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Abstract
Deep ensembles have been shown to perform well
on a variety of tasks in terms of accuracy, uncer-
tainty estimation, and further robustness metrics.
The diversity among ensemble members is often
named as the main reason for this. Due to its
complex and indefinite nature, diversity can be ex-
pressed by a multitude of metrics. In this paper, we
aim to explore the relation of a selection of these
diversity metrics among each other, as well as their
link to different measures of robustness. Specifi-
cally, we address two questions: To what extent can
ensembles with the same training conditions dif-
fer in their performance and robustness? And are
diversity metrics suitable for selecting members to
form a more robust ensemble? To this end, we in-
dependently train 20 models for each task and com-
pare all possible ensembles of 5 members on sev-
eral robustness metrics, including the performance
on corrupted images, out-of-distribution detection,
and quality of uncertainty estimation. Our find-
ings reveal that ensembles trained with the same
conditions can differ significantly in their robust-
ness, especially regarding out-of-distribution detec-
tion capabilities. Across all setups, using differ-
ent datasets and model architectures, we see that,
in terms of robustness metrics, choosing ensemble
members based on the considered diversity metrics
seldom exceeds the baseline of a selection based on
the accuracy. We conclude that there is significant
potential to improve the formation of robust deep
ensembles and that novel and more sophisticated
diversity metrics could be beneficial in that regard.

1 Introduction
Deep Neural Networks (DNNs) are one of the key Machine
Learning (ML) approaches in enabling high-impact applica-
tions such as autonomous driving or automated medical di-
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agnoses. Convolutional Neural Networks (CNNs) are espe-
cially relevant for complex perception tasks and have shown
impressive results. However, these networks have various in-
sufficiencies that impede their use in safety-critical systems
[Willers et al., 2020]. For instance, it has been demonstrated
that CNNs do not provide reliable uncertainty estimates for
their predictions [Guo et al., 2017; Henne et al., 2020]. These
are required for surrounding safety systems that dynamically
decide if an ML component can be trusted in a given situation
or if a safety action needs to be taken [Weiss et al., 2018].

One widely used method to improve the reliability of un-
certainty quantification are Deep Ensembles (DEs) [Lakshmi-
narayanan et al., 2017]. Their popularity stems from the ease
of use — only multiple individual networks need to be trained
and their predictions averaged — and their overall increase
in performance and robustness, especially w.r.t. uncertainty
quantification. This increase in robustness is due to the inher-
ent randomness in the training of DNNs that causes the indi-
vidual networks forming the DE to converge to different local
minima [Fort et al., 2020]. In other words, as with other en-
semble learning approaches, e.g., gradient boosted trees, the
diversity of the member models results in an overall increased
performance and robustness [Beluch et al., 2018]. However,
measuring the diversity of DNNs is non-trivial, due to its in-
definite specification, and as a consequence also the quantifi-
cation of its effects on the robustness of DEs. In this paper,
we therefore make the following contributions:

• We investigate the extent to which ensembles can dif-
fer w.r.t. performance and safety-relevant metrics when
training their member models independently and with
the same hyperparameters and architecture, but with dif-
ferent random initalizations.

• Furthermore, we investigate the correlation of safety-
relevant metrics to different diversity metrics, in order
to determine their applicability as indicators for the ro-
bustness of DEs.

2 Related Work
In the following, we present the current state of assuring ML
systems from a safety engineering perspective, giving context
how advances in the field of safe ML relate to it. Addition-
ally, we illustrate current efforts in the field of uncertainty
estimation for DNNs and elaborate especially on DE.



