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Abstract 
L1-, L2-, ElasticNet - regularizations of classification and regression were investigated in the 

course of work. The purpose of the scientific work is to explore different methods of 

regularization for life expectancy prediction, namely L1 -, L2, and ElasticNet regularization, 

to implement them programmatically and to draw conclusions about the results. First of all, 

the WHO Statistics on Life Expectancy dataset was analyzed, prepared and cleaned. It was 

checked if the data types match the attributes of dataset. A linear regression model was 

created using the scikit-learn library. After her training, the weights of the model features 

were obtained and it was observed that the weights at strongly correlated features were 

greater than the rest. To eliminate the problem of multicollinearity, 3 regularization methods 

were applied and compared. 
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1. Introduction 

The work is devoted to a comprehensive study of the regularization of regression for life 

expectancy prediction. 

Regularization in machine learning is a way to reduce the complexity of a model by adding some 

additional constraints to the problem condition. The purpose of using regularization [1, 5]: 

 correct an incorrect task 

 prevent retraining 

 save resources 
It is known that regression models have the predisposition to relearn. If the model is too heavy and 

there is not enough data to determine its parameters, you can get some model that will describe the 

training sample very well, but will generalize to the test sample much worse. There are several ways 
to solve this problem: 

 Take more data 
Disadvantage: very often this solution is not available, because additional data costs extra money 

 Use fewer features 

Disadvantage: this requires a large number of subsets of features. However, the total number of 
subsets that are meant to be sorted increases very rapidly in accordance with the increasing dimension 

of the problem. A complete search is often unavailable. 

 Limit the weight of the features 
Disadvantage: this method is often ineffective. Retraining can only be done to a certain extent. 
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Given the shortcomings of the above methods, the use of regularization in order to prevent model 
retraining is a relevant and effective way to solve the problems of classification, regression and 

learning of deep neural networks [2, 8]. 

Heavy weights are a measure of complexity and a sign of model retraining. Therefore, the modern 

approach to reducing the generalization error is to use a larger model with the use of regularization 
during training, which keeps the weight of the model small. This method leads to faster optimization 

of the model and increase overall performance. 

The purpose of the scientific work is to explore different methods of regularization for life 
expectancy prediction, namely L1, L2, and ElasticNet regularization, to implement them 

programmatically and to draw conclusions about the results [10,15]. 

2. Description of Linear regression 

Linear regression - a model of the dependence of the variable x on one or more other variables 
(features, factors) with a linear dependence function, which has the following form [8]: 
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Advantages of linear regression: 

Speed and simplicity of obtaining the model. 

 Interpretation of the model. The linear model is transparent and understandable to the analyst. The 
obtained regression coefficients can be used to judge how one or another factor affects the result, to 

make additional useful conclusions on this basis. 

 Wide applicability. A large number of real processes in economics and business can be described 

with sufficient accuracy by linear models. 

 Study of this approach. Typical problems (for example, multicollinearity) and their solutions are 
known for linear regression, tests of estimation of static significance of the received models are 

developed and implemented. 

Linear regression quality metrics: 
─ Mean square error [7, 17]: 
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 It is easy to optimize because it has a derivative at all points 

 Strong penalty for outliers 

─ Average absolute error [4]: 
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 It is more difficult to optimize because it has no derivative at zero 

 High endurance to outliers 

─ Coefficient of determination [12]: 
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This metric explains what proportion of variance in the entire target vector the linear model is able 

to explain. That is, it reflects the proportion of variety of responses that the model is able to predict 

[10-13]. 

For smart models 10 2  R , when 
2R  – is an ideal model; 
2R  – the quality of the model coincides with the optimal constant algorithm (returns the 

average answer for the entire training sample); 

12 R  – the quality of the model is worse than the constant; 



3. L1-regularization 

L1 - Lasso regularization helps to improve the generalization of test data by selecting the most important 

factors that most strongly influence the result. Factors with a small value get the value of zero and do not 

affect the final result. In fact, they only help to predict noise in the training data set [17, 19]. 

General formula: 
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where λ is the regularization coefficient. 

The larger the value of λ, the more features are converted to zero and the simpler the model 

becomes. 

The parameter can be reset to zero if: 

 It has a value close to zero 

 Its value changes greatly when changing the sample (large variance) 

 Its removing has the least effect on changing the value of the error function 
Thus, L1 - regularization contributes to the sparseness of the function, when only a few 

factors of the model are not equal to zero. This can completely eliminate some features and 

mitigate the multicollinearity and complexity of the model. The disadvantage of this approach 
may be the complexity of the optimization process, because the L1-regularizer is not smooth 

(has no derivative at zero). 

