13,150 bots and 13,150 humans that were identified using BIN
(for Bot Identification by Name), a technique relying on the
presence of some keywords (e.g., “bot”) to identify bots. Based
on this ground-truth dataset, they proposed BIMAN (for Bot
Identification by commit Message, commit Association, and
contributor Name) to detect bots based on commit activities.

Although both aforementioned studies pursue the same goal,
they are different in essence. The most prominent difference
is the type of data on the basis of which bots are being
identified. PR and issue comments are messages that are being
used to explain or discuss issues or PRs. Such comments are
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Copyright 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).


https://github.com/mehdigolzadeh/BoDeGHa

not limited in size, in contrast to commit messages that aim
to provide one-liners that summarise the changes made in a
commit. In [14] we identified bots based on PR and issue
comments, while BIMAN relies on git commit information
to distinguish bots from humans. As a consequence, the set
of contributors considered in both cases is different, since
contributors active in PR or issue comments are not necessarily
active in code commits, and vice versa. Another difference is
that we restricted our dataset to contributors active in GitHub
while BIMAN works on all types of git repositories, even if
they are not hosted on GitHub. Moreover, when a contributor
is active in more than one repository, we considered each
repository individually while BIMAN aggregates the activity
from multiple repositories for each contributor.

III. METHOD AND APPROACH
A. Initial classification model

In prior work [|14], we proposed an approach to distinguish
bots from humans based on their PR and issue commenting
activities in GitHub repositories. We developed a model (and
associated command-line tool) with a high precision to predict
whether a contributor is a bot or human based on the comments
made in issues and PRs. The underlying idea was that bots
perform automated tasks, therefore, they are assumed to have
more repetitive comments than humans. To capture this repe-
tition of comments the model was trained using four features
related to the comments associated to a contributor: (i) we
measured the number of comment patterns on the basis of a
compound comment similarity metric. We hypothesized that
the less comment patterns a contributor has, the more likely
that contributor is a bot; (ii) we computed the Gini coefficient
to capture the inequality of the number of comments in
patterns; (iii) we counted the number of comments since it
allows to distinguish between contributors having a similar
number of comment patterns; (iv) and we counted the number
of empty comments, driven by the assumption that bots are
supposed to have meaningful non-empty messages. We refer
to [14] for the rationale behind these features and how we
computed them.

To evaluate the performance of the model, we relied on
a ground-truth dataset composed of 5,000 distinct GitHub
contributors. To create such a ground-truth dataset, we man-
ually labeled each contributor as bot or human with high
inter-rater agreement. The final dataset contains 527 bots and
4,473 humans. We trained and compared various classification
models, and achieved the highest results (F'1-score = 0.98)
with a random forest classifier. Not only does the model
perform well in general, it also achieves high precision and
recall for both classes: bots achieved a precision 0.94, a recall
of 0.94 and F'1 of 0.92, and humans achieved a precision of
0.99, recall of 0.99 and F'1 of 0.99. Only 19 out of 211 bots
and 13 out of 1,789 humans were misclassified by the model.

B. Ground-Truth Commit Message Dataset

Our previous model performed very well to identify bots
based on the repetitiveness of their comments, a text-based

TABLE I
SUMMARY OF THE DATASET CHARACTERISTICS.

original commit dataset from [5] \ number
# git repositories 6,394
# commits 311,622
# distinct contributors 6,922
— # bots 3,380
< # humans 3,542

activity. Since git commit messages are also text-based, and
since we can expect that bots active in commits exhibit a
similar kind of behaviour, it seems promising to apply our
model on git commit messages as well.

