
Knowledge-Based UML Use Case and UML Activity Models
Generation from Enterprise Model.
School of Languages Case Study

Ilona Veitaitėa and Audrius Lopatab

a Vilnius University, Kaunas Faculty, Muitinės str. 8, Kaunas, LT-44280, Lithuania
b Kaunas University of Technology, Studentų str. 50, Kaunas, LT-51368, Lithuania

Abstract
The main purpose of this paper is to present knowledge-based Enterprise model (EM)

advantages as data repository for UML models generation. UML models can be generated from

Enterprise Model, whose main requirement is that gathered data in this model would be verified

and validated by analyst. UML models generation process is implemented by using particular

transformation algorithms presented in previous researches. In this paper generation process

from EM is represented by the School of Languages case study. By using problem domain data

UML Use Case and UML Activity models are generated. Generation results help to define

advantages of Enterprise Model usage as storage for problem domain data.

Keywords 1
Enterprise Model, UML, IS Engineering, Activity, Use Case, Knowledge-based.

1. Introduction

Today’s IT professionals such as analysts, designers, developers still face with challenges of IS

engineering process. First phases of IS development life cycle is also quite difficult, especially,

enterprise modelling, when all gathered data is specified and prepared for IS design phase. According

the efforts put in this phase success of final IS depends. There are many various types, standards of

models used in design phase and very great impact for IS creation success has Enterprise model chosen

for this process [1][2]. UML is one of mostly used standard for IS design among professionals of IS

engineering field. According to UML models prepared in design phase IS code may be generated,

different design patterns applied, impact and complexity analysis accomplished [1][6][8]. All

advantages of UML models usage may be fulfilled only if data used for their design is verified and

validated. This fulfillment can be ensured by Enterprise model. Enterprise model - knowledge-based

repository, where problem domain data of enough quality is stored. By using transformation algorithms

all UML models can be generated from Enterprise Model [3][5][7][9][10]. Structure of particular

Enterprise Meta-Model (EMM) and Enterprise Model as the background for the research in this paper

is presented almost two decades ago. Previous researches in this field are designated to prove that

Enterprise meta-model and Enterprise Model is enough for different types of models generation in IS

design phase [10][11][12][13][14].

2. Description of Knowledge-Based Enterprise Model

EMM is formally defined Enterprise Model structure, which consists of a formalized EM in line

with the general principles of control theory. EM is the main source of the necessary knowledge of the

particular business domain for IS engineering and IS re-engineering processes (Figure 1) [3][4].

IVUS2021: Information Society and University Studies 2021, April 23, 2021, Kaunas, Lithuania

EMAIL: ilona.veitaite@knf.vu.lt (A. 1); audrius.lopata@ktu.lt (A. 2)

©️ 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

Figure 1: Enterprise Meta-Model class diagram [3][4][10]

EM class model has twenty-three classes. Essential classes are Process, Function and Actor. Class

Process, Function, Actor and Objective can have an internal hierarchical structure. These relationships

is presented as aggregation relationship. Class Process is linked with the class MaterialFlow as

aggregation relationship. Class MaterialFlow is linked with the classes MaterialInputFlow and

MaterialOutputFlow as generalization relationship. Class Process is linked with Classes Function,

Actor and Event as association relationship. Class Function is linked with classes InformationFlow,

InformationActivity, Interpretation, InformationProcessing and Realization as aggregation relationship.

These relationships define the internal composition of the Class Function. Class InformationFlow is

linked with ProcessOutputAtributes, ProcessInputAtributes, IPInputAttributes and IPOutputAttributs

as generalization relationship. Class InformationActivity is linked with Interpretation,

InformationProcessing and Realization as generalization relationship. Class Function linked with

classes Actor, Objective and BusinessRule as association relationship. Class BusinessRule is linked

with Interpretation Rule, Realization Rule, InformationProcessing Rule as generalization relationship.

Class Actor is linked with Function Actor and Process Actor as generalization relationship

[3][4][5][11].

