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Abstract  
In this work latent representations of image data were investigated with neural network models 

of generative self-learning. A convolutional autoencoder with strong redundancy reduction 

was used to create latent representations of images of basic geometric shapes in the process of 

unsupervised generative learning and the characteristics of distributions of concept regions in 

the latent space of models investigated. It was demonstrated that conceptual representations 

with good separation of latent regions can be produced with generative models of limited 

complexity and that characteristic types of data, or “concepts” form well-defined, continuous 

and connected regions in the latent space. Geometric structure of the latent representations was 

described in detail confirming connected and continuous topology of latent concept regions 

clearly associated with characteristic types of observable data, such as shape, size and contrast. 

The results indicate that conceptual representations created in the process of unsupervised 

generative learning can form a natural basis for the emergence of abstract concepts in 

intelligent systems.  
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1. Introduction 

Representation learning with the objective to identify the informative structure in general real-world 

data has a well-established record in the field of Machine Learning. Hierarchical representations of 

different types of data were obtained with Restricted Boltzmann Machines (RBM), Deep Belief 

Networks (DBN) [1][2], different flavors of autoencoders [3][4] and other models and architectures 

allowed to improve accuracy of supervised learning. Different types, architectures and flavors of 

generative models were investigated since including autoencoder neural networks, Generative 

Adversarial Networks (GAN) and others [5][6][7]. 

A number of interesting experimental results were obtained in concept learning with artificial 

systems, such as the “cat experiment”, that demonstrated spontaneous emergence of concept sensitivity 

on a single neuron level in unsupervised deep learning with image data [8]. Disentangled 

representations were produced and studied with deep variational autoencoder models and different 

types of image data [9] pointing at the possibility of a general nature of the effect. Concept-associated 

structure was observed in latent representations of diverse real-world data such Internet in large public 

networks, aerial surveillance images [10][11] and other results [12][13].  

The relations between learning and statistical thermodynamics was studied in the theory of learning 

systems [14][15] leading to understanding of a deep connection between learning processes in artificial 

systems and principles of information theory and statistical thermodynamics.  

These results demonstrated that training of artificial learning models under certain constraints such 

as minimization of predictive error can lead to emergence of structure associated and correlated with 

characteristic patterns in the observable data. This approach, known as representation learning, was 

developed in a number of studies [16]. Of interest in this work is unsupervised conceptual representation 
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learning with models of generative learning that does not use explicitly labeled data but rather attempts 

to minimize the error of reproducing the observed distribution from a representation in the latent space 

created in the process of generative self-learning. As some of the earlier results have indicated, such 

entirely unsupervised process can produce non-trivial structure in the latent representations that is 

correlated with characteristic patterns in the observable data and can be used as a foundation for learning 

methods and processes based on such structured low-dimensional representations.  

Interestingly, these observations in unsupervised learning of artificial systems were paralleled very 

recently by several results in the studies of biologic sensory networks [17][18] that demonstrated 

commonality of low-dimensional representations in processing sensory information by mammals, 

including humans.  

Based on and inspired by these results in conceptual representation learning, the questions 

investigated in this work are the following: what properties characterize latent representations of 

successful generative models? Is there a stable association between characteristic patterns in the 

observable data and the structure that emerges in the latent distributions in the process of generative 

self-learning? What structure can be identified in the latent representations with entirely unsupervised 

methods, without prior knowledge of conceptual content of the observable data? 

These objectives were approached with artificial neural network models of deep convolutional 

autoencoder that showed effectiveness in producing informative representations [19] and a dataset of 

images of basic geometric shapes that are described in the following sections.  

In conclusion, a brief clarification of terminology used throughout this work. We will refer to the 

characteristic types or patterns in the dataset that are labeled with known types or classes as “external” 

concepts, that signifies that the type or label of the input is defined outside of the model based on some 

external or prior knowledge about the observable data. An example of an external concept for an image 

with a geometric shape can be its general type, “a triangle”. In contrast, a characteristic structure in the 

latent representation that can be identified reliably by unsupervised means without any external or prior 

information, will be referred to as “internal” or “native” concept. Thus, a question of the relation 

between the external and native concepts can be of interest as well. 

2. Methods 

In this section the models and data used in the study are described. A dataset of basic shapes such 

as circles, triangles and greyscale backgrounds, was used to produce low-dimensional latent 

representations that were studied with several methods as described in the following sections. 

2.1. Deep Convolutional Autoencoder 

We used artificial neural network models with the architecture of convolutional autoencoder [3] with 

added strong dimensionality reduction in the representation layer to produce three-dimensional latent 

representations of image datasets of basic geometric shapes. The advantages of the autoencoder 

architecture are that it allows to learn essential characteristics of the input data in an unsupervised 

process without labeled samples, while virtually unlimited depths and complexity allows it to be used 

with complex real-world data, demonstrating successful learning in many applications [8]-[11],[19]. 

The architecture diagram of the models used in the study is presented in Figure 1. 