2.1 Safety Assurance for Machine Learning
Compared to other software-based systems, arguing the
safety for ML systems is still an emerging field. For one,
the lack of an exact specification of the function, the reason
why ML is employed in the first place, impedes tractable test-
ing and safety analyses. For the other, especially for DNNs,
critical insufficiencies exist, most notably, unreliable confi-
dence estimation, susceptibility to out-of-distribution data,
and lack of generalizability and explainability [Willers et al.,
2020]. These insufficiencies require appropriate countermea-
sures, e.g., in the form of explicit uncertainty estimation, out-
of-distribution detection, or methods enabling interpretabil-
ity. Surrounding safety architectures can then incorporate
these countermeasures to determine the trustworthiness of
the ML function at runtime [Weiss et al., 2018]. PURSS,
for instance, integrates perceptual uncertainty quantification
in the Responsibility-Sensitive Safety model, a safety ap-
proach based on formal rules and physical constraints [Salay
et al., 2020]. However, for complex autonomous systems
such safety architectures do not only require the quantifica-
tion of uncertainties for DNNs, but also of all other elements
of the (perception) system [Kurzidem et al., 2020]. This
means that approaches improving the ML functions will not
be sufficient on their own, it is also necessary to approach the
problem from the safety engineering side. For instance, exist-
ing safety standards, such as ISO26262 in the automotive do-
main, must be analyzed towards their applicability to systems
employing ML functions [Salay et al., 2018]. Moreover, new
assurance approaches and standards need to be formulated to
take into account the specifics of ML. One such approach is to
structure the assurance case in Goal Structuring Notation by
performance claims, for which limitations are analyzed and
concrete qualitative and quantitative evidences are gathered
[Burton et al., 2019]. This framework allows a structured
analysis of ML-based systems and supports developing best
practices to facilitate future assurance efforts.

2.2 Uncertainty Quantification for DNNs
DNNs are known to be overconfident in their predictions
[Guo et al., 2017] which impedes their use in safety-critical
systems. To overcome this insufficiency, the most prominent
approach is to include Bayesian principles in DNNs in the
form of Bayesian neural networks [Bishop, 1997]. These
model and learn distributions over the weights of a network.
For inference, the weights are sampled from their respective
distributions, resulting in a predictive mean and variance. Al-
though, Bayesian neural networks provide more reliable con-
fidence estimates, their training still remains a challenge, as
computing the posterior parameter distribution for deep net-
works is currently intractable [Mullachery et al., 2018]. An
approach to approximate Bayesian neural networks is Monte
Carlo dropout [Gal and Ghahramani, 2016]. Here, dropout is
used at inference to sample from the weights, i.e., applying
random dropout masks is interpreted as placing a Bernoulli
distribution over the weights. Although the sampling yields
a more reliable predictive mean and variance, the applicabil-
ity in low-power domains is limited, as multiple (partial) for-
ward passes are required. A more efficient approach is Ev-
idential Deep Learning, a non-Bayesian approach based on

the Dempster-Shafer theory, that learns to estimate the pa-
rameters of a predictive Dirichlet distribution [Sensoy et al.,
2018]. However, the training may suffer from instabilities,
complicating arguments towards its robustness [Henne et al.,
2020]. Recently, another approach has been proposed, ar-
guing that standard deterministic DNNs with appropriate in-
ductive biases are able to outperform more complex uncer-
tainty quantification approaches in active learning and out-of-
distribution detection, requiring only minimal changes to the
architecture and training procedure [Mukhoti et al., 2021].

Despite recent advances in the field of uncertainty quan-
tification for DNNs, DE is still a very popular approach, as it
consistently improves the reliability of uncertainty estimates
and robustness as well as performance in general. It works
by forming an ensemble over multiple independently trained
DNNs and averages the predictions of the individual mem-
bers to capture the predictive mean and variance. As with
other ensembling approaches in ML, the reason for the in-
creased robustness and performance lies in the diversity of
the member networks [Beluch et al., 2018], a result of the
randomness in the weight initialization and optimization pro-
cess of DNNs [Fort et al., 2020]. Therefore, a few approaches
have been proposed to increase the diversity of DEs. For
instance, Pang et al. [2019] introduce an adaptive diversity
promoting regularizer to increase the robustness against ad-
versarial attacks. Another example is the diversity-promoting
adversarial loss proposed by Sinha et al. [2020] that improves
the overall robustness of DEs. Although DE is a sampling-
based approach, it requires significantly fewer forward passes
than Monte Carlo dropout, while outperforming it [Henne et
al., 2020]. Furthermore, with techniques such as Ensemble
Distribution Distillation [Malinin et al., 2020], a DE can be
distilled into a single model, while maintaining its predictive
qualities.