3. Transformation Algorithms from Knowledge-Based Enterprise Model

Each of static and dynamic UML models can be generated through transformation algorithm and

each of UML models has separate transformation algorithm. These transformation algorithms are

defined in previous researches. Main focus of researches is designated for generation behavioural or

dynamic UML models, because their complexity and variability [10][11][12][13][14][15].

3.1. UML Use Case Model Transformation Algorithm

UML Use Case model generation from Enterprise Model transformation algorithm starts from initial

element. In this generation process Actor/Subject is initial element, after actor/subject element is

generated, Use Case element is selected and generates, then Include, Extend and Association

relationships elements are selected and generated. Transformation algorithm is illustrated by following

steps [12]:

 Step 1: The initial element Actor from Enterprise Model for UML Use Case model

generation is selected.

 Step 2: If Actor element is initial element of UML Use Case model, then Actor element is

generated, else Subject element is generated.

 Step 3: Process element from Enterprise model, which is related with the initial Actor

element is selected.

 Step 4: If Process element is Use Case element related to Actor/Subject, then Use Case

element is generated, else Function element is selected.

 Step 5: Function element is generated as Use Case element.

 Step 6: Business Rule element as link of Actor/Subject element from Enterprise Model

which is related with the Process/Function element is selected.

 Step 7: If Business Rule element is UML Use Case model’s simple Association element and

serves as link between Actor/Subject and Process/Function elements then Association is

generated from Enterprise model, else if it is Extend element, then Extend element is

generated from Enterprise model, else Include element is generated from Enterprise model.

 Step 8: There is checking if there are more Business Rules in Enterprise Model related to

UML Use Case model. In case, there are, algorithm goes back to step 3.

 Step 9: UML Use Case elements Actor/Subject and Process/Function are linked according

to Business Rules.

 Step 10: UML Information flow element Actor/Subject is updated.

 Step 11: There is checking if there are more Actors/Subject elements in Enterprise Model

related to UML Use Case model. In case, there are, algorithm goes back to step 1.

 Step 12: Else all UML Use Case model elements and links are generated from Enterprise

Model.

3.2. UML Activity Model Transformation Algorithm

UML Activity model describes how activities are coordinated to provide a service. UML Activity

model from EM transformation algorithm is described by following steps [14]:

 Step 1: Particular UML model for generation from EM process is identified and selected.

 Step 2: If the particular UML model for generation from EM process is selected then

algorithm process is continued, else the particular UML model for generation from EM

process must be selected.

 Step 3: First element from EM is selected for UML model, identified previously, generation

process.

 Step 4: If the selected EM element is initial UML model element, then initial element is

generated, else the other EM element must be selected (the selected element must be initial

element).

 Step 5: The element related to the initial element is selected from Enterprise model.

 Step 6: The element related to the initial element is generated as UML model element.

 Step 7: The element related to the previous element is selected from Enterprise model.

 Step 8: The element related to the previous element is generated as UML model element.

 Step 9: If there are more related elements, then they are selected from EM and generated as

UML model elements one by one, else the link element is selected from Enterprise model.

 Step 10: The link element is generated as UML model element.

 Step 11: If there are more links, then they are selected from EM and generated as UML

model elements one by one, else the Business Rule element is selected from Enterprise

model.

 Step 12: The Business Rule element is generated as UML model element.

 Step 13: If there are more Business Rules, then they are selected from EM and generated as

UML model elements one by one, else the generated UML model is updated with all

elements, links and constraints.

 Step 14: Generation process is finished.

4. School of Languages Case Study

The School of languages management process may be defined as courses management system that

is used to manage language courses, timetable, lecturers and participants of the courses.

The School of languages offers a list of language courses related with different level of language

knowledge and diverse study methods, which improve speaking, reading, listening, speaking and

grammar skills. Each language course is made up of set of topics related with skills dedicated for

improvement. The School of languages publish and maintain a timetable of different language courses

and appoints lecturers every year.

Lecturers in the school of languages are appointed courses to teach according to the language

knowledge level and their availability. There is a course administrators in the school of languages to

manage the courses including course content, courses appointments to lecturers and preparation of the

course timetable. Participants of language courses may review suggested courses, get information about

lecturers and check the timetable of the courses.

