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Abstract  
Automatic segmentation of skin lesions is the most important step towards the analysis of 

malignant melanoma, which is a specific kind of skin cancer. Deep learning is one of the most 

effective approaches to medical image processing applications. The encoder–decoder 

structures are good for segmentation tasks in particular the U-Net architecture, which is used 

as a basic architecture for the medical image segmentation networks. Recently, different 

variants of U-Net type architecture have been provided for improvement in terms of the 

segmentation results. Therefore, we focused on three U-Net type models, specifically U-Net, 

U-Net++ and MultiResUNet in order to evaluate their capability and performance on the multi 

class segmentation of melanoma. 
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1. Introduction 

There are two main types of skin cancer: melanoma and non-melanoma. Melanoma of the skin is 

the 19th most commonly occurring cancer in men and women [1]. There were nearly 300,000 new cases 

in 2018. American Cancer Society estimates 106.110 new cases of skin melanoma and 7180 deaths 

from it in 2021[2]. Melanoma misdiagnosis accounts for more malpractice claims than any cancer, 

excluding breast cancer.  Misdiagnosis of melanoma in an early stage can reduce a patient’s chances of 

survival. Although an international staging system for melanoma exists, diagnosing melanoma 

accurately and consistently is still a very challenging task. Variability prognosis and diagnosis for 

melanoma comes from subjective visual observations used for melanoma prognosis and diagnosis [3]. 

Only visual inspection has variable accuracy that leads the patient to undergo other tests and series of 

biopsies and complicates the treatment. Computer vision can help in improving accuracy and 

consistency of diagnosis. Many researchers have been working on the image processing techniques for 

skin cancer detection. Non-invasive diagnosis methods and algorithms can achieve excellent 

performance in segmenting skin lesions. Image features to perform skin lesion segmentation usually 

include shape [4], texture [5], edges [6], luminance [7], histogram thresholding [8], and so on. Many 

researches are being carried out on ABCD (Asymmetry, Border, Color, Diameter) rules for the 

melanoma skin cancer [9], [10], [11], [12]. Most often melanoma tends to show asymmetric forms with 

diverse colors and structures. However, melanoma can also show symmetric pattern or nonspecific 

pattern.  

Convolutional neural networks (CNNs) as a special type of multi-layer neural networks have become 

one of the most widely used models of deep learning and have demonstrated a very high accuracy 

results in image segmentation tasks. Various CNN architectures are widely used in solving melanoma 

detection and segmentation tasks [13], [14], [15], [16], [11].  Some CNN are created specifically for 

segmentation of medical images. The purpose of medical image segmentation is to classify the pixels 

in an image, thereby recognizing abnormal areas such as tumors, cancer cells or lesions.  

U-Net is one of the most used architectures for bio-image segmentation and produces promising 

results in the domain [17]. However, some researchers have noticed that classical U-Net model is still 

quite simple and convolution in the nodes can be improved. Therefore, some variants of U-Net have 

been provided such as R2U-Net [18], UNet 3+ [19], UNet++ [20], H-DenseUnet [21], TMD-Unet [22] 
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and others. This paper contributes to this field by performing the experimental investigation of multi 

class segmentation performance of three different U-Net type structures: classical U-Net, UNet++, and 

MultiResUNet [23].  

2. Dataset 

Dataset used for this research was obtained from ISIC (International Skin Imaging Collaboration) 

archive − an open-source public access archive of skin lesion images including melanoma. The goal of 

ISIC melanoma project is to help decrease melanoma-related deaths [24]. ISIC archive downloader 

written by Oren Tolmor and Gal Avineri was used to download the images and their masks (Figure 1). 

Masks are used to make recognition of object easier.  However, only 1084 malignant images had mask 

provided, so for remaining images, manual creation of masks was performed. Images in the dataset are 

divided into benign and malignant. 9900 benign images and 4291 malignant images were augmented 

and used for the training. Data augmentation is used to reduce over-fitting and to increase size of the 

dataset. The following augmentations were randomly performed: image rotation from 0 to 360 degrees, 

width shift from 0 to 8% of total width, height shift from 0 to 8% of total height, a horizontal flip, a 

vertical flip and zoom inside of image between 0 and 20%.  The same augmentation process was 

performed on training and validation sets.  