3 Diversity Metrics for Ensembles of Deep
Neural Networks

This section introduces the ensemble diversity metrics we
used in the experiments for this paper. We focused on pair-
wise metrics, i.e., metrics which are evaluated on a pair of
classifiers. The diversity of an ensemble of more than two
members is then calculated as the mean pairwise diversity
metric value. In the following, let D = {xn, yn}Nn=1 denote
the dataset, where yn ∈ {1, . . . ,K} is the true label out of K
classes for the input xn ∈ RD. Furthermore, letGθi be a deep
neural network with parameters θi ∈ Rp which models a pre-
dictive distribution over the labels, denoted by pθi(y|x). The
predicted label is defined as ŷi = argmaxk pθi(y = k|x).

3.1 Disagreement
Disagreement of predictions is a common and straightforward
measure of diversity. It is defined as the fraction of samples in
the datasetD for which two classifiers predict different labels.
The disagreement between two classifiersGθi andGθj can be
expressed as

Di,j =
N ŷi 6=ŷj

N
, (1)



where N ŷi 6=ŷj is the number of samples in D on which the
two classifiers disagree.

3.2 Normalized Disagreement
Taking into account that the disagreement could stem from
making random predictions, Fort et al. [2020] have intro-
duced a normalized version of the disagreement metric which
includes the accuracy of the classifiers. This has been widely
adopted as a measure of ensemble diversity [Wen et al., 2020;
Durasov et al., 2020; Wenzel et al., 2021]. The normalized
disagreement between Gθi and Gθj is defined as

ND i,j =
Di,j

(1− a) =
N ŷi 6=ŷj

N(1− a) , (2)

where a denotes the accuracy of the ensemble of the two clas-
sifiers andDi,j is the disagreement as defined in Equation (1).

3.3 Double Fault Measure
Another example of incorporating accuracy or error into a di-
versity metric is the double fault measure. It is one of the
classical measures of similarity, which has long existed in the
literature and has already been used to select the most error-
independent nets for ensembling [Giacinto and Roli, 2001;
Kuncheva and Whitaker, 2003]. With N00 denoting the num-
ber of samples for which both classifiers make a wrong pre-
diction, the double fault measure between Gθi and Gθj can
be described as

DF i,j =
N00

N
. (3)

3.4 Output Correlation
Besides using the model’s predicted labels, diversity can also
be measured in terms of the predictive distribution. Huang
et al. [2017], for example, have used the pairwise correlation
of softmax outputs for describing diversity in the activation
space. The output correlation between two classifiersGθi and
Gθj is then defined as the Pearson correlation coefficient of
pθi(y|x) and pθj (y|x) on dataset D.

3.5 Cosine Similarity
The four preceding diversity metrics are calculated based on
the output of the models and therefore are dependent on the
dataset D. Contrary to this, the cosine similarity is applied to
the parameters θi and θj of the two classifiers, e.g., as it was
used by Fort et al. [2020]. It is defined as

CS i,j = cos(θi, θj) =
θ>i θj
‖θi‖‖θj‖

. (4)

3.6 Other Diversity Metrics
The presented metrics are only a selection of the diversity
metrics available for classifier ensembles. Kuncheva and
Whitaker [2003] give an overview of metrics measuring out-
put diversity. Out of those, we also used the Q statistic, the
disagreement measure, and the Cohen’s kappa coefficient (κ)
in our evaluation. However, in accordance with the results of
Kuncheva and Whitaker [2003], these were highly correlated
among themselves and with disagreement. Especially κ has a

strong negative correlation with disagreement. It is a measure
of agreement which also takes into account the probability
of random agreement. For classifiers with a high number of
classes, this probability is negligible and κ reduces to a sim-
ple agreement metric. Due to these strong correlations and
for the sake of brevity and clarity, we omitted these metrics
in our results.

4 Evaluation
In the following, we discuss our results on the task of im-
age classification, evaluating the significance of the diversity
metrics regarding safety-relevant metrics.

4.1 Design of Experiments
In order to provide a broad analysis on ensemble diversity,
we trained three different architectures for our experiments:
A basic 4-layer CNN (BasicCNN), a MobileNetV2 [Sandler
et al., 2018] for its suitability for mobile applications, and a
34-layer ResNet [He et al., 2016] as a standard architecture.
Within a deep ensemble, we only use one type of architec-
ture in accordance with Lakshminarayanan et al. [2017]. The
datasets used for training are CIFAR-10, CINIC-10 [Darlow
et al., 2018], and German Traffic Sign Recognition Bench-
mark (GTSRB) [Stallkamp et al., 2011]. The CIFAR-10
dataset consists of 60,000 32×32px images in 10 classes,
e.g., automobile, truck or dog. CINIC-10 is an extension of
CIFAR-10 with downsampled ImageNet images, adding up
to 270,000 images in the same 10 classes. The more than
50,000 images of GTSRB show German traffic signs, which
are to be classified into 43 different classes. For evaluating the
ability to detect Out-of-Distribution (OOD) inputs, we used
CIFAR-100 and the Street View House Numbers (SVHN)
dataset [Netzer et al., 2011]. CIFAR-100 is similar to CIFAR-
10, but with 100 classes, while SVHN comprises real-world
images of house numbers.

For each architecture and dataset, we independently trained
20 models on the respective training data. No augmentations
were applied to the data. Each model’s parameters were ran-
domly initialized and optimized w.r.t. the negative log likeli-
hood loss using the Adam optimizer. To prevent overfitting,
we applied early stopping, when the validation loss did not
decrease for several epochs, and chose the model with the
lowest validation loss for our analysis.

4.2 Evaluation Metrics
For the evaluation we use accuracy, the fraction of correctly
classified samples, as well as the Remaining Accuracy Rate
(RAR) [Henne et al., 2020], which describes the trade-off be-
tween performance and safety. Using a threshold of predicted
probability for discarding predictions as uncertain, RAR de-
scribes the remaining accuracy after discarding predictions
below that threshold. In a well-performing but safe system,
RAR should be as high as possible, while the number of cer-
tain but incorrect samples should be kept to a minimum. In
our analysis we use RAR at an error rate of 1%, i.e., at the
threshold where 1% of the samples are labeled as certain,
but the predictions are incorrect. We refer to this metric as
Acc@1%. To further evaluate the quality of uncertainty esti-
mation, we calculate the Expected Calibration Error (ECE). It



groups the probabilities of a set of predictions into bins, each
covering an equally-sized interval of probabilities, and takes
the average absolute difference between the accuracy and the
predicted probability of each bin. Given that overconfidence
has a higher relevance for safety-critical applications, we also
report a calibration error which only includes the error due
to overconfidence, referred to here as the Negative Expected
Calibration Error (NECE).

For OOD detection the In-Distribution (ID) test dataset is
combined with the OOD test dataset. The trained network la-
bels samples as ID, when its predictive probability is above a
certain threshold, while the remaining samples are labeled as
OOD. For this task we evaluate the Area Under the Receiver
Operating Characteristic (AUROC), as well as the False Posi-
tive Rate (FPR) at 95% True Positive Rate (TPR). This metric
describes the fraction of OOD samples wrongly classified as
ID at a threshold where 95% of ID samples are correctly clas-
sified as ID. Throughout the paper we refer to this metric as
FPR95.