The School of Languages purpose is to use the courses management information system to improve

their services by managing courses, timetable, lecturers and participants.

4.1. School of Languages UML Use Case Model

The main concept of UML Use Case model is that it assists to design a system from the end user's

perspective, in this case, end users are Administrator, Lecturer and Participant.

Figure 2: UML Use Case Model.

Figure 2 presents generated UML Use Case model from Enterprise model, where uses cases of each

actor are displayed. Descriptions of these generated UML Use Case Model elements are presented in

the Table 1.

Table 1
Generated UML Use Case Model elements from EM with descriptions [10] [12]

EM
elements

UML Use Case Model elements Description

Actor Actor: Administrator Administrator has full access to all
use cases implemented in School of
languages IS.

Actor: Lecturer Lecturer can check appointed to him
language course, review list of
participants of the appointed

language course and review his
timetable.

Actor: Participant Participant is a student of chosen
language courses, he can review list
of courses, review information about
lecturers and also review timetable
of chosen courses.

Business
Rules

Association Relationship that links all actors to
the use cases they may access

Extend Relationship that links use case,
which may be done together with
another use case. During the course
management process, topics may be
added

Process /
Function

Use Case: Manage language course Use cases which are accessible to the
actors. Use Case: Manage topics for language course

Use Case: Appoint language course to lecturer

Use Case: Review course participants

Use Case: Review language courses timetable

Use Case: Manage lecturer information

Use Case: Review lecturers

Use Case: Review language course

Use Case: Assign participant to course

Use Case: Manage participant information

4.2. School of Languages UML Activity Models

UML Activity models present coordination of activities regarding process participants:

Administrator, Lecturer and Participant. There can be more UML Activity model generated and at

different levels of abstraction, but in this paper three possible models are presented, only to present this

possibility.

4.2.1. UML Activity Model. Actor: Administrator

UML Activity model for language course management performed by Administrator is generated

from Enterprise model.

Figure 3: UML Activity Model. Actors: Administrator

Figure 3 presents generated UML Activity model from Enterprise model, where activities of actor,

in this case, Administrator are displayed. Descriptions of these generated UML Activity Model

elements are presented in the Table 2.

.

Table 2
Generated UML Activity Model elements from EM with descriptions [10] [14]

EM elements UML Activity Model elements Description

Actors Swimlane: Administrator Administrator starts the process and
performs all presented activities.

Process /
Function

Activity: Manage language course All activities performed by
Administrator of the particular
process.

Activity: Create language course

Activity: Create topic of the language
course

Activity: Appoint lecturer

Activity: Prepare timetable of
language course

Activity: Modify language course

Activity: Remove language course

Activity: Language course updated
Information
Flow

Object Flows All flows between activities, show
sequence of activities flow.

Business
Rules

Control Node: Join Node Joins three different activities related
with language course management.

Control node: Initial Node Starts the process.

Control node: Decision Node Two decision nodes: checks course
status; another allows modify or
remove the course.

Control node: Final Node Finishes process.

4.2.2. UML Activity Model. Actors: Administrator and Lecturer

UML Activity model for lecturer information management performed by Administrator and

Lecturer is generated from Enterprise model.

Figure 4: UML Activity Model. Actors: Administrator and Lecturer

Figure 4 presents generated UML Activity model from Enterprise model, where activities of actors,

in this case, Administrator and Lecturer are displayed. Descriptions of these generated UML Activity

Model elements are presented in the Table 3.

Table 3
Generated UML Activity Model elements from EM with descriptions [10] [14]

EM
elements

UML Activity Model elements Description

Actors Swimlane: Administrator Administrator starts the process for
lecturer information management;
appoints lecturer to the language
course, prepares timetable and assigns
participants to the language course.

Swimlane: Lecturer Lecturer may review language courses
timetable, confirms appointed language
courses, confirms timetable and may
review course participants.

Process /
Function

Activity: Manage lecturer information All activities performed by Actors of
the particular process. Activity: Appoint lecturer

Activity: Prepare timetable of language
courses

Activity: Review language course
timetable

Activity: Confirm appointed language
course

Activity: Confirm language courses
timetable

Activity: Assign participants to the
course

Activity: Review course participants
Information
Flow

Object Flows All flows between activities, show
sequence of activities flow.