 



Figure 1: Convolutional autoencoder with deep dimensionality reduction 

The models had three stages of convolution-pooling layers followed by several layers of 

dimensionality reduction in a symmetrical layout. The total number of layers was 21, with 

approximately 40,000 trainable parameters.  

Unsupervised training was performed with standard methods such as Stochastic Gradient Descent 

[20] to minimize average distance between the input and generated output with binary cross-entropy 

cost function. The models were implemented with Keras / Tensorflow [21] and several standard 

machine learning libraries were used in the analysis of latent representations. 

The latent representation was produced by activations of the neurons in the central, encoding layer 

of the model (Figure 1). The activations of neurons were interpreted as coordinates in a three-

dimensional latent representation space. 

2.2. Data 

Three datasets of geometric shape images with different variance and complexity were used to 

investigate the structure of the latent representations. The images were greyscale, of the size 64 × 64 

pixels. 

The first, generated dataset, Shapes-1 consisted of 600 greyscale images of circles, triangles and 

greyscale backgrounds with two representative samples per type with difference in the size and contrast 

of fore / background. 

The second generated dataset, Shapes-2 contained the total of 600 – 1,000 greyscale images of 

circles, triangles and backgrounds with variation in size in the range 0.3 – 1.0 of the image size (that is, 

0.3 × 64 pixels), with variation of contrast of fore- vs. background for each size.  

In the generated datasets the images were centered, symmetrical and had no rotation. Only darker 

foregrounds relative to the background were used. 

The third dataset, Shapes-3 contained 1,500 images of randomly generated colored geometric shapes 

and backgrounds varying in: size; position relative to the center of the image; rotation; and the color of 

the fore- and background [22]. The images in this dataset were converted to greyscale. 

2.3. Latent Representations 

Following the process of unsupervised training in which significant reduction in the value of cost 

function was observed, the models were able to perform two essential transformations of data: 

The encoding transformation, from the input data space, that is, images to the three-dimensional 

latent representation, with coordinates represented by activations of neurons in the central, “encoding” 

layer of the model (Figure 1): 

𝑟𝑥 =  𝐸(𝑥) = 𝑒𝑛𝑐𝑜𝑑𝑒(𝑥) (1) 
The generative transformation operates in the opposite direction, i.e. from the latent representation into 

the observable (image) space and is performed by the generative part of the autoencoder: 

𝑔𝑦 =  𝐺(𝑦) = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒(𝑦) (2) 

where y is a latent position, i.e. a point in the latent space represented by latent coordinates (y1, y2, y3). 

Transformations of encoding and generation allow to study the structure in the latent representation 

by measuring and visualization of the distributions of samples encoded to the latent space, as well as 

generative properties of the models via producing images of latent positions and regions of interest. 

3. Results 

The subject of this investigation was topological structure in the latent representations created by 

generative models in the process of unsupervised learning. To verify the hypothesis of the study, 

methods of analysis of latent distributions and generative ability of models were applied as described 

in this section. It is essential to note that the process of production of latent representations via 



generative learning was entirely unsupervised and no labeled data was used in configuration and / or 

training of the models. 

3.1. Structure of Latent Representations 

Latent representations of generative models displayed well structured, connected and continuous 

distribution of data by characteristic type as illustrated in Figure 2. The visualization data, a subset of 

Shapes-1 and Shapes-2 datasets described in Section 2.2 represented a selection of images with 

variation of size and greyscale contrast, color-coded by characteristic type (i.e., circle, triangle or 

greyscale background). 

Visualization of latent distributions by characteristic type showed that the shapes present in the 

training dataset were assigned specific well-defined regions in the latent space, with latent coordinates 

encoding essential characteristics of shapes, such as size and contrast. 

 
 

Figure 2: Latent distributions by shape type. Models: Shapes-1 (left), Shapes-2 (right). Legend: 
magenta: circles; green: triangles; blue/red: greyscale background. 

The observed pattern of latent distributions was consistent between different individual models 

training with the same dataset, that was verified with several instances of trained models. These findings 

indicate that the emergent concept-associated structure in the latent representations of generative 

models reflects essential general characteristics of the data in the training data and is to a large extent 

invariant to individual model.  

3.1.1. Connectedness of Latent Representations 

As discussed above, latent representations created by generative models in unsupervised training 

displayed connected and continuous topology allowing to conclude that there exist an association 

between well-defined latent regions and characteristic types, or general concepts in the observable data. 

This conclusion was further substantiated with two experiments. 

In the first experiment, a set of images S of the same type was selected, with variation in 

characteristics, such as size and contrast. The images were transformed to the latent space as in (1) and 

the mean of the resulting set of latent coordinates calculated as: 

𝑟𝑚𝑒𝑎𝑛 =  𝑚𝑒𝑎𝑛(𝐸(𝑆)) (3) 
The mean latent representation rmean of the input set was then propagated to the observed space with 

generative transformation (2) and the resulting image produced. In the experiments, the generated image 

of the input set was of the same type (Table 1). 

