
Recommendation System Development Based on Intelligent
Search, NLP and Machine Learning Methods

Illia Balush, Victoria Vysotska and Solomiia Albota

Lviv Polytechnic National University, S. Bandera street, 12, Lviv, 79013, Ukraine

Abstract
Intelligent search is a search with the possibility of linguistic analysis, modern algorithms for

parsing and finding words, recommendations based on user preferences. Such a search is a

necessity for Internet resources in the field of e-commerce because it is almost impossible to

find the right product or data without some help, filtering or sorting. One can highlight the

following features of the search: spell check (if the search query is misspelt, the search for

relevance will try to find close matches based on what was entered); recognition of standard

abbreviations and acronyms (this search will be able to recognize standard abbreviations or

acronyms, such as MK (Michael Kors), NASA (National Aeronautics and Space

Administration)); better understanding (a search for relevance will try to understand the query

better, applying well-known knowledge, recognizing frequently used synonyms and limited

knowledge of the natural language); filters and sorting (the use of filters by specific categories

and sorting will allow to more comfortably and quickly find the necessary information). The

latter will come in handy for almost any type of online resource, from online stores to

entertainment sites. Moreover, the paper highlights the topic of recommendation systems. Over

the past few decades, with the growth of YouTube, Amazon, Netflix and many other such web

services, referral systems have become more and more important in our lives.

Recommendation systems are critical in some areas because they can generate huge revenue

or stand out significantly from competitors. The paper considers the basic methods and

approaches used to build search engines and recommendation systems. The implementation of

these approaches on examples and natural systems has been considered. A web application

based on Java and Elasticsearch has been developed with the performance of a

recommendation system based on a collaborative filtering algorithm. The research object is an

intelligent search information system with the possibility of recommendations in e-commerce.

The subject of research is the basic principles and requirements for the construction of

recommendation systems and intelligent search systems. The study aims to develop a fast and

reliable search engine in e-commerce with the possibility of recommendations for users.

Keywords 1
Search engine, Elasticsearch, referral systems, collaborative filtering, web application, search,

fuzzy search, inverted index, search query, intelligent search system, entry point,

recommendation system, Levenstein distance, smart search, posting list, collaborative filtering

algorithm, recommendation algorithm, shared filtering, stop word, search result, user rating,

Levenstein algorithm, java application, recommender system, fuzzy search algorithm, category

product category, user purchase data

1. Introduction

Today, a considerable amount of information is stored on the Internet. In addition, every day its
number is only growing. It applies to online resources that contain entertainment content, such as

Netflix, Megogo, and online stores, such as Amazon, Rozetka and others.

MoMLeT+DS 2021: 3rd International Workshop on Modern Machine Learning Technologies and Data Science, June 5, 2021, Lviv-Shatsk,

Ukraine

EMAIL illiabalush@gmail.com (I. Balush); Victoria.A.Vysotska@lpnu.ua (V. Vysotska); Solomiia.M.Albota@lpnu.ua (S. Albota)

ORCID: 0000-0002-0498-4719 (I. Balush); 0000-0001-6417-3689 (V. Vysotska); 0000-0002-0845-5304 (S. Albota)

©️ 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

All these systems have one thing in common –for users to be satisfied with the work of these
resources, they must be able to quickly, easily and efficiently search for the information they need.

Also, one of the basics that help keep customers on the web is recommendations. 60% of customers

prefer to return to stores with requests, and 75% of the digital generation, who grew up in the age of

social networks, believe that recommendation systems are an integral part of any store or entertainment
platform. Therefore, today, fast and efficient search for information with the possibility of

recommendations is one of the primary needs of people and businesses. The chosen topic is highly

relevant today, because today the demand for goods offered by the company, especially online, is
growing at an unprecedented rate. It applies to video and audio products, goods, books and much more.