Business
Rules

Control node: Initial Node Starts the process.

Control node: Decision Nodes Two decision nodes: one confirms
appointed course; another confirms
course timetable.

Control node: Final Node Finishes process.

4.2.3. UML Activity Model. Actors: Administrator and Participant

UML Activity model for participant information management performed by Administrator and

Participant is generated from Enterprise model.

Figure 5: UML Activity Model. Actors: Administrator and Participant

Figure 5 presents generated UML Activity model from Enterprise model, where activities of actors,

in this case, Administrator and Participant are displayed. Descriptions of these generated UML Activity

Model elements are presented in the Table 4.

Table 4
Generated UML Activity Model elements from EM with descriptions [10] [14]

EM elements UML Activity Model elements Description

Actors Swimlane: Administrator Administrator starts the process of
participant information
management; prepares timetable of
the courses and assigns participants
to the course.

Swimlane: Participant Participant may review the courses
descriptions, review lecturers
responsible for the course, review
timetable and confirm it.

Process /
Function

Activity: Manage participant information All activities performed by Actors of
the particular process. Activity: Prepare timetable of language

courses

Activity: Review language course

Activity: Review lecturers

Activity: Review language courses
timetable

Activity: Confirm language courses
timetable

Activity: Assign participants to the course
Information
Flow

Object Flows All flows between activities, show
sequence of activities flow.

Business
Rules

Control node: Initial Node Starts the process.

Control node: Decision Node One decision node: confirms course
timetable

Control node: Final Node Finishes process.

5. Results

Main activities of the analyst responsibility may be described as: analysis of enterprise situation,

identification of opportunities for improvements, design information system which will add value to

the enterprise. The analyst gathers problem domain information, identifies all requirements, searches

for suitable meta-model, verifies and validates data and starts implement IS by designing UML or other

models. There is always risk of new problem, information or requirements appearance, which cause

difficult design models updating and improving process. In this case, duration of IS developing process

increase, and number of errors grows. Using Enterprise Model as the prime problem domain knowledge

repository in IS engineering process ensures correctness and quality of generated IS design models after

any possible problem domain data update (Table 5).

Table 5
Comparison of IS Analyst’s activities by criteria

Criteria IS Analyst Enterprise Knowledge-Based UML
Dynamic Models Generation Method

Gathering problem domain data Yes Yes
Requirements identification Yes Yes
Data preparation for modelling Yes Yes
Project models design Yes No
Problem domain data update Yes Yes
Project model design improvement Yes No
Increased IS development process duration Yes No
Increased number of errors Yes No
Increased number of errors Yes No

By using Enterprise Model in IS engineering process the analysts enters all gathered problem domain

data into EM. Problem domain knowledge stored in EM is used for UML model generation through

transformation algorithms. After any possible new data upload to the EM, it is re-used and new UML

models based on improved data are generated. There is no need for the analyst to re-do entire process

of models design.

6. Conclusions

The first part of the paper presents the Enterprise model structure and description of UML Use Case

and UML Activity models transformation algorithms for generation from EM depicted by steps.

The next part presents School of Languages case study, which data is stored in knowledge-based

Enterprise Model and is used in two types UML models generation process. There are presented UML

Use Case model and three UML Activity models of different Actors perspective generated from

Enterprise Model. These generated models confirms, that data stored in Enterprise model is enough for

generation process.

Final part describes comparison by certain criteria of information systems analyst’s activities during

IS development process with and without usage of Enterprise knowledge-based UML models

generation method.

7. References

[1] Dunkel J., Bruns R. (2007) Model-Driven Architecture for Mobile Applications. Proceedings

of the 10th Inter-national Conference on Business Information Systems (BIS), Vol. 4439/2007,

pp. 464–477.