In this paper, we will first evaluate how our model (trained
on PR and issue comments) performs when applied as-is to
git commit messages. Then, we will evaluate the approach
we developed in [14] applied on git commit messages, by
training a new model. To do so, we need a labeled dataset of
contributors and their commit messages. We rely on the dataset
of git commits that was used in [5]] and has been made publicly
available

We transformed the dataset to conform to the input format
required by our classification model. First of all, as explained
in previous section, our model expects a set of features related
to comments of a contributor in a specific repository. There-
fore, if a contributor is active in more than one repository, we
split its activity by repository. Our approach being based on
the assumption that bots exhibit more repetitive activities, it
cannot be applied for contributors that do not have enough
activities. In [[16]], we observed that the performance of the
model decreased when the number of comments was below 10.
Similarly, in this work, we will only consider contributors that
have at least 10 commit messages. As in previous work, we
rely on 100 commit messages to compute the set of features.
This upper bound significantly reduces the computational cost,
and has been shown to be more than sufficient to achieve a
very high precision in [[14]. Not imposing an upper bound
would require to consider all commits for each contributor-
repository pair, and some pairs have more than 20,000 commit
messages. Even for pairs with over 1,000 commit messages the
performance begins to slow down considerably.

After having performed these steps, the resulting dataset
contains 311,622 commit messages from 6,922 contributors,
3,380 whom have been labeled as bots and 3,542 as humans.
This accounts for around 25% of the original dataset. The
dataset characteristics are summarized in Table [l

IV. RESULTS

In this section, we will first evaluate how the classification
model trained on PR and issue comments performs when
applied as-is to git commit messages. Then, we will evaluate
how the approach developed in [14] applies to git commit
messages, by training a new classification model.
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TABLE 11
EVALUATION OF THE CLASSIFICATION MODEL OF [14].
classified classified P R F1
as bot as human
Bot 2,631 (TP) 749 (FN) 0.76 0.78 0.77
Human 848 (FP) 2,694 (TN) 0.78 0.76  0.77
weighted avg | 0.77 0.77 0.77

We start by applying the existing model to see how it
performs when applied on a new kind of data (i.e., on git
commit messages). For each of the 6,922 contributors in the
dataset, we computed the features required by the model, and
we asked the model to predict whether the contributor is a
bot or a human. We then compared the prediction with the
ground-truth, enabling us to compute the precision P of the
model, its recall R and its F'1-score. The results are reported
in Table [

The model achieved a precision of 0.77, with about 22.1%
(749 out of 3,380) false negatives (FN) of bots misclassified
as humans, and about 23.9% (848 out of 3,542) false positives
(FP) of humans misclassified as bots. Most contributors are
correctly classified as bot or human by the existing model even
if it was not trained on git commit messages but on PR and
issue comments. A possible explanation for this result is that
even though the model was originally trained on issue and PR
comments, it mostly captures the repetitive nature of tasks.
Therefore, it shouldn’t be that surprising that it also works
on commit messages, where we can also expect bots to have
repetitive behaviour.

To see how the approach developed in [14] behaves on git
commit messages, we trained a new model on git commit
messages as opposed to the previous model that was trained on
PR and issue comments. To do so, we divided the ground-truth
dataset into two disjoint subsets. 60% of the data are used to
perform grid-search cross-validation to select the best classifier
and its parameters. A test set composed of the remaining 40%
is used to evaluate the selected classifier on unseen data. At
the end of the cross-validation set, we obtained 91 different
classifiers. The performance of these classifiers was measured
using traditional performance metrics of precision P, recall R,
and F'l-score for the population of each class (i.e., for bots
B and human H). We report the highest F'1-score for each
classifier in Table in descending order. We retained the
random forest (RF) classifier, as it slightly outperforms the
other classifiers. Its score was obtained with the entropy split
criterion, 20 estimators (i.e., trees) and a tree depth of 8.

We evaluated the selected classifier on the test set containing
the remaining 40% data. This test set includes 2,769 identities,
of which 1,417 correspond to humans and 1,352 correspond
to bots. The evaluation results are reported in Table With
this retrained model about 24.6% of bots (333 out of 1,352)
are misclassified as humans (FN), and about 15.9% of humans
(226 out of 1,417) are misclassified as bots (FP). Compared
to the previous model, the model trained on commit messages

detects humans more accurately, while the converse can be
observed for bots. With a value of 0.80, the precision of the
retrained model is slightly higher than the previous one.