It is especially true for Ukrainian buyers and users because, according to statistics, 25% of Ukrainians

regularly buy goods online. 33% of Ukrainians buy a specific product online at least once a year.
This work aims to develop an intelligent search system for goods with the possibility of

recommendations for the user. To do this, you need to determine how to store and analyse product

information. What algorithms of proposals can be applied to this system? How to ensure convenient

use of this system? The object of study of this work will be an information system of intelligent search,
with the possibility of recommendations for users in e-commerce. The subject of this work will be the

basic principles and requirements for intelligent search systems and recommendation systems. In this

system, compared to existing systems, a collective algorithm of product recommendations for users was
used, which focuses on the general coincidences of the choice of similar users. In addition, an algorithm

for parsing and analysing words for the search was used [1], which provides an accurate search result,

with the possibility of entering an error in the investigation. Also, the ability to auto-complete words
when searching in this system has been added. Applying the principles laid down in this paper, you can

build an effective, profitable and stable search engine for almost any type of business that contains

many information or goods and is in demand among users.

2. Related works

General provisions for the construction of intelligent search systems. Let's start with the main points

for building a search engine. Any intelligent search system consists of a repository, where all the

necessary data is stored. A program that uses specific algorithms analyses the input feed, accesses the

repository and returns the relevant result. The difficulty is to properly store the data and adequately
configure the search engine processing algorithms. In addition, given that it should also be a

recommendation system, it is necessary to choose the correct recommendation algorithm, which will

have enough data for accurate calculations. The server part of the program has the most significant
impact. We will try to build a standard modern search engine model. For simplicity, suppose we only

accept text queries - a set of words. The backend returns the results that best match the input words.

There is no logic of conjunction or negation among the input words. When a backend receives a search

query string, it firstly divides it into specific parts or other tokens. For each token, the server part
requests the repository. Documents are stored in the warehouse. After calling the storage, the backend

already has information about which documents and how many search words are contained. They are

then combined into a final list, sorted by relevance (most relevant at the top) and returned to the user.
It is logical that for fast search in storage, storing data correctly [1, 2].

Search engine data warehouse. Let's say you want to determine which of The Washington Post's

news articles contain the words "environment" and "health" from the beginning. One approach is to
start over and read the entire text, writing down each article that contains the words mentioned. Usually,

this technique is considered a direct review of the text. And this process takes a significant amount of

time. One of the most popular ways to avoid such a linear scan for each request is to index the documents

in advance, for example, based on inverted indexes [3-6]. This way, we will be able to properly store
our data in the repository, which can be found quickly.

Search engine implementations. Every user tends to make mistakes when searching. Therefore, there

is a problem: how to determine whether the term stored in the repository matches the user's search term?
Levenstein's distance will help us here [7]. Levenstein's distance can also be called an editing distance,

although it can also denote a more prominent family of distance metrics. It is closely related to the

pairing of rows [8-10]. Levenstein's algorithm calculates the least number of editing operations required

to modify one line to obtain another line [11, 12]. Thus, these approaches allow building a system
capable of searching for relevant results in the repository. It remains to consider the main points related

to the choice of the recommendation algorithm.

The referral system is a machine learning program that provides users with recommendations on

what they might like based on their historic preferences. It can then be defined as a system that issues
individual recommendations as source data or, as a result, has a personalized referral of the user to

intriguing objects in a larger space of possible options. Examples:

 Offer readers news articles based on the interests of the reader.

 Offer customers suggestions on what they can buy based on their history of purchases or

searches.
There are three types of recommended systems:

Collaborative filtering. Shared recommendation systems summarize object ratings or

recommendations, recognize commonalities between users based on their ratings, and generate new
recommendations based on comparisons between users. They work well for complex objects, where

taste variations are responsible for most preferences changes. Shared filtering is based on the

assumption that people who have agreed in the past will decide in the future and that they will be like

similar objects as they were before.
Content-based. It is recommended based on content. It examines the profile of the new user's

interests based on the available functions in the objects that the user has evaluated. It is a system of

recommendations for specific keywords. Here the keywords are used to describe the goods. Thus, the
content-based recommendation system uses algorithms that recommend similar items that the user liked

before or are currently testing.