Multicollinearity is the presence of a linear relationship between features in a sample [20]. 

That is, the existence of a vector of values of a certain feature on all objects, which is expressed 
through vectors of other features. In this case, regardless of the selected object, the result of the 

sum of the products of the coefficients on the value of the features will be equal to zero. 
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Therefore, the problem with multicollinearity is that it leads to an infinitely large number of 

optimal algorithms, many of which have large values of weights, but not all generalize the 
information well. As a result, it leads to retraining of the model. 

The L1 - regularization method is better suited for cases where most of the model parameters 

are not necessary and their values can be neglected [16]. 
The Lasso regression problem (LASSO, Least Absolute Shrinkage and Selection Operator) 

corresponds to the problem of a priori distribution of Laplace by coefficients. 

4. L2 - regularization 

L2 - regularization (English Ridge regularization, Tikhonov regularization) does not allow 

retraining of the model by prohibiting disproportionately large weights. This leads to the selection 

of parameters whose values do not deviate much from zero [17, 5]. 

General formula: 
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where λ is the regularization coefficient. 

Model optimization [7,9]: 
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where ),( XwQ  – is the loss function equivalent to the conditional optimization problem: 
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where C  – is a constant that normally limits the vector of weights. 

 controls the error function and the regularization penaltu. If the value of λ is large, the 

weights will go to zero. If the value of λ is small or equal to zero, then the weights will tend to 
minimize the loss function [9-12]. 

By adding a constant multiplied by the sum of the squares of the weights, we change the 

initial loss function and add a penalty for large weights. The square penalty makes the loss 
function strongly convex, and therefore it has a unique minimum. 

This method is suitable when most of the variables in the model are useful and necessary. 

Also, the addition of L2 - regularization does not complicate the optimization process (eg 
gradient descent) because this regularizer is smooth and convex [19-20]. 

The Tikhonov regression problem corresponds to the problem of normal a priori distribution 

on coefficients and has an analytical solution [17]: 
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where I  – is a diagonal matrix in which the values of  are on the diagonal. 

5. ElasticNet regularization 

ElasticNet regularization is a linear combination of L1 and L2 regularizations. This method 

uses the advantages of both methods at once. The fact that the variables do not turn into zero, as in 

L1 - regularization, makes it possible to create conditions for a group effect with a high correlation 

of variables [15]. 

General formula: 
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The method of elastic net is most often used when the model has a lot of parameters, but whether 

they are necessary or can be neglected beforehand is unknown. 
In particular in the following cases [3-6]: 

 Cancer prediction 

 Metric training 

 Portfolio optimization 

6. Analysis and preparation of the selected dataset 

The WHO Statistics on Life Expectancy dataset was selected for software implementation [1]. 

This dataset contains information collected by the World Health Organization and the United Nations 
to track factors that affect life expectancy. 

Dataset attributes: 

 Country - the country 

 Year - year 

 Status - development status (currently being developed / already developed) 

 Life expectancy - life expectancy 

 Adult Mortality - mortality rate for adults of both sexes (probability of death from 15 to 60 

years per 1000 population) 

 Infant death - the number of infant deaths per 1,000 population 

 Alcohol - per capita alcohol consumption (15+) (in liters of pure alcohol) 

 percentage expenditure - health care expenditure as a percentage of gross domestic product per 

capita (%) 



 Hepatitis B - immunization coverage against hepatitis B (HepB) among one-year-old children 

(%) 

 Measles - measles - the number of reported cases per 1000 population 

 BMI - the average body weight of the entire population 

 under-five deaths - the number of deaths under the age of five per 1,000 population 

 Polio - anti-polio coating (Pol3) among one-year-old children (%) 

 Total expenditure - national health expenditure as a percentage of total public expenditure (%) 

 Diphtheria - coverage by immunoprophylaxis against tetanus and pertussis (DTP3) among one-
year-old children (%) 

 HIV / AIDS - deaths per 1,000 live births HIV / AIDS (0-4 years) 

 GDP - gross domestic product per capita (in US dollars) 

 Population - the population of the country 

 thinness 1-19 years - prevalence of weight loss among children and adolescents aged 10 to 19 

years (%) 

 thinness 5-9 years - the prevalence of weight loss among children aged 5 to 9 years (%) 

 Income composition of resources - human development index by composition of resource 

income (index ranges from 0 to 1) 

 Schooling - number of years of schooling  
The selected dataset was cleaned of data, namely (Figure 1): some columns were renamed 

because they contained spaces: 

 

 

 
Figure 1: Renamed attributes of the dataset "Life Expectancy" 

 

Figure 1 lists the names of all renamed attributes of the Life Expectancy dataset for each 

variable was checked the data match according to its data type: 
 

 

 
Figure 2: Data types of attributes of the dataset "Life Expectancy" 

 

Figure 2 shows that all data types correspond to their data. 