4.3 Results and Discussion
For each setup we evaluate all 15504 possible ensembles of
a combination of 5 members out of the 20 trained networks
on a separate test set. The number of ensemble members
is set to 5 since larger ensembles start to show diminishing
returns [Lakshminarayanan et al., 2017], as well as reduce
the number of possible ensemble combinations for evalua-
tion. The diversity of an ensemble is computed by taking
the average of the respective pairwise diversity metric over
all 10 possible pairs within the 5 ensemble members. Simi-
larly, we also compute the average accuracy of all 2-member
combinations out of the 5 available members. Selecting en-
semble members based on accuracy is the evident and simple
approach. We therefore use this pairwise accuracy as a base-
line metric for a selection of ensemble members and denote
it as the baseline throughout the paper. The results are pre-
sented in three parts: an evaluation on ID data, on corrupted
data, and on the detection of OOD data.

In-Distribution Data
We first show the extent to which the evaluation metrics of
all possible ensembles may differ, when selecting 5 out of
20 trained networks. A large variance in these metrics indi-
cates that the ensembles may vary considerably in their per-
formance or robustness, although their members were trained
under the same conditions except for random initialization.
In these cases, the potential benefit of an informed selection
of ensemble members is the largest.

Table 1 shows the minimum and maximum values of the
accuracy (Acc), Acc@1%, and the ECE, for all configura-
tions and corruptions. The distribution of the metrics in this
table usually follows a bell-shaped curve, i.e., most values are
close to the mean of the minimum and maximum values. In
this part, we focus on the first row of the table, i.e., the ID
data without any corruptions. Depending on the choice of en-
semble members, the accuracy may vary up to 2.1 percentage
points, Acc@1% up to 8.3, and ECE up to 3.7 percentage
points. The metric values for CIFAR-10 and CINIC-10 gen-
erally have a higher variation than these for GTSRB, presum-
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Figure 1: Correlation coefficients between diversity and evalua-
tion metrics on the original ID dataset. An asterisk (*) indicates
a reversed sign of the correlation coefficient for better readabil-
ity. Thereby, to pose as a suitable indicator for ensemble robust-
ness, a diversity metric should correlate most positively with Acc,
Acc@1%, ECE* and NECE*.

ably due to the high level of accuracy for GTSRB to begin
with. The differences between the datasets of the variations
in ECE are not as pronounced. For all three metrics, there is
varying but apparent potential for improvement by an aimed
selection of ensemble members.

Next, we evaluate if and which diversity metric can tap
most of this potential by serving as selection metric. To this
end, we also computed the diversity metric values for each
possible ensemble and analyzed the correlation between them
and the evaluation metrics. The resulting correlation coeffi-
cients are depicted in Figure 1. Since some diversity metrics
are a measure of similarity, i.e., the lower the metric value,
the more diverse the ensemble, we reversed the sign of these
relations for the correlation plot. We did the same for cor-
relation coefficients of evaluation metrics for which a lower
value indicates better performance or robustness, like ECE
and NECE. Therefore, a positive correlation in this figure
uniformly describes that the more diverse the ensemble is ac-
cording to this diversity metric, the better it performs in terms
of the respective evaluation metric, and vice versa. Any sign
reversal is indicated by an asterisk (*).

Except for disagreement and output correlation, most met-
rics positively correlate with both, accuracy and Acc@1%.
The baseline, double fault measure, and cosine similarity
stand out, as they additionally correlate positively with ECE*
across all datasets and architectures. For NECE* the cor-
relations are less strong and in some cases almost negligi-
ble. Only for BasicCNNs trained on CIFAR-10, the corre-
lations are quite high and mostly negative. Considering the
sign reversal, this means that the higher the diversity, or ac-
curacy, for an ensemble according to that metric, the higher
the NECE and therefore the stronger the overconfidence. In



CIFAR-10 CINIC-10 GTSRB
BasicCNN MobileNet ResNet BasicCNN MobileNet ResNet BasicCNN MobileNet ResNet

None Acc 81.75 85.98 86.22 70.64 77.09 77.56 98.78 98.39 98.20
83.52 88.07 88.35 71.54 79.00 79.47 99.23 99.59 99.42

Acc@1% 47.91 54.50 55.41 28.79 36.59 38.33 98.71 97.95 97.84
53.05 62.81 63.23 30.76 42.64 43.36 99.23 99.59 99.42

ECE 1.04 3.66 3.02 1.26 3.55 2.11 0.32 1.07 0.59
2.81 6.87 6.41 2.92 6.31 5.81 0.94 3.26 2.89

Brightness Acc 77.40 79.03 80.26 66.65 71.74 72.03 96.79 95.55 95.50
79.53 83.85 83.66 68.02 74.91 75.14 97.71 97.60 97.55

Acc@1% 37.78 39.60 41.29 23.05 29.43 29.25 94.40 91.84 91.35
42.98 50.94 51.63 25.44 35.34 35.56 96.47 96.20 96.41

ECE 1.01 3.40 2.86 1.75 4.17 2.74 0.47 2.04 0.56
2.80 8.11 7.22 3.73 7.84 6.49 1.14 5.87 4.43

Contrast Acc 61.23 64.02 68.49 50.69 61.00 64.02 97.21 94.81 95.54
65.51 70.73 76.62 53.38 65.98 69.46 98.23 98.23 98.12

Acc@1% 15.02 17.12 23.74 9.74 17.84 20.62 95.06 90.89 92.19
21.35 27.10 35.18 12.13 22.88 27.26 97.53 97.66 97.52

ECE 3.39 0.88 0.92 3.84 1.18 0.81 1.21 2.44 1.21
7.97 4.48 5.45 6.49 5.68 5.88 2.32 6.34 6.32

Cutout Acc 69.96 77.46 77.97 63.38 71.24 72.14 95.34 94.70 94.71
73.08 81.72 82.64 64.90 74.07 75.56 96.07 96.52 96.38

Acc@1% 25.94 33.17 36.61 20.41 28.38 29.37 91.27 89.68 89.64
32.97 49.21 49.45 22.34 33.58 35.69 93.05 93.07 93.63

ECE 1.56 2.28 2.11 0.49 3.39 1.59 0.44 1.37 0.68
4.22 6.92 6.69 2.31 6.81 6.45 1.29 4.89 3.66

Table 1: The minimum and maximum values of accuracy (Acc), Acc@1%, and ECE on different types of corruptions for all ensembles of 5
out of 20 trained networks. Values mentioned in the text are highlighted in bold.

all other cases there is little correlation with NECE, which
is presumably due to the already little variance of NECE be-
tween the ensembles.

Corruptions
We further evaluate all ensembles on corrupted images in or-
der to test their robustness. We applied three types of corrup-
tions: brightness and contrast, according to the framework
by Hendrycks and Dietterich [2019], and cutout, which ran-
domly cuts a patch of 8×8px from an image (see Figure 2).

We return to Table 1 for describing the variance of the
evaluation metrics on corrupted input images between all 5-
member ensembles. The range of values increases for all cor-
ruptions compared to the results on the original data. The
highest variation in accuracy and Acc@1% can be observed
for CIFAR-10. For ensembles trained on this dataset, accu-
racy may vary up to 8.1 percentage points, while Acc@1%
shows a range of up to 16.0 percentage points. Although

Original Brightness Contrast Cutout

Figure 2: Exemplary 32×32px image1with different types of corrup-
tion.

mostly to a lesser extent, we can also find an increase in vari-
ation for ECE values compared to no corruptions. Therefore,
an informed selection of ensemble members could potentially
lead to significant improvement of the performance on cor-
rupted input data.

For our correlation analysis, we again consider the accu-
racy, Acc@1%, ECE, and NECE, but evaluated on the cor-
rupted dataset. For brightness corruptions, the correlations
between diversity and evaluation metrics take a very simi-
lar form to applying no corruptions. Mostly, the only dif-
ference is a generally weaker correlation. We can therefore
assume that this type of corruption has a more or less evenly
distributed effect on the performance of the ensembles and
therefore their correlation with the diversity metrics.

Other types of corruptions, however, have a stronger in-
fluence on the correlations. Figure 3 shows the correlation
coefficients of diversity with evaluation metrics on the con-
trast corrupted dataset. Similarly to brightness corruptions,
we observe a weaker correlation in most cases. Addition-
ally, for MobileNet and ResNet, also the sign of correlation
is mostly in accordance with the results from the original
dataset. For BasicCNN, however, the ECE* on the corrupted
dataset is negatively correlated with almost all diversity met-
rics for CIFAR-10 and CINIC-10. Furthermore, there is al-
most no correlation with accuracy for CINIC-10 and GTSRB.
Overall and especially for MobileNet and ResNet, we can

1Image source: https://commons.wikimedia.org/wiki/File:
PH-ALW Special Air Services B.V.V.JPG

https://commons.wikimedia.org/wiki/File:PH-ALW_Special_Air_Services_B.V.V.JPG
https://commons.wikimedia.org/wiki/File:PH-ALW_Special_Air_Services_B.V.V.JPG
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Figure 3: Correlation coefficients between diversity and evaluation
metrics on the contrast corrupted dataset. An asterisk (*) indicates a
reversed sign of the correlation coefficient for better readability.

still distinguish the baseline, double fault measure, and cosine
similarity from the other diversity metrics. In most cases, they
are positively correlated with accuracy, Acc@1%, and ECE*,
and at most have a weak negative correlation with NECE*.
On the other hand, while normalized disagreement was often
close to the top three in the original dataset, its correlation
with the evaluation metrics on contrast corrupted data is con-
siderably weaker. In some cases, it is even negatively corre-
lated with accuracy.

Lastly, the correlations for the evaluation metrics on the
cutout corrupted dataset are depicted in Figure 4. For this
type of corruption, the correlations are again weaker com-
pared to the evaluation metrics on the original dataset, but
also less consistent across all setups. In some cases for
BasicCNN, the baseline, double fault measure, and cosine
similarity are negatively correlated with ECE* and have a
stronger negative correlation with NECE*. Accuracy and
Acc@1% are still mostly positively correlated with these
three selection metrics, but less distinguishable and to a lesser
extent, especially for cosine similarity. Although the evalua-
tion metrics on the corrupted datasets are mainly less corre-
lated with the diversity metrics, the correlations for the base-
line, double fault measure, and cosine similarity mostly point
into the right direction in terms of accuracy, Acc@1%, and
ECE.

Out-of-Distribution Data
Next to the robustness to corrupted data, we also look into
robustness to OOD data and its link to ensemble diversity.
We start again by inspecting the extent to which the evalu-
ation metrics may vary across ensembles. Figure 5 shows
the distributions of AUROC and FPR95 values for OOD de-
tection on CIFAR-100 and SVHN for all possible ensembles
of 5 members out of 20. For OOD detection on CIFAR-
100, ResNets trained on GTSRB stand out for their large
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Figure 4: Correlation coefficients between diversity and evaluation
metrics on the cutout corrupted dataset. An asterisk (*) indicates a
reversed sign of the correlation coefficient for better readability.

range of AUROC and especially FPR95 values. On the other
hand, ensembles of models trained on GTSRB only vary lit-
tle in AUROC and FPR95 for OOD detection on SVHN.
MobileNets and ResNets trained on CIFAR-10 and CINIC-
10, however, show a large variation. AUROC values can dif-
fer up to 15.4 percentage points, and FPR95 values show a
range of up to 43.0 percentage points. Therefore, the most
potential for improvement by an aimed selection of ensem-
ble members can be observed for FPR95 on CIFAR-100 for
ResNets trained on GTSRB, and for AUROC and FPR95 on
SVHN for MobileNets and ResNets trained on CIFAR-10 as
well as CINIC-10.

The correlation between these metrics and the diversity
metrics are presented in Figure 6. The baseline, double
fault measure, and cosine similarity mostly correlate posi-
tively with AUROC and FPR95*. Only for models trained on
CINIC-10 and MobileNets trained on GTSRB, correlations
are generally low and can have reversed orientations. While
for models trained on CIFAR-10 other diversity metrics also
show a positive correlation with AUROC and FPR95*, they
are weaker than those of the baseline, double fault mea-
sure, and cosine similarity. The distinction is most clear for
BasicCNNs and ResNets trained on GTSRB. For ResNets on
GTSRB there is also a lot to gain from strong correlations,
since their AUROC, but especially FPR95 values, may vary
significantly, as shown in Figure 5. For instance, the most di-
verse ensemble according to the cosine similarity metric has
an FPR95 of 0.78% on CIFAR-100, while the most similar
one has an FPR95 of 15.81%.

For OOD detection, we can sometimes observe large vari-
ations between ensembles in AUROC and FPR95 values, al-
though the ensemble members were trained under the same
conditions except for random initialization. Furthermore, out
of all diversity metrics, the baseline, double fault measure,
and cosine similarity correlate particularly well with AUROC
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Figure 5: Distribution of evaluation metrics for OOD detection for
all ensembles of 5 out of 20 trained networks. Each column indicates
the ID dataset, the respective OOD dataset is displayed in parenthe-
ses.

and FPR95, most evidently for ResNets trained on GTSRB.

Summary
We can see that there is varying potential benefit by select-
ing ensemble members based on diversity metrics. Disagree-
ment mostly failed as a selection metric by oftentimes cor-
relating with the evaluation metrics in the unfavorable direc-
tion. Output correlation performed similarly, albeit slightly
better than disagreement. By taking accuracy into account,
the normalized disagreement correlated more positively with
accuracy, while still showing similar patterns to disagreement
for ECE and NECE. The baseline, double fault measure, and
cosine similarity performed reasonably well across all tasks
and were most distinguishable from the other diversity met-
rics, but without a clear winner. Double fault measure is most
similar to the baseline metric, the pairwise accuracy, as it is a
measure of error. This is also reflected in the quite similar cor-
relations with the evaluation metrics. Cosine similarity, being
a measure of parameter diversity, has little in common with
the baseline metric and double fault measure. Nevertheless,
it correlates similarly with the evaluation metrics. This indi-
cates the potential of parameter diversity measures, although
the cosine similarity of all parameters is a rather simple form.

5 Conclusions and Future Work
In this paper, we investigated the variance in robustness of
equally trained ensembles and if diversity metrics are suit-
able to indicate ensemble robustness. Our findings show, that
ensembles trained under the same conditions can vary signif-
icantly w.r.t. performance and robustness. Especially for the
task of OOD detection we observed differences between the
individual ensembles of up to 43 percentage points for the
false positive rate. Regarding the question whether diversity
metrics are suitable indicators for ensemble robustness, we
found that disagreement, normalized disagreement, and out-
put correlation are not well suited. Cosine similarity and dou-
ble fault measure, on the other hand, show a high correlation
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Figure 6: Correlation coefficients between diversity and evaluation
metrics for OOD detection on CIFAR-100 and SVHN. An aster-
isk (*) indicates a reversed sign of the correlation coefficient for
better readability. Ideally, a diversity metric correlates most posi-
tively with AUROC and FPR95*.

with the robustness metrics. However, they do not perform
better than our baseline of selecting an ensemble based on
the pairwise accuracy of the member networks.

As we see a significant potential in improving the forma-
tion of robust DEs, we suggest multiple directions for future
work. Regarding diversity metrics, we suggest the design of
metrics that consider the specifics of DNNs. For instance, ex-
isting metrics do not consider the semantic information and
interplay of the individual neurons. From a safety perspec-
tive, diversity metrics should incorporate this information, as
it is more important that the member networks base their deci-
sions on different concepts than that they show a difference in
their output, but based on the same evidences. Furthermore,
this should be incorporated in approaches increasing the di-
versity of ensembles, ensuring that each member network is
not susceptible to the same error patterns.
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