Hybrid. Combining both systems of recommendations in a way that corresponds to a particular
industry is known as a system of hybrid recommendations. Netflix is an excellent example of a hybrid

approach. They provide recommendations by comparing the viewing and searching habits of similar

users (shared filtering), as well as offering movies that share common characteristics with film that the

user has rated highly (content-based filtering) [13-15]. Let's compare basic recommendation algorithms.

Table 1
Comparative table of recommendation algorithms

Name Benefits Disadvantages Application

Collaborative
filtering

User ratings and ratings
are taken into account

Not tied to the subject

of the service

Low performance for first
users

A lot of information
about user ratings is

needed

Information portals

Small online stores

Content-based
filtering

Works instantly, even
for first users

Works correctly, even

with a small amount of
data

Tied to the content of the
service

Not based on the wishes

of users

Blogs

Music or movie
platforms

Hybrid filtration High productivity

No problems with
previous approaches

Hard to maintain

Complex development
process

Large online stores

Complex systems with
a large number of

users

Considering the table above, we can conclude that the implementation of our system will be a
practical algorithm for collaborative filtering because the advantages of this method are ideal for the

search engine, and the disadvantages are not significant not to choose this method. Also, let's compare

fuzzy search algorithms. The numbers that can be seen in Fig. 1 is the accuracy of the words between

the first and second columns, from 0 to 1. Comparing all the results, we can conclude that Levenstein's
algorithm is ideal for our system because, in this case, the accuracy of search results will be the highest.

Levenstein's algorithm compares words, not phrases, taking into account the length of the change of

words, or the number of deletions, insertions, and replacement of letters in the word.

Figure 1: Comparison of the accuracy of calculations of fuzzy search methods

3. Material and methods

The primary purpose of this system's goal tree is to enable the user to conveniently and quickly find
the desired product. It includes several aspects, such as the ability to auto-complete search words, errors

in terms when searching, and so on. In addition, the system must generate recommendations for the

user, taking into account the purchases of similar users (Fig. 2).

Figure 2: Goal Tree

Concretization of system functioning. IDEF0 considers the logical relationship between works, not

their temporal sequence (workflow) [16, 17]. The IDEF0 standard was developed in 1981 in the United
States by the Air Force Department for Industrial Automation. In software development, developers

were faced with the need to create new methods of business process analysis. As a result, the IDEF0

functional modelling methodology appeared, in which special IDEF0 notations are used for analysis.
The most critical function is located in the upper left corner. And processes are connected among

themselves using arrows and descriptions of functional blocks. In this case, each type of arrow or

activity has its meaning. This model allows describing all the main types of processes, both
administrative and organizational [18].

Since the primary purpose of our system is to provide search and recommendations for the user, the
primary mechanism will be to requests a search for the user (Fig. 3). The main input parameters of this

process will be the user ID and the actual search query. The mechanisms that ensure the proper operation

of this process will be a database or repository, software libraries. The control mechanisms will be

technical documentation, as well as collected user requirements. The result of this process will be
relevant, as requested, and recommendations for the user.

Figure 3: IDEF0 first level

Let's try to decompose the model described above. First of all, let's highlight a few basic, smaller

blocks (Fig. 4).

