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Abstract. In today's world, the problem of information security is becoming critical. One of the 
most common cryptographic approaches is the elliptic curve cryptosystem. However, in elliptic 
curve arithmetic, the scalar point multiplication is the most expensive compared to the others. In 
this paper, we analyze the efficiency of the scalar multiplication on elliptic curves comparing 
Affine, Projective, Jacobian, Jacobi-Chudnovsky, and Modified Jacobian representations of an 
elliptic curve. For each coordinate system, we compare Fast exponentiation, Nonadjacent form 
(NAF), and Window methods. We show that the Window method is the best providing lower 
execution time on considered coordinate systems. 

1.  Introduction 
Throughout history, humanity has experienced the need to protect information. Many cryptosystems of 
different complexity were created. However, in the last 20 years, due to the growth in the computing 
power, most algorithms based on the complexity of factorization have become more vulnerable to 
cryptographic attacks. As a result, it became necessary to use alternative approaches to build 
cryptosystems with more advanced protocols. Currently, one of the most secure systems in cryptography 
is a cryptosystem based on elliptic curves (Elliptic Curve Cryptosystems -ECC). Elliptic cryptography 
is secure because there are currently no subexponential algorithms for solving the discrete logarithm 
problem [1, 2].  

The most expensive and widely used operation on ECC is scalar point multiplication because it is 
used for key generation, encryption/decryption of data, and signing/verification of digital signatures. 
Scalar multiplication denoted by 𝑛𝑃 where 𝑃 represents a point on the ellipic curve and 𝑛 represents a 
scalar. Efficient implementation of multiplying the points of an elliptic curve by a scalar is important.  

This research aims to study the methods of scalar point multiplication of NIST FIPS 186 elliptic 
curves and their implementation in the C++ programming language. 



 
 
 
 
 
 

The rest of this paper is organized as follows. Section 2 briefly introduces elliptic curve concept, 
affine, projective, Jacobian, Jacobi-Chudnovsky, and modified Jacobian coordinate systems. Section 3 
describes the actual research and algorithms of scalar multiplication on elliptic curves. The main libraries 
the calculation of integer values of arbitrary length are reviewed in Sections 4. Section 5 provides experimental 
analysis on NIST FIPS 186 standard. Finally, we conclude and discuss future works in Section 6. 

2.  Elliptic curve 
In the standards such as GOST 34.10-2018, NIST FIPS 186, the elliptical curve is described by the 
following parameters: 

• 𝑝 – field characteristic, prime number; 
• 𝑎, 𝑏 – constants that are parameters equation of the curve 𝑦! = 𝑥" + 𝑎𝑥 + 𝑏; 
• 𝐺 = (𝐺𝑥, 𝐺𝑦) – point of a large-order elliptic curve; 
• 𝑛 – point order 𝐺; 
• ℎ – cofactor determined by the ratio of the total number of points on a curve to the order of a 

point 𝐺, which should be the smallest possible. 
An elliptic curve over the field 𝐹# is the set of points (𝑥, 𝑦) satisfying the following equation [2-4]: 

𝐸1𝐹#2:   𝑦! + 𝑎$𝑥𝑦 + 𝑎"𝑦 = 𝑥" + 𝑎!𝑥! + 𝑎%𝑥 + 𝑎&. 

To achieve efficiency of elliptic cryptosystem implementations, curves over a simple field defined 
in the Weierstrass form are used: 

𝐸(𝐹#):		𝑦! = 𝑥" + 𝑎𝑥 + 𝑏 

where 𝑎, 𝑏	 ∊ 𝐹# – constants satisfying 4𝑎" + 27𝑏! ≢ 0	(𝑚𝑜𝑑	𝑝) and  𝑝 > 3	and 𝑝 – prime number. 
The set of points on the EC form a group (namely, an Abelian group) with the following properties: 

• if  𝑃 and 𝑄 ∈ 𝐹#, then 𝑃 + 𝑄 ∈ 𝐹#; 
• unit element 𝑂 (point at infinity): 𝑃 + 𝑂 = 𝑃; 
• inverse value of the point 𝑃(𝑥; 𝑦) – that point −𝑃(𝑥;−𝑦); 
• commutativity: 𝑃 + 𝑄 = 𝑄 + 𝑃; 
• associativity: 𝑃 + (𝑄 + 𝑅) = (𝑃 + 𝑄) + 𝑅 = 𝑃 + 𝑄 + 𝑅 = 𝑂. 

2.1.  Affine coordinate system 
Let the points 𝑃(𝑥' , 𝑦'), 𝑄(𝑥( , 𝑦() ∈ 𝐸(𝐹#), then the addition of points 𝑃(𝑥'; 𝑦') and 𝑄(𝑥(; 𝑦() is 
called the point 𝑅(𝑥); 𝑦)) = 𝑃 + 𝑄 then the coordinates of the point 𝑅 will be calculated as follows [2]: 

𝑥) = 𝑠! − 𝑥' − 𝑥(	(mod	𝑝), 
𝑦) = −𝑦' + 𝑠 ⋅ (𝑥' − 𝑥))	(mod	𝑝), 

where 𝑠 = M

*N+*O
,N+,O

	(mod	𝑝), if	𝑃 ≠ 𝑄	

"∗,N
S./

!∗*N
	(mod	𝑝), if	𝑃 = 𝑄	

 

In practical calculations, an affine coordinate system is inefficient since it requires the calculation of 
the inverse element in the field 𝐹#.  

A practical solution to this problem can be a transition to other coordinate systems (mainly to 
projective ones) by eliminating modular inversion. 

2.2.  Projective coordinate system 
In the projective coordinate system, the point of an elliptic curve is given by 𝑃 = (𝑋': 𝑌': 𝑍'). If  𝑍# =
0 than 𝑃 = 𝑂 – is a point at infinity. If  𝑍' ≠ 0, then the point P can be put in the affine coordinate 
system: 𝑥' = 𝑋'/𝑍' и 𝑦' = 𝑌'/𝑍' [5, 6].   



 
 
 
 
 
 

The equation of an elliptic curve in a projective coordinate system has the following form: 

𝐸1𝐹#2:		𝑌! ⋅ Z = 𝑋" + 𝑎𝑋 ⋅ 𝑍! + 𝑏𝑍" 

The addition operation of points (𝑃	 + 	𝑄) on the elliptic curve in a projective coordinate system has 
the form: 

𝑋) = 𝐵 ∙ 𝐷 
𝑌) = 𝐴 ⋅ 1𝑋' ⋅ 𝑍( ⋅ 𝐵! − 𝐷2 − 𝐵" ∙ 𝑌' ∙ 𝑍( 

𝑍) = B" ∙ 𝑍' ⋅ 𝑍( 
where 𝐴 = 𝑌( ⋅ 𝑍' − 𝑌' ⋅ 𝑍(, 𝐵 = 𝑋( ⋅ 𝑍' − 𝑋' ⋅ 𝑍(, 𝐶 = 𝑋( ⋅ 𝑍' + 𝑋' ⋅ 𝑍( and 𝐷 = 𝐴! ⋅ 𝑍' ⋅

𝑍( − 𝐵! ∙ C. 
The operation of doubling the point (2𝑃) is given as follows: 

𝑋) = 2𝑣 ⋅ 𝑜 
𝑌) = 𝑢 ⋅ (4𝑡 − 𝑜) − 8𝑌'! ⋅ 𝑣! 

𝑍) = 8𝑣" 
where 𝑢 = 3𝑋'! + 𝑎𝑍'!, 𝑣 = 𝑌' ⋅ 𝑍' , 𝑡 = 𝑋' ⋅ 𝑌' ⋅ 𝐵 and 𝑜 = 𝐴! − 8𝐶. 

2.3.  Projective Jacobi coordinate system 
In the projective Jacobi coordinate system, the point of the elliptic curve is given by 𝑃 = (𝑋': 𝑌': 𝑍'). 
If  𝑍# = 0 then 𝑃 = 𝑂 – a point at infinity. If  𝑍' ≠ 0, then 𝑃 can put a point in the affine coordinate 
system: 𝑥' = 𝑋'/𝑍'! и 𝑦' = 𝑌'/𝑍'" [6-8]. 

The algorithm addition of points on an elliptic curve in projective Jacobi coordinates has the form: 
𝑋) = −𝐶" − 2 ∙ 𝐴$ ∙ 𝐶! + 𝐷! 

𝑌) = −𝐵$ ∙ 𝐶" + 𝐷 ∙ (𝐴$ ∙ 𝐶! − 𝑋)) 
𝑍) = C ∙ 𝑍' ⋅ 𝑍( 

where 𝐴$ = 𝑋' ⋅ 𝑍(! , 𝐴! = 𝑋( ⋅ 𝑍'!, 𝐵$ = 𝑌' ⋅ 𝑍(" , 𝐵! = 𝑌( ⋅ 𝑍'", 𝐶 = 𝐴! − 𝐴$ и 𝐷 = 𝐵! − 𝐵$. 
The point doubling algorithm is specified as follows:  

𝑋) = t 
𝑌) = −8𝑌'% + 𝑣 ∙ (𝑢 − 𝑡) 

𝑍) = 2𝑌' ∙ 𝑍' 
where 𝑢 = 4𝑋' ∙ 𝑌'!, 𝑣 = 3𝑋'! + a ∙ 𝑍'%, 𝑡 = −2𝑢 + 𝑣!. 

2.4.  Jacobi-Chudnovsky coordinate system 
In the Jacobi-Chudnovsky projective coordinate system, the point on an elliptic curve is given by five 
coordinates 𝑃 = (𝑋': 𝑌': 𝑍': 𝑍'! : 𝑍'") [7, 8]. If  𝑍' = 0	then 𝑃 = 𝑂	– a point at infinity. If  𝑍' ≠ 0, then 
𝑃 can put a point in the affine coordinate system:  𝑥' = 𝑋'/𝑍'! 	 and 𝑦' = 𝑌'/𝑍'" 	. 

2.5.  Modified Jacobi coordinate system 
In the modified projective Jacobi coordinate system, the point on the elliptic curve is given by four 
coordinates 𝑃 = (𝑋': 𝑌': 𝑍': 𝑎𝑍'%) [7, 8]. If  𝑍' = 0 then 𝑃 = 𝑂 – a point at infinity. If  𝑍' ≠ 0, то 𝑃 
can put a point in the affine coordinate system: 𝑥' = 𝑋'/𝑍'! и 𝑦' = 𝑌'/𝑍'". 

 

3.  Scalar multiplication on elliptic curves 

3.1.  Scalar multiplication by Fast Exponentiation 
Algorithm 1 presents the operation of the scalar point multiplication by the Fast Exponentiation (FE) 
method. 
Let 𝑛 – be a scalar, 𝑃 ∈ 𝐸(𝐹#), then 𝑛𝑃 is calculated by the formula 𝑛𝑃 = ∑ 𝑛0 ∙ 20 ∙ 𝑃1+$

023 , where 𝑛0 – 
are the binary digits of the number 𝑛. 



 
 
 
 
 
 

 
Algorithm 1. Scalar multiplication of an elliptic curve point by FE method [5-12] 
Input: 𝑛 = (𝑛1+$, 𝑛1+!, … , 𝑛$, 𝑛3)	and	𝑃 ∈ 𝐸1𝐹#2. 
Output: 𝑅 = 𝑛𝑃. 
1. 𝑅 = 𝑂	
2. 𝑖 = 0	
3. 𝑤ℎ𝑖𝑙𝑒	𝑖 < 𝑘:	
3.1. 𝑖𝑓	𝑛0 == 1:	
3.1.1. 𝑅+= 𝑃	
3.2. 𝑃 = 2𝑃	
3.3. 𝑖+= 1	
4. 𝑅𝑒𝑡𝑢𝑟𝑛	𝑅.	
	

3.2.  Scalar multiplication by the NAF method 
NAF (nonadjacent form) is obtained from a modification of the fast exponentiation method by 
introducing an additional operation of subtracting a point, thereby reducing the amount of operations by 
representing a number in NAF with coefficients {−1,0,1}. 

Algorithm 2 presents the number representation in NAF, and Algorithm 3 describes the scalar point 
multiplication operation [11-17].  

 
Algorithm 2. NAF(n). 
Input: 𝑛 
Output: 𝑁𝐴𝐹(𝑛) = (𝑛3, 𝑛$, … , 𝑛1+!, 𝑛1+$) 
1. 𝑖 = 0 
2. 𝑤ℎ𝑖𝑙𝑒	𝑛 ≥ 1: 
2.1. 𝑖𝑓	𝑛	𝑚𝑜𝑑	2: 
2.1.1. 𝑛0 = 2 − (𝑛	𝑚𝑜𝑑	4) 
2.1.2. 𝑛−= 𝑛0 
2.2. else: 𝑛0 = 0 
2.3. 𝑛/= 2 
2.4. 𝑖+= 1 
3. 𝑅𝑒𝑡𝑢𝑟𝑛	(𝑛3, 𝑛$, … , 𝑛1+!, 𝑛1+$). 

 
 
Algorithm 3. Scalar multiplication by the NAF method 
Input: 𝑁𝐴𝐹(𝑛) = (𝑛3, 𝑛$, … , 𝑛1+!, 𝑛1+$) и 𝑃 ∈ 𝐸(𝐹#). 
Output: 𝑅 = 𝑛𝑃. 
1. 𝑅 = 𝑂 
2. 𝑖 = 0 
3. 𝑤ℎ𝑖𝑙𝑒	𝑖 < 𝑘: 
3.1. 𝑖𝑓	𝑛0 == 1: 
3.1.1. 𝑅+= 𝑃 
3.2. 𝑖𝑓	𝑛0 == −1: 
3.2.1. 𝑅−= 𝑃 
3.3. 𝑃 = 2𝑃 
3.4. 𝑖+= 1 
4. 𝑅𝑒𝑡𝑢𝑟𝑛	𝑅. 
 



 
 
 
 
 
 

3.3.  Scalar multiplication by the window method 
If there is enough memory, then window-based methods (window methods) can be used to speed up the 
operation of multiplying an elliptic curve point by a scalar. It was proposed by Brauer in 1939. The idea 
is to cut the scalar 𝑘 into digits and process 𝑊 digits at the same time. 

The scalar k in window methods is represented in the base 24 (or 25 in the radix-r method), where 
𝑤, 𝑟 > 	1. The algorithms in this method would significantly improve the speed of scalar multiplication. 
It processes the 𝑊-bit 𝑘 at a time, at the cost of 24+! points in the memory lookup table.  

For example, computing ECSM using the windowing method introduced by Thurber requires the set 
𝑖𝑃, 𝑖 ∈ {1, 3, 5, 7,·	·	·	, 24+$}, the points must be precomputed and stored in memory. A typical standard 
method for computing ECSM in radix-r is shown in Algorithm 4. In this algorithm, the average density 
of non-zero digits is y5+$

5
z.  

Algorithm 4 shows that the addition operation at step 1.2.1 and subtraction operation at step 1.3 begin 
only after completing repeated doubling operations at step 1.1.  

 
Algorithm 4. Radix-r standard signed scalar multiplication from left to right [18, 19] 
Input: 𝑙-bit Radix-r of 𝑘 and dot 𝑃 ∈ 𝐸(𝔽), где, 𝑘 = (𝑅6+$, 𝑅6+!, … , 𝑅$, 𝑅3)5, 𝑅0 ∈

{0,1,2, … , (𝑟 − 1)}. 
Output: Point 𝑄 = 𝑘𝑃. 
Pre-calculations: |𝑅0|𝑃 for all 𝑅0 ∈ {1,2, … , (𝑟 − 1)}. 
Initialize: 𝑄 = 𝒪; 
Step 1: For 𝑖 = 𝑙 − 1 down to 0 do 
Step 1.1: 𝑄 = 𝑟𝑄;  /* Perform a re-doubling operation */ 
Step 1.2: If 𝑅0 ≥ 0 Then 
Step 1.2.1: 𝑄 = 𝑄 + 𝑅0𝑃; /* Perform the addition operation */ 
Step 1.3: Else 𝑄 = 𝑄–𝑅0𝑃 /* Perform the subtraction operation */ 
Step 2: End For 
Step 3: Return 𝑄. 
 
It is a pure sequential method in computing operations with elliptic curve points at the low level of 

the addition group.  
Note that in order to make these window methods feasible for implementations that support parallel 

processing at the low level of the addition group, all precomputed points must be doubled 𝑤 − 1 times 
at each iteration.  

Let us denote the cost of the ECSM computational operation using 𝑘𝑃789:. Then the 𝑘𝑃78;9: of the 
𝑠-bit scalar 𝑘 using the windows method is approximately equal to: 

𝑘𝑃789: = (𝑠 − 1)𝐷𝐵𝐿 + y
𝑠

𝑤 + 1
z𝐴𝐷𝐷. 

Notably, the Window Methods (WM) described here do not provide resilience to SCAs. These 
techniques must be performed in a regular manner to counter most SCAs. 

4.  Long arithmetic library 
Nowadays, cryptography is very often faced with tasks that require the calculation of integer values of 
arbitrary length. But not all programming languages have built-in tools for such calculations. Hence, 
you have to either create your solutions or use additional libraries such as GMP, NTL, CLN, MIRACL, 
etc., which help in calculations with acceptable accuracy. 

The independent GMP library, which is one of the fastest libraries and supports most of the latest 
platforms (Mac OS X/Darwin, GNU/Linux, Windows, and others), has the following advantages [20, 
21]: 



 
 
 
 
 
 

• Practically there are no limits on the accuracy of calculations, except for a limited amount of 
available memory 

• user-friendly programming interface 
• rich set of various functions 
• supports most modern platforms: Unix-like operating systems such as GNU / Linux, Solaris, 

HP-UX, Mac OS X / Darwin, BSD, AIX; Windows. There are 32-bit and 64-bit versions of 
GMP 

• uses the most efficient algorithms and assembly code optimized for various modern processor 
systems in all internal cycles. 

The main areas of application of the library are cryptographic systems and research, security of inter-
network interactions, algebraic packages. The GMP library is part of the GNU Project. 

The CLN library, which allows you to perform operations using all existing numeric types, uses 
GMP as the computing core and is slightly inferior in the speed of calculations [22]. This library 
implements classes for integers, rational fractions, float numbers, complex numbers, univariant 
polynomials, modulo calculations. It has a user-friendly interface, a rich set of supported types, 
transparent mechanisms of interaction, and transformation of various data structures into each other, 
together with a sufficiently high computation speed, ensure the widespread use of this library. It uses in 
scientific research by many software products (Octave, maxima, Scilab, etc.). 

MIRACL – is a library with a commercial license, which has the following advantages: 
• rich library of specialized functions for calculations in the field of cryptography on elliptic 

curves; 
• availability of implemented C / C++ interfaces and various algorithms for solving problems to 

choose the optimal option for current needs [23]. 
The High-performance C ++ NTL library is famous for its high speed in algorithms for factorization 

and determination of the order of elliptic curves and polynomial arithmetic [24]. NTL represents 
structure and algorithms for integers, float numbers, polynomials, vectors, and matrices of various 
lengths and accuracy. All NTL algorithms are implemented in C ++, which ensures the high portability 
of this library. As a computing core, not only the NTL computing core but also the GMP library. 

Since NTL is one of the fastest today, it has been used more than once in setting "world records" in 
the speed of factorization algorithms and determining the order of elliptic curves. As a library for the 
implementation of long arithmetic in the C ++ programming language, we will use it. 

5.  Comparative analysis 
For the experiment, the following curves are selected from the  NIST FIPS 186 standard [25-27]: 

𝑃 − 192, 𝑃 − 224, 𝑃 − 256, 𝑃 − 384, and 𝑃 − 521. 
Curve 𝑃 − 192 

p = 6277101735386680763835789423207666416083908700390324961279 
n = 6277101735386680763835789423176059013767194773182842284081 
a = -3 
b = 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1 
Gx = 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012 
Gy = 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811 

Curve 𝑃 − 224 
p = 269599466671506397946670150870196306735579162600263081435100662 98881 
n = 269599466671506397946670150870196259404578077144243917216827223 68061 
a = -3 
b = b4050a85 0c04b3ab f5413256 5044b0b7 d7bfd8ba 270b3943 2355ffb4 
Gx = b70e0cbd 6bb4bf7f 321390b9 4a03c1d3 56c21122 343280d6 115c1d21 
Gy = bd376388 b5f723fb 4c22dfe6 cd4375a0 5a074764 44d58199 85007e34 

Curve 𝑃 − 256 
p = 115792089210356248762697446949407573530086143415290314195533631308867097853951 



 
 
 
 
 
 

n = 115792089210356248762697446949407573529996955224135760342422259061068512044369 
a = -3 
b = 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e 27d2604b 
Gx = 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0 f4a13945 d898c296 
Gy = 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece cbb64068 37bf51f5 

Curve 𝑃 − 384 
p = 3940200619639447921227904010014361380507973927046544666794829340424572177149 
6870329047266088258938001861606973112319 
n = 3940200619639447921227904010014361380507973927046544666794690527962765939911 
3263569398956308152294913554433653942643 
a = -3 
b = b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112 0314088f 5013875a c656398d8a2ed19d 2a85c8ed 
d3ec2aef 
Gx = aa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98 59f741e0 82542a38 5502f25d bf55296c 
3a545e3872760ab7 
Gy = 3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c e9da3113 b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 
90ea0e5f 

Curve 𝑃 − 521 
p= 686479766013060971498190079908139321726943530014330540939446345918554318339765605212255 
9640661454554977296311391480858037121987999716643812574028291115057151 
n = 686479766013060971498190079908139321726943530014330540939446345918554318339765539424 
5057746333217197532963996371363321113864768612440380340372808892707005449 
a = -3 
b = 051 953eb961 8e1c9a1f 929a21a0 b68540ee a2da725b 99b315f3 b8b48991 8ef109e1 56193951 ec7e937b 
1652c0bd 3bb1bf07 3573df88 3d2c34f1 ef451fd4 6b503f00 
Gx = c6 858e06b7 0404e9cd 9e3ecb66 2395b442 9c648139 053fb521 f828af60 6b4d3dba a14b5e77 efe75928 
fe1dc127 a2ffa8de 3348b3c1 856a429b f97e7e31 c2e5bd66 
Gy = 118 39296a78 9a3bc004 5c8a5fb4 2c7d1bd9 98f54449 579b4468 17afbd17 273e662c 97ee7299 5ef42640 
c550b901 3fad0761 353c7086 a272c240 88be9476 9fd16650. 
 

All algorithms are implemented on an Intel Core i3-2310M dual-core 2.10 GHz processor and 8.00 
GB of RAM. The points of each curve are multiplied by 1000 different constants in the range  [𝑛/2	; 𝑛), 
where  𝑛 is the order of the point. Also, for the window method, the window size is equal to 23. 

Table 1-5 and figure 1 shows the execution time of the algorithms for the scalar point multiplication 
in the coordinate systems described earlier: Affine, Projective, Jacobian, Chudnovsky Jacobian, and 
Modified Jacobian. 

Tables 1-5 show execution time in seconds of the scalar multiplication in five coordinate systems, 
using the curve 𝑃 − 192, 𝑃 − 224, 𝑃 − 256, 𝑃 − 384, and 𝑃 − 521 respectively. 

For curve 𝑃 − 192 (see, table 1), the best method is VM method showing best time 4.948s for  
Modified Jacobian coordinate systems and worst time 30.318 for Affine. FE method shows results that 
are 13.56%- 24.14% worse than WM. NAF method shows results that are 1.63%- 7.72% worse than WM. 

 
Table 1. Execution time in seconds of the scalar multiplication of the point of an elliptic curve in 

different coordinate systems, using the curve 𝑃 − 192  
FE NAF WM FE/WM-1 NAF/WM-1 

Affine 34.428 30.812 30.318 13.56% 1.63% 
Projective 5.849 5.116 4.976 17.54% 2.81% 
Jacobian 5.614 4.722 4.537 23.74% 4.08% 

Chudnovsky Jacobian 5.662 4.913 4.561 24.14% 7.72% 
Modified Jacobian 6.067 5.059 4.948 22.62% 2.24% 

 
For curve 𝑃 − 224 (see, table 2), the best method is VM method showing best time 5.534s for  

Jacobian coordinate system and worst time 46.301s for Affine. FE method shows results that are 13.91% 
- 28.66% worse than WM. NAF method shows results that are 2.63%- 7.35% worse than WM. 