    

a) b) 

Figure 1:  Benign skin lesion and it’s mask a) and malignant skin lesion and it’s mask b) 

Black and white masks for malignant images were replaced with black and grey masks. This was 

done because multi class segmentation requires masks to be different color. Images were resized to 256 

x 256 px. A single image can contain multiple skin spots (Figure 2c, d, g, h). However only the biggest 

one is taken for evaluation. Smaller marks are ignored (Figure 2c, g). In some images irrelevant spots 

are hidden (Figure 2d) or painted over (Figure 2h).  
 

    

a) b) c) d) 

    

e) f) g) h) 

Figure 2: Image instances of benign (a-d) and malignant (e –h) melanocytic lesions 

3. Methods 

We utilize three U-Net type architectures, specifically U-Net, U-Net++, and MultiResUNet in order 

to compare their performance on the selected dataset.  

 



3.1. U-Net architecture 

U-Net was developed in 2015 for biomedical image segmentation [17].  Classical U-Net architecture 

consists of two paths: down-sampling and up-sampling. Down-sampling path consists of 4 blocks 

(Figure 3). Each block applies two 3x3 unpadded convolutions followed by a rectified linear unit ( 

ReLu) and a 2x2 max pooling operation with stride 2. However Leaky ReLu with α value of 0.3 was 

used instead. ReLu unit can end up in a state where it only outputs zeros and that will prevent parts of 

neural network from learning. At each block number of feature channels doubles. Up-sampling path 

also consists of 4 blocks. Each block in this path up-samples feature map, applies 2x2 convolution 

halving number of feature channels, concatenates it with feature map from down-sampling path, and 

applies two 3x3 unpadded convolutions followed by Leaky ReLu. In this implementation input layer 

receives 256x256 image with 256x256 mask. Final layer of network uses 1x1 convolution with softmax 

function to map feature vector to 2 classes. In total, architecture consists of 29 layers. 20 of them being 

convolutional followed by Leaky ReLu, 4 max-pooling layers in down-sampling path, 4 up-sampling 

layers in up-sampling path, and an output layer. For optimization Adam optimizer was used, with loss 

function being categorical cross-entropy. 

64 64 64 64 2

128 128 128

128

256 256

256

512 512

512 256

512

2
5

6
 x

 2
5

6

2
5

6
 x

 2
5

6

1
2

8
 x

 1
2

8

1
2

8
 x

 1
2

8

1
2

8
 x

 1
2

8

1
2

8
 x

 1
2

8

6
4

 x
 6

4

6
4

 x
 6

4

3
2

 x
 3

2

1
6

 x
 1

6

1024 x 16 x16 1024 x 16 x16

1024

6
4

 x
 6

4

6
4

 x
 6

4

1

Conv 3x3 + Leaky Relu

Concatenate

Upsampling 2x2

MaxPooling 2x2

Conv 1x1, sigmoid

1

3
2

 x
 3

2

3
2

 x
 3

2

3
2

 x
 3

2

 

Figure 3: Structure of U-Net in case of 256x256 image and input of image and mask 

3.2. U-Net++ architecture 

U-Net++ architecture was created in 2020 in order to increase accuracy of medical image 

segmentation [20]. This architecture is based on nested and dense skip connections. The idea behind 

this architecture is that model can more effectively capture foreground object details when feature maps 

from down-sampling path are enriched before concatenation with the corresponding feature maps from 

up-sampling path.  
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Figure 4:  Structure of U-Net++ network. 
 

The main difference between U-Net++ and U-Net is re-design skip connections they can be seen in 

Figure 4. Instead of just concatenating feature maps from down-sampling path and up-sampling path 

feature maps undergo a dense convolution block. Dense convolution block brings down-sampling path 

feature maps closer to feature maps of up-sampling path. This architecture allows the use of deep 

supervision, where the outputs from each up-sampling path’s blocks would be average improving 

models accuracy but slowing it down. This feature of Unet++ was not used here therefore, it is not 

showed in Figure 4. 

3.1. MultiResUNet 

MultiResUnet aims to make U-Net suitable for multi-resolutional analysis by incorporating 3x3 and 

7x7 convolutions in parallel to the 5x5 convolutions which are resembled by two 3x3 convolutions. 

Having 7x7 convolution would increase memory needed to train model so to go around that they will 

also be substituted by sequence of 3x3 convolutions [25]. Outputs of these convolutional blocks are 

concatenated. A residual connection and 1x1 convolution is added to keep additional spatial information 

see Figure 5. 
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Figure 5:  Memory intense and optimized MultiRes Blocks 

In this U-Net architecture convolutional layers and a residual connection is added to shortcut 

connection so instead of just concatenating feature maps from down-sampling paths first they go 

through convolutional layers with residual connection and only then are concatenated with the up-

sampling feature map Figure 6. 
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Figure 6: Res Path that replaces simple concatenation 

Each MultiRes model block has parameter 𝑊, which sets the number of filters of the convolutional 

layers in the block. 𝑊 =  1.67 𝑥 𝑈 where 𝑈 is corresponding layer of U-net (𝑈 can have values of 32, 

64, 128, 256, 512). Number of filters become 
𝑤

6
, 

𝑤

3
, 

𝑤

2
 and are assigned to the three successive layers. 

Number of convolutional blocks used in the Res paths are gradually reduced from 4 to 1 as model goes 

deeper.  

4. Experimental results 

Each of three models was trained for 20 epochs each epoch taking 1773 iterations for training and 

500 iterations for validation (Figure 7). Chosen batch size was 8 due to hardware limitations. Original 

U-Net managed to get lowest validation loss out of all however it also provides the lowest dice 

coefficient score. Unet++ managed to get highest accuracy score and lowest loss out of all models 

however it also got highest validation loss. Result depicted in the Figure 7c shows that MultiResUNet 

is overtrained after 7 epochs, and therefore the model was retrained for only 10 epochs. This retrained 

model got highest loss, validation accuracy and dice coefficient. 

   

a) U-Net loss function dependencies b) U-Net++ loss function dependencies 

 
 

c) MultiResUNet loss function during 20 epochs d) MultiResUNet loss function for 10 epochs 

Figure 7:   cross-entropy loss function for different architectures 

In this study, we used five metrics to evaluate the model performance: accuracy, loss, valid accuracy, 

valid loss and dice coefficient. Dice coefficient, which quantifies the similarity between the model output 

and reference masks. Form the Table 1, we can observe that in the terms of accuracy and dice coefficient 

the most promising result (91.45% accuracy, 73.56% dice coefficient) was achieved by MultiResUNet, 

while the poorest performance was demonstrated by classic U-Net architecture. MultiResUNet performed 

3.70% higher than U-Net and 2.61% than U-Net++ corresponding dice coefficient results.  



Table 1 
Comparison of segmentation accuracy by different U-Net type architectures 

 

Model Epochs Accuracy Loss Valid Accuracy Valid Loss Dice Coefficient  

U-Net 20 0.8465 0.2177 0.7450 0.5361 0.7096 

U-Net++ 20 0.9223 0.1938 0.7986 0.5768 0.7176 

MultiResUnet 20 0.9163 0.2181 0.7616 0.7997 - 

MultiResUnet 10 0.9145 0.2258 0.8058 0.5385 0.7369 

 

 

One instance of malignant and benign skin lesion from the dataset has been selected to demonstrate 

the performance of different U-Net type architectures (Figure 8 and Figure 9). Observing the 

segmentation results in the figure 8, we can see that the malignant skin lesion is detected using all three 

architectures. Observing the segmentation results in the figure 9, we can see that the benign skin lesion 

is detected only by MultiResUnet architecture. When comparing the boundaries of the mask image, we 

can observe that contours differ. In all cases models manage to locate and segment skin moles, however 

all models output wrong type of mask for both malignant and benign skin lesions reducing dice 

coefficient value. 

 

 

    

    
a) original image and mask b) U-Net c) U-Net++ d) MultiResUnet 

Figure 8: Example of malignant input image overlayed by output masks retrieved from three models 
 

    

    

a) original image and mask b) U-Net c) U-Net++ d) MultiResUnet 

Figure 9: Example of benign input image overlayed by output mask retrieved from three models 

 

 



5. Conclusions and final remarks 

In this paper, the experimental investigation of multi class melanoma segmentation of three U-Net 

type architectures: U-Net, U-Net++ and MultiResUNet is demonstrated. The selected methods were 

tested using skin lesion datasets, which contain malignant and benign skin lesions.  The overall accuracy 

is more or less similar for all models used in the study: the worst performance 84.65% was demonstrated 

by the classical U-Net model, and the best accuracy 92.23% was achieved by U-Net++, but this result 

is higher only by 0,86% when compared to MultiResUNet. Experimental results have confirmed that 

U-Net type architectures are very successful in the single class medical image segmentation, and new 

modified architectures can slightly improve the performance results of classical U-Net. However, multi 

class segmentation of skin lesions remains a though task. 
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