Figure 4: IDEF0 second level

At the initial address to the program, it is necessary to initialize input parameters. Therefore, at the

entrance to the first process, there are the user ID and search query. After initialization, we can proceed

to the following methods. For a successful search, you must first analyse the input text in terms of the

program. Therefore, for the process "Pre-search text processing" (Fig. 4), the input parameter will be
the search bar. Using linguistic analysis, we will be able to process the tape to the desired form. It will

help us with some ready-made software modules that we can connect. Then, using the processed tape,

we can find the necessary documents in the repository. Now, let's move on to another process, "Analyse
the recommendations" (Fig. 4). Only the user ID is logged in to this process. Since user purchase data

is stored in the repository, the mechanism that will help this process is the database. Using the

collaborative filtering algorithm and knowing the user ID, we will analyse and issue recommendations
for this user. After that, the recommendations and the search results move on to the following, final

process of "Generate the correct answer". Since the definitive answer can be influenced by specific user

requirements and the understanding that you need to show only a certain amount of information to the

user, we need to form an answer that will contain only the best recommendations and the best result.
Let's try to decompose the process of pre-search text processing (Fig. 5). To begin with, to select

some logical unit in the text, we will divide the search query into tokens. The token can be considered

as one word. Next, all our operations and processes will use and modify the newly formed tokens. For
a single letter format, convert the tokens into a single letter case (Fig. 5). Stop words are words in any

language that do not attach much importance to a sentence. They can be safely ignored without

sacrificing the meaning of the sentence. Therefore, the third process will remove all tokens that are stop
words. To complete this process, you need to provide a dictionary of stop words.

Figure 5: IDEF0 of the third level

After that, the filtered tokens go to the final process - stemming tokens. The stemming algorithm is
a process of linguistic normalization in which variant word forms are reduced to a general form. That

is, the central, root part of the word remains without suffixes and endings. After this process, our tokens,

or processed text, is ready for the following search process.
Also, expand the process of recommendations analysis (Fig. 6). In the first process, we need to

extract user purchase data. A repository or database will help us with this. Having data on purchases of

buyers, we pass to the following process. Here we need to apply a collaborative filtering algorithm that
can provide predictions about products that the user has not yet purchased, based on selecting products

from similar users. The data that will be at the end of this process must be analysed, and the best

recommendations are chosen. To choose the best offers, you need to be guided by user requirements.

After this process, we can pass requests to the following procedure.
The basis for making a process hierarchy is the DFD hierarchy. DFD is a notation designed to model

information systems in the storage, processing and transmission of data [19]. In our system, the central

external entity is the user (Fig. 7). In the data stream, it can pass its ID as well as the request. The
primary process or system is the Search Engine. At the output, the system gives the relevant result and

recommendations to the user. Let's move on to the DFD chart of the second level. In part, it is similar

to IDEF0, so that some processes can be omitted. In this diagram, we have 3 data warehouses, namely:

a store of information about customer purchases, a dictionary of stop words needed for linguistic
analysis, and a store of information about the company's products. Decomposing the process of pre-

search text processing, we obtain the following DFD diagram (Fig. 9). At once, it is possible to allocate

that at this level to remove stop words. We use a data warehouse - the dictionary of stop words. In
general, the pre-search process consists of 4 main processes that are interconnected, namely: the

division of the search bar into tokens or words, modification of tokens into a single format, filtering

redundant words, as well as stemming words or highlighting only the root part of the word. The same

can be done with the process of analysing the recommendations. There is information about customers'
purchases as a repository of data, including the user who makes the request. Next, we can assume that

a particular product will be appropriate for our user using the recommendation algorithms. After that,

we will be able to form recommendations and pass them on to the following process.

Figure 6: IDEF0 of the third level

Figure 7: DFD first level

Figure 8: DFD of the second level

Figure 9: DFD of the third level

4. Software solving problems

Selection and justification of means of solving the problem.

 Elasticsearch. First of all, let's start with the data warehouse, which will store information about

all products. Elasticsearch was chosen as this repository. Elasticsearch is a high-scale open-source

full-text search and analytics engine [20].

 MySQL was chosen to store user purchase data as well as product evaluations. MySQL is a
relational database management system based on SQL - a structured query language and used for a

wide range of purposes, including storage, e-commerce and registration applications [21].

 Java. Let's move on to the software implementation of our system. Java was chosen as the

primary programming language [22-23]. Why was Java chosen?
a. Price – free.

b. