
Abstract 

This position paper will describe the stakes of the 
new standard developed by EUROCAE and SAE on 
AI certification by detailing the main challenges, 
drawing the interfaces with existing standards, and 
proposing a new machine learning (ML) develop-
ment lifecycle to support the future certification/ap-
proval objectives that will enable the use of ML 
techniques in the development of safety-critical ap-
plications for both airborne and ground aeronautical 
products. 

1 Introduction 

Artificial Intelligence (AI) is poised to transform the aero-
space industry, impacting all areas in which computing and 
aerospace intersect. AI will embed into and transform the dig-
ital systems used to design, manufacture, operate, communi-
cate and maintain aerial vehicles, and when leveraged suc-
cessfully, it will dramatically change how aerospace compa-
nies operate, disrupting businesses while radically accelerat-
ing the pace of change. Specifically, Machine Learning (ML) 
technologies have the potential to revolutionize the develop-
ment paradigms of aeronautical systems including the ones 
that are safety-critical. Current industrial guidance has  a 
strong focus on bespoke technologies in aeronautical appli-
cations thus are not appropriate to support this paradigm 
change. Industrial guidance on AI development coming from 
other sectors (automotive in particular) are of great value, but 
are not directly applicable to the aeronautical industry, that 
has a long history of aviation-specific development stand-
ards. 
Anticipating a growing commercial pressure for AI solutions 
within the aerospace industry, there was an urgent call for 
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regulation to make emerge new norms around acceptable us-
age that fit in the existing aviation regulatory landscape. 

1.1 Presentation of G-34/WG-114 working group 

The EUROCAE WG-114 (joint with SAE G-34) was created 
to help guiding safe and successful adoption of AI technolo-
gies in Aeronautical Systems by developing industry consen-
sus standards. The working group 1is evaluating key applica-
tions for AI usage within aeronautical systems, with a focus 
on AI embedded into aerial vehicle and deployed on ground 
equipment, in order to produce standards for the development 
of safe systems compliant with regulation requirements. 
The joint group has quickly grown and is worldwide with 
more than 500 engineers nowadays. It brings together the in-
dustry and the regulators, so that the resulting consensus 
standard could be recognized by certification authorities and 
used by industry. It draws its expertise from a large variety of 
industry fields, such as large aircraft manufacturers, but also 
Unmanned Aircraft Systems/Urban Air Mobility/ electric 
Vertical Take-Off and Landing manufacturers, engine manu-
facturers, airborne and ground equipment manufacturers, reg-
ulators, air navigation service providers and many more. 
There are big names such as Airbus, Boeing, EASA, FAA, 
NASA, DOD, Eurocontrol, Thales, Dassault, Safran, Nvidia, 
Intel… Large companies work alongside smaller companies 
and institutions. The working group organization has paid at-
tention to correctly balance the domains representation with 
airborne and ground co-chairs at leadership and executive 
level. The standard will be preceded by some informative ma-
terial and will include a description of use cases representa-
tive of the industrial needs (some of them will be used in the 
standard development to mature the guidance). By the end of 
2020, the working groups established a “Statement of Con-
cerns” in order to align all the aeronautical industries on the 
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same concerns and raise the main challenges that prevent the 
use of AI and specifically the use of Machine Learning into 
safety critical applications nowadays.  

1.2 Interfaces with existing standards 

ML will be introduced to augment system functionalities. 
From a development process perspective, ML function will 
be part of existing systems and will have to be implemented 
in dedicated ML-based items. With analogy to the existing 
certification framework for model-based product, the frame-
work for this new data-driven development paradigm will in-
troduce a new layer in between the system level ([ED-
79A/ARP4754A, 2011] for airborne, [2017/373] for ground) 
and the item level ([ED-12C/DO-178C, 2011], [ED-80/DO-
254, 2000] for airborne, [ED-153, 2009], [ED-109A/DO-
278, 2011] for ground). Clear interfaces will have to be de-
fined in order to reuse existing development standards as de-
scribed in Fig.1. 