Table 1 
Generated mean of input set of shape type 

Input set Encoded mean (example) Result 

Circles-2  Circle 
Circles-3 (-1.979, -1.635, -0.817) Circle 
Triangles-2  Triangle 



Triangles-3 (1.437, 0.073, -1.358) Triangle* 
Background-3 (3.974, 0.011, -0.176) Background 

* An exception was observed in the boundary region (Section 3.1.2), where the mean of a certain 

input set produced mixed result. 

In the second group of experiments, a set of points in a close neighborhood of a selected latent 

position of a given type was selected, and images corresponding to these positions generated with (2). 

The resulting images were observed to be of the same type as that of the position of origin (Figure 3). 

 

 
Figure 3: Latent neighborhood experiment. Position of origin: leftmost. 

These experiments confirmed the connected and continuous topology of latent representations 

produced by generative models. 

3.1.2. Boundary Regions 

Well defined character of latent regions associated with characteristic types of shapes was confirmed 

by observation of boundary areas between the regions of different types, that produced generated output 

of mixed form with features from both types. The examples of such boundary generative regions are 

shown in Figure 4. 

 
Figure 4: Latent boundary areas. Left to right: circle/triangle; circle/background; triangle/background. 

Observation of the boundary areas between the regions associated with characteristic shapes 

supports the hypothesis of a continuous and connected topology of the latent space. 

3.2. Semantics of Latent Coordinates 

Generative transformation (2) allows to investigate semantical meaning of the latent coordinates 

defined as activations of neurons in the encoding layer of the generative model. A method of latent 

probing was developed that allowed to produce and evaluate generated image of a specified position in 

the latent space, after conceptual latent representation was produced in the unsupervised learning phase. 

By applying probing to latent representations of generative models the structure that formed in the 

process of generative learning under the constraints discussed earlier can be studied in practically any 

level of detail. 

In the input to the method, a set of coordinates of a latent position of interest was provided. The 

position was propagated via generative part of the autoencoder with generative transformation (2) 

producing an output as an observable image. Evaluation of generated images associated with a set of 

latent positions, such as a neighborhood, a line, a surface and so on, in a latent region of interest allowed 

to obtain essential observations on the semantical meaning of the latent coordinates. The examples of 

probing along the latent axes are shown in Figure 5. 

 



 

 

 
Figure 5: Generated output along latent axes, 0 – 2. 

The results of generative probing in the latent space of generative models in this section support the 

manifold assumption [23] and confirm that latent coordinates in low-dimensional representations can 

be associated with essential characteristics of input data, such as in this case, the size, contrast and the 

type of the shape. It can be seen also that the semantics of latent coordinates are local, rather than global: 

the same axis, at different latent position can signify either of these characteristics. Consequently, 

investigation of topological structure of latent representations, including with more complex data merits 

further attention. 

4. Conclusion 

In this work latent representations of images representing basic geometric shapes were analyzed 

with methods of unsupervised machine learning. The analysis produced a number or essential results 

and observations. 

It was demonstrated that successful generative learning with stable association of characteristic 

observable inputs to a structure in the low-dimensional latent representations can be achieved with 

models of limited complexity, both in size and architecture, well within a range of simple biologic 

systems. The complexity of models in this work was roughly equivalent to a nervous system of a 

jellyfish that has a comparable number of neurons and synapses [24]. 

By applying unsupervised methods that did not use any externally labeled data in the analysis of 

latent representations it was demonstrated that generative learning can lead to emergence of well-

defined latent regions associated with essentially different types of observable data. These results points 

to possible origin of higher-level abstract concepts in unsupervised generative learning under the 

constraints of generative accuracy and redundancy reduction, both having clear evolutionary advantage 

for the learner. 

The structure of latent regions associated with characteristic patterns, native concepts in the 

observable data was investigated and described, confirming connectedness and continuous topology of 

the latent regions, with distinct boundaries between different concept regions. An analysis of generative 

capacity of models with the developed method of latent probing allowed to make essential observations 

on the semantics of the latent coordinates in the representations produced by the models, showing an 

association with essential characteristics of the data such as type, size and contrast. However, as the 

analysis of the semantics of latent coordinates has shown (Section 3.2) there may not be a fixed global 

semantics to the latent coordinates and their significance is determined by the locality, i.e. the position 

and the region, again confirming manifold-like topology of latent representations emergent in 

generative self-learning. 

Overall, the results of this work demonstrated that conceptual representations can be a natural result 

of unsupervised observation of the environment under the constraints that are both natural and common 

for a learning system [25], of artificial or biologic nature. 

5. Future Work 

Following the direction outlined in this work, further studies can focus on investigation of latent 

representations of more complex visual data with greater variation of conceptual content in the 



observable environment. It is likely that advances in this direction would require models of considerably 

greater complexity, in size, depth and architecture [8]. For example, investigation of neural network 

models with sparsity constraints can be a promising direction due to apparent success of this architecture 

in the sensory input processing neural networks of biologic systems as reported in recently published 

results [17].   
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