The percentage of zero values in each column was determined: 



 
Figure 3: Percentage of zero values in each attribute of the dataset "Life Expectancy" 

 

As shown in Figure 3, zero data is present in the columns of the dataset: Life_Expectancy, 
Adult_Mortality, Alcohol, HepatitsB, BMI, Polio, Tot_Exp, Diphteria, GDP, Population, 

Thiness_1to19_years, Thiness_5to9_years, Income_Comces_Of. 

Zero values are processed by interpolation, zero values left after interpolation were discarded: 
 

 

 
Figure 4: Percentage of zero values in each attribute of the dataset "Life Expectancy" after 
interpolation 

 

Figure 4 shows that all zero values are eliminated. 
The number and percentage of atypical values for each variable were calculated and deleted using 

the winsorization technique: 

 
 

 
Figure 5: The number and percentage of atypical values for each attribute of the dataset "Life 
Expectancy"  

 



Figure 5 shows the number and percentage of atypical values in each attribute of the dataset. 
 

 

 
Figure 6: Percentage of atypical values for each attribute of the dataset "Life Expectancy" after 
winsorization  

 

In Figure 6 is observed that all atypical values are eliminated. 
This winsorization technique sets a limit on extreme values in statistics in order to reduce the 

impact of atypical data that may be erroneous. Data for some variables before and after winsorization 

using box charts are shown in Figures 7-9 
 

 

 
Figure 7: Diagram of the range of values of the attribute Life_Expectancy before and after 
winsorization  

 

In Figure 7 shows the sample size of the Life_Expectancy attribute before and after winsorization. 

After winsorization, there are no outliers on the diagram. It is seen that the range of values of the 
variable has also decreased. 

 

 

 
Figure 8: Diagram of the range of values of the attribute Adult_Mortality before and after 
winsorization  



In Figure 8 shows the sample size of the Life_Expectancy attribute before and after winsorization. 
Before winsorization, the range of sampling values ranged from 0 to 700, after winsorization - from 0 

to 500. This was due to the elimination of outliers. 

 

 

 
Figure 9: Diagram of the range of values of the attribute original_Tot_Exp before and after 
winsorization  

 

In Figure 9 shows the sample size of the Life_Expectancy attribute before and after winsorization. 

Before winsorization, the sample size is in the range from 0 to 14, after - from 0 to 12. Therefore, 
outliers are eliminated. 

As can be seen from the diagrams, atypical data (outliers) were successfully eliminated using the 

winsorization method. Variables were added to the dataset after winsorization. 

Variables winsorized_Life_Expectancy, winsorized_Tot_Exp, winsorized_Schooling are 
distributed according to the normal distribution (Figures 10-12) 

 

 

 
Figure 10: Distribution of the variable winsorized_original_Tot_Exp  

 

Figure 10 shows the distribution of the variable winsorized_Tot_Exp. The diagram shows that this 
variable is distributed according to the normal distribution. 



 
Figure 11: Distribution of the variable winsorized_ Life_Expectancy 

 

Figure 11 shows the distribution of the variable winsorized_Life_Expectancy. The chart shows 
that this variable is distributed according to the normal distribution. 

 

 

 
Figure 12: Distribution of the variable winsorized_Schooling 

 

Figure 12 shows the distribution of the variable winsorized_ Schooling. It is observed that this 

variable obeys the normal distribution. 
Analysis of the dependences between the target variable winsorized_Life_Expectancy and other 

dataset variables shows that there is a direct linear dependence between winsorized_Life_Expectancy 

and Income_Comp_Of_Resources and Schooling (Figures 13, 14). There is also an inverse linear 
dependence between winsorized_Life_Expect. 

 

 

 
Figure 13: The dependence between the variables LifeExpectancy and Income_Comp_Of_Resources 



This chart is traced the linear dependence between the target variable winsorized_Life_Expectancy 
and Income_Comp_Of_Resources. 

 

 

 
Figure 14: The dependence between the variables LifeExpectancy and Schooling 

 
In this diagram, there is a linear dependence between the target variable 

winsorized_Life_Expectancy and Schooling. 
 

 

 
Figure 15: The dependence between the variables LifeExpectancy and AdultMortality 

 
This diagram shows the inverse linear dependence between the target variable 

winsorized_Life_Expectancy and Schooling 

Correlation map of dataset features: 



 
Figure 16: Correlation map of the characteristics of the Life Expectancy datase 

 

From this thermal diagram it is possible to reveal dependences between the following features: 
1. There is a dependence between winsorized_Income_Comp_Of_Resources and 

winsorized_Schooling. 

2. There is a dependence between winsorized_thinness_1to19_years and 
winsorized_thinness_5to9_years 

3. There is a dependence between winsorized_Polio and winsorized_Diphtheria 

4. There is a dependence between winsorized_Percentage_Exp and winsorized_GDP. 

5. There is a dependence between winsorized_Income_Comp_Of_Resources and 
winsorized_Life_Expectancy. 

6. There is a dependence between winsorized_Life_Expectancy and winsorized_Schooling. 

7. There is a dependence between winsorized_Infant_Deaths and 
winsorized_Under_Five_Deaths. 

8. There is an inverse dependence between winsorized_HIV and winsorized_Life_Expectancy. 

9. There is an inverse dependence between winsorized_Adult_Mortality and 
winsorized_Life_Expectancy. 

The sample has features that correlate with the target variable, which means that the problem of 

life expectancy (Life Expectancy) can be solved by linear methods. 

7. Experiments  

Linear regression model 

Initially, a linear regression model was created without applying any of the regularizations. This 

model solves the problem of predicting life expectancy (Life Expectancy) based on 16 other features 

of the dataset. The scikit-learn library was used for software implementation. 
All data were mixed and divided into train and test: 
train, test = train_test_split(le_shuffled, test_size=0.3) 
train_data = scale(train.loc[:, train.columns != "winsorized_Life_Expectancy"]) 

test_data = scale(test.loc[:, test.columns != "winsorized_Life_Expectancy"]) 
train_labels = train["winsorized_Life_Expectancy"] 

test_labels = test["winsorized_Life_Expectancy"] 



Creating and learning a linear model: 
model = linear_model.LinearRegression().fit(train_data, train_labels) 

The obtained weights at the features after learning the model of linear regression (Figure 17): 

 

 

 
Figure 17: Weights of features of the model of linear regression after training 

 

Absolute value of weights at linearly dependent features are bigger, than at other features. 

Analytical formula below explain this, it is used to calculate the weights of a linear model in the least 
squares method: 
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If X has collinear (linearly dependent) columns, the matrix XT becomes degenerate, and the 

formula ceases to be correct. The more dependent the features, the smaller the determinant of this 
matrix and the worse the Xw≈y approximation (the problem of multicollinearity) 

Quality metrics of the obtained linear model (Figure 18): 

 

 

 
Figure 18: Quality metrics of the linear regression model (root mean square error, mean absolute 
error, coefficient of determination) 

 

The mean absolute error  2.66, the root mean square error  12.9. The coefficient of determination 

is  0.86, and therefore is in the range of 10 2  R , that indicates that the model works well and 

explains 86% of the variance in the entire target vector, that is a good characteristic. 

The solution of the problem of multicollinearity and overfitting is regularization of the linear 

model. L1 or L2, or L1 and L2 weight norm multiplied by the regularization coefficient α are added to 
the optimized functional. In the first case, the method is called Lasso, in the second – Ridge, and the 

third – Elastic Net. 

8. Results 

1) Lasso regularization 
Weights of features of linear regression without regularization (Figure 19):  



 
Figure 19: Weights of features of the model of linear regression after training 

 

Weights of features of Lasso regression (application of L1-regularization) (Figure 20): 
 

 

 
Figure 20: Weights of features of the linear regression model using L1-regularization after training 

 

In comparison with the weights of the usual linear regression, it is observed that after the use of 

Lasso regularization the selection of features took place: the weights at non-informative features 

turned into zero. Weights at other features approached zero. 
Visualization of weight dynamics with increasing regularization parameter α (Figure 21): 

 

 
 

 

 

 

 

 

 

 

 

Figure 21: Chart with the dynamics of weights relative to the parameter of regularization α when 
using Lasso-regression 

 

It is observed that as the parameter α of the L1-regularizer increases, the weights of the features 
rapidly go to zero, and as the value of α weights increases, more and more features turn to zero and 

the model becomes simpler. 

2) Ridgeregularization 
Weights of features of linear regression without regularization:  



 
Figure 22: Weights of features of the model of linear regression after training 

 

Weights of features of ridge regression (application of L2-regularization) (Figure 23): 

 

 

 
Figure 23: Weights of features of the linear regression model using L2-regularization after training 

 

In comparison with the weights of the usual linear regression, it is observed that after the use of 

Ridge regularization, the larger weights of the features decreased (approached zero), but did not turn 
into zero. So the selection of signs did not take place, but we set a penalty for disproportionately large 

weights and brought them closer to zero. 

 
 

 
Figure 24: Chart of the dynamics of weights relative to the parameter of regularization α when using 
Ridge-regression 

 

Figure 24 Legend for the chart of the dynamics of weights relative to the parameter of 

regularization α when using Ridge regression 
It is observed that with increasing L2-regularization parameter, the weights gradually go to zero, 

but do not turn to zero. At α = 0 the weights of the features are directed to minimize the error 

function. 

3) Elastic Net regularization 
Weights of signs of linear regression without regularization (Figure 25): 

 



 
Figure 25: Weights of features of the model of linear regression after training 

 

Weight of features of elastic net regression (application of L1-L2-regularization) (Figure 26): 

 
 

 
Figure 26: Weights of features of the linear regression model using ElasticNet-regularization after 
training 

 
In comparison with the weights of simple linear regression, it is observed that after the use of 

ElasticNet regularization, some weightsofnon-informative features turned to zero, and other 

disproportionately large weights approached zero. This was achieved through the use of two penalties 
L1 and L2 regularization.  

 

 

 
Figure 27: Chart of the dynamics of weights relative to the parameter of regularization α when using 
ElasticNet-regression 

 

Figure 27 Legend for the chart of the dynamics of weights relative to the parameter of 
regularization α when using ElasticNet-regression. 

It is observed that with increasing ElasticNet-regularization parameter, the weights at the features 

go to zero, but not as fast as it happens in L1-regularization and not as slowly as observed when using 
L2-regularization. 

9. Conclusion 

L1-, L2-, ElasticNet-regularizations of classification and regression were investigated in the course 

of work. 



First of all, the WHO Statistics on Life Expectancy dataset was analyzed, prepared and cleaned. It 
was checkedif the data types match the attributes of dataset. Zero values were eliminated by 

interpolation, and atypical values of each attribute of the dataset were eliminated by the method of 

winsorization. The distribution and scope of the values of each variable are investigated and 

demonstrated using scale diagrams and bar charts, respectively. Linear dependences between the 
target variable and the rest of the dataset variables are determined. A correlation map of attributes was 

constructed and on the basis of it was determined that the set task of life expectancy prediction can be 

realized by linear methods. 
A linear regression model was created using the scikit-learn library. After her training, the weights 

of the model features were obtained and it was observed that the weights at strongly correlated 

features were greater than the rest. Thus, the problem of multicollinearity was identified. The quality 
metrics of the linear regression model were calculated, namely: root mean square error, mean absolute 

error and coefficient of determination. The root mean square error indicated that the model was wrong 

in 12.9% of cases, the mean absolute error – in 2.7% of cases. The coefficient of determination is ≈ 

0.86, which indicates that the trained model describes 86% of the variance and is reasonable because 
the coefficient of determination is in the range from zero to one. 

To eliminate the problem of multicollinearity, 3 regularization methods were applied and 

compared. 
The Lasso regression model was created and after its training the weights of the features were 

obtained. It was observed that this type of regularization carried out the selection of features and 

turned the weights at non-informative features to zero. The dynamics of Lasso regression weights 
with increasing α regularization parameter was monitored. It was found that with increasing α, the 

weights rapidly approach zero, and with sufficiently large α all weights turn into zero. As α increases, 

the model becomes simpler. 

During the Ridge regression, it was observed that the large weights approached zero, but none of 
them turned into zero. The dynamics of Ridge regression weights was observed and it was found that 

even at a sufficiently large α the weights do not turn into zero, but slowly asymptotically approach 

zero. 
After implementing ElasticNet regression, some of the weights turned to zero and some 

approached zero. This is due to the application of penalties of both L1 and L2 regularizations in this 

method. The change in weights with increasing α parameter was observed. It was observed that with 

increasing α the weight of the features tends to zero, but not as rapidly as it occurs when using L1-
regularization. But in contrast to L2-regularization, at a sufficiently large α all weights are converted 

to zero. 

Therefore, L1-regularization is better used in cases where it is known that some of the attributes 
are unimportant, because when using this regularization the selection of features will be conducted 

that will turn the weight of non-informative features to zero. L2-regularization is better to use when it 

is known that all variables of the dataset are important in predicting the target variable, because when 
using this regularization disproportionately large weights will approach zero, but the selection of 

features will not occur. ElasticNet regularization is universal. It is suitable for the two cases described 

above, and especially for cases where it is not known which variables are important and which are 

not, or when the dataset has a very large number of variables. 
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