2 Certification/Approval Challenges  

Among the important challenges the standard faces, in the 
first place there is the AI trustworthiness, for which the build-
ing blocks, as defined in the European Aviation Safety 
Agency (EASA) guidance [Cluzeau et al., 2015], are the 
Learning Assurance, the AI Explainability and the AI Safety 
Risk Mitigation. They have been described in [ER-
022/AIR6988, 2021] and can be further detailed in specific 
challenges, as follows: 

2.1 Specification and Validation Challenges 

Since their recent flourishing, the ML algorithms have been 
applied to all kind of tasks, but in particular to complex ones, 
where the previous approaches failed to attain the desired per-

formances. These tasks are in themselves difficult to specify, 
due to their intrinsic complexity and ambiguity. The specifi-
cation of a system involving ML components may be in itself 

an ill-posed problem, especially when using data-driven 
models. In this case the ML model is implicit, derived after 
the learning stage. The difficulty is therefore related to the 
black box nature of ML, which makes it impossible to apply 
the classical V-cycle, where the requirements can be traced 
down to the software code lines. Here, the code lines are very 
scarce, while the resulting model can be huge, and none of 
the low-level code line directly reflects specific requirements. 
This specification issue is intrinsic to data-based ML devel-
opment, as opposed to the classical model-based develop-
ment. 
Moreover, the requirements validation also includes data re-
quirements. Data requirements are difficult to specify com-
pletely, and therefore also to validate completely.  
Another aspect of the ML black box model is its probabilistic 
nature, which will require to quantify, for the purpose of 
safety assessment, the uncertainties: the statistical model un-
certainties, the dataset uncertainties, uncertainties related to 
the training process, and uncertainties induced by the imple-
mentation process. There is a limited theoretical capacity 
right now to prove all the properties that we would like about 
the robustness, stability and predictability of the ML models,  
but we can expect this aspect will be solved by the academic 
community, and some progress has been made recently [Katz 
et al., 2017], [Combettes et al., 2020], [Lattore et al., 2020],  
[Gupta et al., 2021]. In particular, a challenge is the testability 
of the data-based ML algorithms, which is related to the pre-
vious issues, and amounts to design adequate test datasets to 
prove robustness of the neural networks and ensure all the 
corner cases are covered. 
Trusting a ML model (or building the three pillars of AI trust-
worthiness) involves « opening the black box » to a degree 
commensurate with its intended use, i.e., to the degree of 
safety (Assurance Level / Development Assurance Level / 

Software Assurance Level) required by the respective system 
or component. This will require new ways of specifying and 
validating data and model requirements, in order to build the 

Figure 1 Standardization framework 



ML model on a sound baseline of requirements, as described 
in section 3. 

2.2 Data Challenge: Representativeness 

The second main challenge is related to data. While a lot of 
data quality attributes have been identified as being relevant 
(accuracy, integrity, traceability, timeliness, accessibility …), 
the most important challenge derives from the need to cor-
rectly specify the problem, so it amounts to the data repre-
sentativeness, its relevance to the problem, and its complete-
ness for all situations that may be encountered [Rhie et al., 
2017]. As the data itself can drive the ML function, quality, 
size, and composition of the datasets highly influence the be-
haviour of the system. Incorrect, incomplete or non-repre-
sentative data, poor quality data or irrelevant features can sig-
nificantly decrease the performance of the ML item even be-
fore training. If the performance of the system varies in dif-
ferent in specific circumstances (depending on the composi-
tion of the training dataset), this negatively affects the integ-
rity of the system. 
Ensuring representativeness of the training and testing data 
sets is far from being an obvious task, and the more we ad-
vance in the field of AI, the more we discover examples that 
show the potential bias into any collection of data, and also 
the variance that may come after inappropriate training with 
underfitted or overfitted datasets or simply insufficient spec-
ification of the problem and datasets. 
We also witness a change in paradigm where the datasets may 
contain part of the specification while there is a conceptual 
need to have also, at system level, specifications independent 
from the dataset. Otherwise we would be trapped into a logic 
pitfall where we could not say that a bad dataset which be-
came specification is bad, because it is the specification. Oth-
erwise we would be unable to validate the dataset against the 
system needs. 

2.3 Robustness and Verification Challenges 

A very important challenge, which derives from the previous 
ones, but has a dominant importance in safety analysis, is re-
lated to the robustness and therefore to the verification of the 
ML models. The first question we need to assess is how var-
iable is a model to the underlying training dataset. How much 
its characteristics vary depending on the way it was trained, 
the process in itself and the training dataset? And how robust 
it will be over time, once in production, to variations into its 
inputs? 
This is related to a well-known robustness problem, first 
highlighted by the concept of « adversarial » attack, but that 
can be unforeseen as well. If a ML model is not robust, small 
variations of the inputs can lead to unexpected behavior of 
the model output [Gupta et al., 2021b], and [Latorre et al., 
2020]. The role of the standard will be to give guidance on 
how to detect adversarial inputs and unintended outputs from 
the ML model. For this, we should be able to assess, through 
formal methods or statistical procedures, the robustness of the 
trained models and moreover, be able to include in the train-
ing methodologies some methods guaranteeing the robust-
ness of the final model. 

It is also useful to explore tradeoffs of the training strategies 
in order to reach an adequate balance between performance 
and robustness of the resulting ML model. 
And last but not least, we should be able to define safety mit-
igations in the system, if these training and assessing methods 
are not enough to guarantee the expected safety level. 

2.4. Explainability Challenges 

The last pillar of AI trustworthiness is the explainability, and 
some aspects of this challenge for aeronautics have been also 
described in [CANSO STWG AI, 2021], [NIST,2021], [Ar-
rieta et al., 2019], and [Gilpin et al., 2018]. Of course, as hu-
mans, we need to formulate the reasons why something 
works or does not work. But this comes back to the black box 
issue of the ML models, where looking into the model de-
scription at software level does not help understanding how 
it behaves, contrarily to rule-based software. This inherent 
lack of explainability has triggered active research to increase 
understanding and confidence in ML-based systems.  
The problem is particularly difficult, because the data-based 
methods only look for correlations  while explainability 
needs causality. We need therefore to develop methods point-
ing out the causality links between input data and output of 
the ML modules to express the underlying explanation.  
Currently, some of the most performant explanation systems 
are based also on ML models, which are trained in parallel of 
the models they need to explain. So, how to gain confidence 
in the second model and ensure it does not have itself other 
issues of stability, bias etc.? They can fail in their task, by 
being trapped into the non-causality or robustness issues. 
This would lead of course to a completely false explanation 
and by consequence to lack of trust into the full system. How-
ever, very often the failure of the explanation model put in 
place may highlight some biases in the training data set, so 
all the challenges (specification, data representativeness, ver-
ification and explainability) are actually related to each other. 
Another dimension in the explainability is its relation to the 
human factors. Indeed, one have to consider that the explana-
tion content may differ according to the user who receives the 
information. . The data scientist, the end user (be it a pilot or 
an Air Traffic Controller), the regulation authority, they all 
have different knowledge and different mental models, so 
they expect explanations for different reasons: the end user 
needs an almost real time explanation which has a concise 
form and is pertinent for a decision aid, the data scientist will 
need a thorough insight into the internal features in order to 
improve the model, while the accident investigator or regula-
tion authority will need a full file of evidence of the system, 
but not at all in real time. 
Human factors should also be considered for the operational 
monitoring of AI-based systems, as the Human Machine In-
terface will give essential indications of anomalies in the 
functioning of the system. In addition, a feedback should ex-
ist to the data management process, since data that led to 
these behaviors have to be traced back to the root cause and 
for this they need to be stored during the runtime. 



2.4. Risk mitigation Challenge 

Finally, an important feature for AI trustworthiness would be 
the ability to define the limits of safe operation for the ML 
module, and this is actually the most important characteristic 
for a safety critical application: the system has to operate only 
under the situations where it has enough confidence in its 
own outputs. The system has to operate in its Operational De-
sign Domain only, to guarantee its safe performance. 
This relates to system considerations (e.g. monitoring needs, 
architecture mitigation with safety net), which will be ad-
dressed by the future WG-114/G-34 standard, together with 
the Machine Learning Development Lifecycle explained in 
the next section. 

3. Machine Learning Development Lifecycle  

Several attempts of definition of a development lifecycle for 
machine learning exist in the literature like [ANSI/UL, 2020], 
[Bhattacharyya et al., 2015], [Cluzeau et al., 2015], [DEEL, 
2021], [Hawkins et al., 2021], [Redman et al., 2020], [Wil-
kinson et al., 2016]. However, these proposals of lifecycle are 
not fully integrated in the aeronautical standardization frame-
work recalled in the introduction, and most of them have not 
the sufficient level of details to support certification/approval 
process in the aeronautical field. The Machine Learning De-
velopment Life Cycle (MLDL) defined by WG-114/G-34 is 
applicable to offline ML technologies. The MLDL does not 
impose a specific development process (e.g., Waterfall, V, 
W, or Agile cycle) nor a specific learning environment, nor 
specific ML technologies. This MLDL is fully integrated 

with the aeronautical standardization framework and sup-
ports the certification/approval process. It also contributes to 
define and organize development objectives and outputs in a 
simple and clear manner for certification/approval applicants.  
Figure  depicts the proposed Machine Learning Development 
Lifecycle. 
System or subsystem aspects are not discussed in this section, 
as they can mostly be addressed with existing standards, even 
if some adaptation are currently being discussed within WG-
114/G-34. 