V. A BOT DETECTOR TOOL FOR GIT REPOSITORIES

In order to enable practitioners to use the classification
model, we implemented it through BoDeGiC (Bot Detector
for Git Commitsﬂ a command-line tool to detect bots in given
git repositories. The tool analyses the commit messages of
each contributor in the specified git repositories and predicts
whether the contributor is a bot or a human. BoDeGiC is
implemented in Python 3.7 and is easily installable through
pip, the official package manager for Python.

BoDeGiC works in three steps. The first step consists
of extracting all commit information from the specified git
repository using git log. This step results in a list of
commits, authors and their corresponding commit messages.
The second step consists of computing the features to feed
the classification model. Features consists of the total number
of messages, the number of empty messages, the number
of message patterns and the inequality between the number
of messages within patterns. In the third step, we apply the
classifier that was trained on commit messages to the extracted
data. The tool outputs the prediction made by the model for
each contributor.

Listing 1. List of command-line arguments for BoDeGiC 0.2.0.
$ bodegic -h

usage: bodegic [-h] [--include [NAME [NAME ...]1]
[--start-date START_DATE] [--mapping [MAPPING] ]
[--verbose] [--min-commits MIN_COMMITS] [-—committer]
[-—-max-commits MAX_COMMITS] [--text | --csv | —-—-Jjson]

[REPOSITORY [REPOSITORY ...]][--only-predicted]

The command-line interface of BoDeGiC is summarized
in Listing [I} The output and the behaviour of BoDeGiC
can be adapted by many optional command-line arguments
in several different ways. By default, BoDeGiC relies on the
author names in git commits, but the committer names can be
used instead by specifying ——committer. The list of names
to consider can be explicitly specified with ——include.
BoDeGiC also supports identity merging (i.e., when a contrib-
utor uses multiple names) through the ——mapping parameter.
This parameter expects a path to a CSV file specifying how to
map names to identities. This file can also be used to ignore
specific names, by mapping them to the special “IGNORE”
identity. Since the model (and by extension, the tool) requires
at least 10 commits for a contributor to generate a prediction,
contributors that have commits less than this number are pre-
dicted as “Unknown”. These cases can be excluded from the
output by means of the ——only-predicted parameter. Ad-
ditionally, The minimum and maximum number of commits to
consider can be changed respectively with ——min-commits
and —-max-commits. By default, BoDeGiC outputs one
line per author with the predicted class. The set of com-
puted features can be included in this output by adding the

3https://github.com/mehdigolzadeh/BoDeGiC


https://github.com/mehdigolzadeh/BoDeGiC

TABLE III
PRECISION, RECALL AND F'1 OF THE BEST-PERFORMING CLASSIFIERS PER CLASSIFIER FAMILY (IN DESCENDING ORDER OF F'1).

bots humans overall
classifier family | P(B) R(B) | P(H) R(H) | P(BUH) R(BUH) F1(BUH)
random forest (RF) | 0.817  0.748 0.775 0.837 0.817 0.748 0.793
decision trees | 0.845  0.698 0.750 0.876 0.845 0.698 0.787
support vector machine | 0.798  0.735 0.762 0.819 0.798 0.735 0.777
logistic regression | 0.807  0.720 0.755 0.832 0.807 0.720 0.776
k-nearest neighbours | 0.831 0.653 0.722 0.872 0.831 0.653 0.761

TABLE IV
EVALUATION OF THE RETRAINED CLASSIFICATION MODEL.
classified classified P R F1
as bot as human
Bot 1,019 (TP) 226 (FP) 082 0.75 0.78
Human 333 (FN) 1,191 (TN) 0.78 0.84 0.81
weighted avg | 0.80 0.80 0.80

—--verbose parameter. Finally, the output of BoDeGiC can
be exported in text (by default) or in JSON or as a CSV.
Fig. |1| presents the output of BoDeGiC on a randomly
chosen git repository that was analysed on 2020-10-14. The
first columns shows the contributor name, the second column
the number of extracted commit messages, the third column
the number of computed message patterns, and the fourth
column the statistical dispersion of the number of comments
per pattern as computed by the Gini inequality index. The last
column provides the predicted class of each contributor.

$ bodegic --verbose --committer
messages patterns dispersion prediction

committer
Travis CI[bot] 20 1 0.026 Bot
greenkeeper [bot] 10 3 0.141 Bot
* 69 58 0.040 Human
snyk-bot 5 NaN NaN Unknown

Fig. 1. Example of running BoDeGiC (version 0.2.0).

VI. DISCUSSIONS AND THREATS

The main threats to validity and mitigation strategies men-
tioned in our prior work [14] also apply to the current study.

A distinct threat to construct validity stems from the ground-
truth dataset that has been used to train and evaluate the
models. The dataset was created by other researchers and
we have assumed it was correctly built and validated. Any
presence of mislabeled items in that dataset could negatively
affect the results of applying our original classification model
(i.e., that was trained on PR and issue comments) as well as
the retrained model that was directly trained on this dataset.

In order to assess to what extent this threat holds, we
selected a subset of contributors from the dataset and manually
verified whether they are actually humans or bots. We ran-
domly selected 25 contributors from each category of correctly

and incorrectly classified contributors (i.e., from TP, TN, FP
and FN). Each of these cases was independently evaluated and
labeled by the three authors of this paper. At the end of this
process, we compared the labelings and observed agreement
on all 100 cases. We then compared our own labelings with the
actual labels found in the dataset, and observed a disagreement
for 19 out of 100 cases. Among these cases, 13 corresponded
to bots and 6 to human contributors. The prediction made by
our classification model for these 19 cases matched our own
labeling, i.e., the model was able to correctly predict them.

While manually looking at some other contributors in the
dataset, we encountered a few cases we could not agree on be-
cause they combine both bot-like and human-like behaviours.
We already encountered such “mixed” contributors in our
previous study [14] where we found that some contributors
were occasionally relying on tools or bots to automate part of
their activities. The presence of such mixed cases in git commit
messages reinforces our belief that a better definition of “what
a bot is” is required, with a clearer boundary between humans
and bots. We also believe, in view of these mixed cases, that
it might be interesting to identify bots not at the level of a
contributor but at the level of its activity. In other words, the
question “Is this contributor a bot?” would become “Is this
contributor activity produced by a bot?”.

VII. CONCLUSION

In prior work [14] we proposed a classification model to
predict bots based on features extracted from the PR and issue
comments of GitHub accounts. The motivation behind the
model was that bots tend to carry out repetitive tasks, implying
that they are more likely to use repetitive messages. In this
paper, we evaluated to which extent this approach performs
on git commit messages, another text-based activity for which
we expect bots to exhibit a similar repetitive behaviour.

We first evaluated how the model that we developed and
trained on PR and issue comments in GitHub repositories
performs on this new type of data. We then generalised the
classification model by retraining it on a ground-truth dataset
composed of commit messages for 6,922 git contributors. We
found that the highest precision was achieved by a random
forest classifier, improving the precision of the previous model
by 3% to 0.80.

We implemented BoDeGiC, a command-line tool to enable
practitioners to take advantage of this classification model. It
analyzes the commit messages of a git repository and predicts
whether the contributors are bots or humans.



Although promising, the obtained results suggest that, to
achieve a precision comparable to the one we obtained for
GitHub PR and issue comments, it will be necessary to
use other data and features in complement to git commit
messages. This is reminiscent of the BIMAN approach [5]
which, in addition to analysing commit messages (the BIM
part of BIMAN) combines two other independent models
based on the contributor names (BIN) and features related
to files and projects associated with the commits (BICA).
Given that our model is able to accurately capture more bots
(+8%) than BIM, it would be interesting to evaluate how the
BIMAN approach would improve by substituting BIM by our
classification model.
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