 



 
 
 
 
 
 

Table 2. Execution time in seconds of the scalar multiplication of the point of an elliptic curve in 
different coordinate systems, using the curve 𝑃 − 224  

FE NAF WM FE/WM-1 NAF/WM-1 
Affine 52.743 47.521 46.301 13.91% 2.63% 

Projective 7.55 6.488 6.184 22.09% 4.92% 
Jacobian 7.12 5.941 5.534 28.66% 7.35% 

Chudnovsky Jacobian 7.131 6.16 5.847 21.96% 5.35% 
Modified Jacobian 7.739 6.403 6.032 28.30% 6.15% 

 
For curve 𝑃 − 256 (see, table 3), the best method is VM method showing best time 5.534s for  

Jacobian coordinate system and worst time 46.301s for Affine. FE method shows results that are 13.91% 
- 28.66% worse than WM. NAF method shows results that are 2.63%- 7.35% worse than WM. 

 
Table 3. Execution time in seconds of the scalar multiplication of the point of an elliptic curve in 

different coordinate systems, using the curve 𝑃 − 256  
FE NAF WM FE/WM-1 NAF/WM-1 

Affine 72.03 63.348 62.154 15.89% 1.92% 
Projective 9.907 8.339 7.648 29.54% 9.04% 
Jacobian 9.263 7.673 7.157 29.43% 7.21% 

Chudnovsky Jacobian 9.238 7.871 7.488 23.37% 5.11% 
Modified Jacobian 10.041 8.39 7.892 27.23% 6.31% 

 
For curve 𝑃 − 384 (see. table 4), the best methods are VM and NAF methods showing best times 

about 21.131s for Projective coordinate system and worst time 259.123s for Affine. FE method shows 
results that are 15.78% - 24.94% worse than WM. NAF method shows results that are 0.00% - 7.35% 
worse than WM. 

 
Table 4. Execution time in seconds of the scalar multiplication of the point of an elliptic curve in 

different coordinate systems, using the curve 𝑃 − 384  
FE NAF WM FE/WM-1 NAF/WM-1 

Affine 300.02 267.299 259.123 15.78% 3.16% 
Projective 24.835 21.131 21.132 17.52% 0.00% 
Jacobian 22.954 19.093 18.98 20.94% 0.60% 

Chudnovsky Jacobian 22.527 19.167 19.156 17.60% 0.06% 
Modified Jacobian 25.017 20.702 20.023 24.94% 3.39% 

 
For curve 𝑃 − 521 (see, table 5), the best methods are VM method showing best times about 36.489s 

for Chudnovsky Jacobian coordinate system and worst time 786.516s for Affine. FE method shows 
results that are 14.30% - 24.30% worse than WM. NAF method shows results that are 0.74% - 4.18% 
worse than WM. 

 
Table 5. Execution time in seconds of the scalar multiplication of the point of an elliptic curve in 

different coordinate systems, using the curve 𝑃 − 521  
FE NAF WM FE/WM-1 NAF/WM-1 

Affine 898.963 799.708 786.516 14.30% 1.68% 
Projective 49.963 41.874 40.194 24.30% 4.18% 
Jacobian 45.889 37.864 37.431 22.60% 1.16% 

Chudnovsky Jacobian 43.882 37.468 36.489 20.26% 2.68% 
Modified Jacobian 50.348 41.117 40.813 23.36% 0.74% 

 



 
 
 
 
 
 

 
a) Affine 

 
b) Projective 

 
c) Jacobian 

 
d) Chudnovsky Jacobian 

 
e) Modified Jacobian 

Figure 1. Execution time in seconds of the scalar multiplication of the point of an elliptic curve in 
different elliptic curves: 𝑃 − 192, 𝑃 − 224, 𝑃 − 256, 𝑃 − 384, 𝑃 − 521, using the coordinate 
systems: a) Affine; b) Projective; c) Jacobian; d) Chudnovsky Jacobian; e) Modified Jacobian. 

 
Figure 1 shows that the time grows significantly with increasing the bit size of the curve. Results are 

obtained with the parameter 𝑎 = 3 in the elliptic curve equation.  

6.  Conclusion 
Experimental evaluation shows that the WM method is an efficient method of the scalar integer 
multiplication of an elliptic curve point, especially if there is enough free space in the computer memory 
(at least for storing 2!! points of the elliptic curve). It gives the better execution time comparing with 
the Fast Exponentiation and Nonadjacent Form methods in five coordinated systems: Affine, Projective, 
Jacobian, Chudnovsky Jacobian, and Modified Jacobian.  
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