3.1 MLDL inputs 
The MLDL has the following inputs: (i) System/subsystem 
requirements allocated to ML items, and (ii) System/subsys-
tem architecture. 
These requirements and architecture are the result of sys-
tem/subsystem design. These requirements describe the spe-
cific function that the Machine Learning items should imple-
ment as well as the safety, performance, and other require-
ments that the Machine Learning items should achieve. 

3.2 MLDL outputs 
The MLDL processes are complete when their objectives and 
the objectives of the integral processes associated with them 
are satisfied. The primary outputs of the MLDL are: (i) a set 
of ML implementation requirements, (ii) a Test Dataset that 
should be used in the Software/Hardware item development 
phase, and (iii) documentation.  Documentation will include 
descriptions of model and data processing as well as results 
using the training, validation, and test data sets. 

Figure 2 MLDL overview 



3. 3 MLDL processes 
The MLDL is made of several processes to produce the 
MLDL outputs. 

ML Design Requirements process 
This first process aims at refining the system/subsystem re-
quirements allocated to the ML items, in order to develop the 
ML design requirements. 
This process also consolidates the ML derived requirements, 
i.e. the additional requirements emerging from design or im-
plementation decisions during the ML development process, 
which are not directly traceable to system/subsystem require-
ments. 
This process takes as inputs the system/subsystem require-
ments, the system/subsystem architecture, and the feedbacks 
from the subsequent activities. 
This process produces two types of ML design requirements: 

ML data requirements (e.g., data sources, data quality ob-

jectives, datasets size) 

ML Model requirements (e.g., performance metrics, size, 

type of model, expected properties) 

ML Environment Set Up Process 
The ML learning environment is an integrated set of methods, 
tools, and hardware resources used to specify, build, train, 
optimize, verify, describe, monitor, and reproduce the ML 
Model. The ML learning environment should be identified 
from the analysis of ML Model requirements, the ML data 
requirements, the System/subsystem Architecture and the 
ML datasets. 

ML Data Management process 
The ML data management processes aim at producing the da-
tasets used for the ML Model training and verification. The 
output of these processes is three datasets and the ML input 
data preparation description: 

The training dataset, used to train the ML Model. 

The validation dataset, used to tune the hyper parameters. 

The test dataset, used for verification activities.  Note that 

the test dataset is not normally used to build (train) or re-

fine (tune) the model. 

ML data processing description: this describes the pre-pro-

cessing of raw data to create the inputs to the model when 

it is implemented.  This may include cleaning, transfor-

mation, feature extraction, filtering, range checks, or other 

data quality checks.  Note that this is a description of the 

processing used to create model inputs in real-time and 

while it will be informed by, and consistent with, the pro-

cess used for creating the offline model training data, it 

could be different because it will be for processing stream-

ing data and not batch data. 

Data management relies on several processes, such as data 
source identification, data collection, data preparation, data 
allocation, data validation and verification, data maintenance, 
and data configuration management. 
 

ML Model Design process 
The ML Model design process develops the ML Model ar-
chitecture and identifies the learning environment. It also de-
velops, through one or more iterations, ML training require-
ments that can be used to build, train, and optimize the ML 
Model. The outcome of the ML Model design process is the 
ML Model Description which includes the ML Model archi-
tecture and the ML Model implementation requirements. 
This process is made of several activities: 

ML Model architecture development: The ML Model ar-

chitecture development activity process defines the ML 

Model architecture including the breakdown into ML 

Model elements (data pre/post processing, a model or sev-

eral submodels, model pre/post processing), the descrip-

tion of these individual elements, and how they should be 

integrated to comply with ML Model requirements. The 

ML Model architecture does not define the design of the 

Figure 3 MLDL Validation and Verification activities  



ML model elements since it is done by the ML Model 

building activity. 

ML Model training specification: The ML model training 

specification activity develops ML training requirements 

that can be used to build, train, and optimize the ML 

model. Training requirements should contribute to ML 

Model explainability and reproducibility. 