[2] Eichelberger H., Eldogan, Y., Schmid K. A (2011) Comprehensive Analysis of UML Tools,

their Capabilities and Compliance. Software Systems Engineering. Universität Hildesheim.

versio 2.0

[3] Gudas S. (2009) Architecture of Knowledge-Based Enterprise Management Systems: a Control

View. Proceedings of the 13th world multiconference on systemics, cybernetics and informatics

(WMSCI2009),) July 10 – 13, Orlando, Florida, USA, Vol. III, p.161-266 ISBN -10: 1-

9934272-61-2 (Volume III).ISBN -13: 978-1-9934272-61-9

[4] Gudas S., (2012) Informacijos sistemų inžinerijos teorijos pagrindai/ Fundamentals of

Information Systems Engineering Theory. (Lithuanian)Vilnius University. ISBN 978-609-

459-075-7

[5] Jacobson, I., Rumbaugh, J., Booch, G. (2005) Unified Modeling Language User Guide, The

Second Edition. Addison-Wesley Professional. ISBN: 0321267974

[6] Jenney J. (2010) Modern Methods of Systems Engineering: With an Introduction to Pattern and

Model Based Methods. ISBN-13:978-1463777357

[7] OMG UML (2021) Unified Modeling Language version 2.5.1. Unified Modelling

https://www.omg.org/spec/UML/About-UML/ .

[8] Sajja, P.S., Akerkar, R. (2010) Knowledge-Based Systems for Development. Advanced

Knowledge Based Systems: Model, Applications & Research, Vol. 1

[9] UML Diagrams (2021) UML diagrams characteristic. www.uml-diagrams.org

[10] Veitaitė, I., Lopata, A. (2017) Transformation algorithms of knowledge based UML

dynamic models generation // Business information systems workshops BIS 2017, Poznan,

Poland, 28-30 June / editor Witold Abramowicz . - Series : Lecture notes in business

information processing. Vol 303. Cham : Springer International Publishing, 2017

[11] Veitaitė, I., Lopata, A. (2018) Problem domain knowledge driven generation of UML

models // Information and software technologies: 24th International Conference, ICIST 2018,

Vilnius, Lithuania, October 4–6, 2018: proceedings / edited by: Robertas Damaševičius, Giedrė

Vasiljevienė. Cham : Springer.

[12] Veitaitė, Ilona; Lopata, Audrius. Knowledge-based UML use case model

transformation algorithm // Business information systems workshops: BIS 2019 international

workshops, Seville, Spain, June 26–28, 2019: revised papers / W. Abramowicz, R. Corchuelo

(eds.). Cham : Springer, 2019. ISBN 9783030366902. eISBN 9783030366919. p. 39-48.

(Lecture notes in business information processing, ISSN 1865-1348, eISSN 1865-1356 ; Vol.

373). DOI: 10.1007/978-3-030-36691-9.

[13] Veitaite I., Lopata A. (2020) Knowledge-Based Transformation Algorithms of UML

Dynamic Models Generation from Enterprise Model. In: Dzemyda G., Bernatavičienė J.,

Kacprzyk J. (eds) Data Science: New Issues, Challenges and Applications. Studies in

Computational Intelligence, vol 869. Springer, Cham

[14] Veitaitė, Ilona; Lopata, Audrius. Knowledge-based UML activity model

transformation algorithm // Information society and university studies 2020 : proceedings of

the information society and university studies, 2020, Kaunas, Lithuania, April 23, 2020 / edited

by: Adrius Lopata, Vilma Sukackė, Tomas Krilavičius, Ilona Veitaitė, Marcin Woźniak.

Aachen : CEUR Workshop Proceedings. ISSN 1613-0073. 2020, p. 114-120. (CEUR

Workshop Proceedings, ISSN 1613-0073 ; vol. 2698).

[15] Veitaite I., Lopata A. (2020) Knowledge-Based Generation of the UML Dynamic

Models from the Enterprise Model Illustrated by the Ticket Buying Process Example. In:

Lopata A., Butkienė R., Gudonienė D., Sukackė V. (eds) Information and Software

Technologies. ICIST 2020. Communications in Computer and Information Science, vol 1283.

Springer, Cham. https://doi.org/10.1007/978-3-030-59506-7_3