ML Model building: The ML Model building activity de-

velops appropriate set of hyper parameters for a candidate 

ML model. The ML Model building activity consists of the 

following steps: (i) the ML Model hyper parameters are 

selected and if needed optimized from the ML Model ar-

chitecture to comply with the ML Model requirements and 

if applicable with the ML training requirements, and (ii) 

the ML Model is developed from the hyperparameters de-

fined in the ML Model architecture and if applicable in the 

ML training requirements. 

ML Model training: The analytical form of the model, and 

the hyperparameters are known to the ML designer at the 

end of the ML Model Building activity while the weights 

are unknown to the designer unless a previously designed 

similar model is being used as a starting point. The training 

phase aims at developing/computing the weights using the 

ML model optimization algorithm to reach the expected 

performance of the model on training dataset. 

ML Model Post-Training Optimization Activity: Model 

Optimization Activity consists in performing changes after 

the training phase to the candidate ML Model to achieve 

the expected performance specified in the ML Model Re-

quirements. 

ML Model description: The ML Model description activity 

develops the sufficient documentation to facilitate the 

specification of ML Implementation requirements. 

ML Implementation Requirements process 
The ML Implementation Requirement process develops a 
baseline of ML Implementation requirements that can be 
used to implement the ML Model and its associated data pro-
cessing on the target computer(s). Sub-system implementa-
tion constraints are also included in this baseline of ML Im-
plementation requirements. 

ML Validation and Verification processes 
In order to support development assurance, the MLDL is sub-
ject to validation and verification activities. In the context of 
the MLDL, validation and verification have the following 
meanings: 

Validation: the determination that the ML requirements 

are correct and complete 

Verification: the evaluation of the ML model to determine 

that it meets the ML requirements 

Fig. 3 summarizes the validation and verification activities 
performed on the different outcomes of the MLDL processes. 
Because validation and verification activities are performed 

on the outcomes and not on the processes, Figure  focuses on 
the outcomes (depicted with bubbles) and not on the pro-
cesses (depicted with rectangles). 
Validation is performed on ML Data Requirements , ML 
Model Requirements , and ML Implementation Require-
ments. Verification is performed on Training, Validation and 
Test datasets, Data processing descriptions, ML Model (us-
ing the Test dataset). Validation of System/subsystem Re-
quirements and verification of the deployed model are out of 
the scope of the MLDL. 

ML Configuration Management Process  
The ML Configuration Management process, working in co-
operation with the other life cycle processes, provides a de-
fined and controlled configuration of the ML datasets and ML 
Model throughout the MLDL. It provides among others: (i) 
the ability to consistently replicate the ML datasets and the 
ML Model for the implementation phase or to regenerate 
them in case of a need for investigation or modification, (ii) 
control of process inputs and outputs that ensures consistency 
and repeatability of process activities, (iii) a known point for 
review, assessing status, and change control by the establish-
ment of baselines, (iv) controls that ensure problems receive 
attention and changes are recorded, approved, and imple-
mented, (v) evidence of approval of the ML Model by control 
of the outputs of the MLDL processes, (vi) the assessment of 
the ML Datasets and ML Model compliance with require-
ments, and (vii) maintenance of secure physical archiving, re-
covery, and control for the configuration items. 

4 Outlook 

WG-114/G-34 has just published a Statement of Concerns on 
AI for Aeronautical Systems (EUROCAE ER-022 / SAE 
AIR6988). This study addresses several aspects. It starts with 
a taxonomy of the AI techniques, followed by a gap analysis 
with the current standards. This allowed to identify and char-
acterize the main areas of concerns, and then some possible 
leads to address them. Last sections deal with airborne and 
ground operations use cases that were collected in the effort 
to represent the industry’s needs. The Statement of Concerns 
outcomes shaped the main assumptions of the WG-114/G-34 
objectives. First, the scope of the standard was reduced to the 
ML technique and in particular to the offline ML (learning 
does not continue during operations). Second the joint group 
was structured into 7 subgroups (SG) to map the ML devel-
opment workflow but not only: SG1: Use cases management; 
SG2: Data management and validation; SG3: ML design and 
verification; SG4: ML implementation and verification; SG5: 
System & safety considerations; SG6: Change of previously 
developed ML systems; SG7: All other integral processes. 
The first issue of the standard is scheduled to release by mid-
2023. This is a very ambitious timeframe for a standard that 
is cross-domains (airborne and ground) and for a technology 
that is relatively new to the industry or even still part of the 
research field. The first issue will be reduced to the offline 
ML technique, then in a second issue other AI technologies 
will be addressed. 
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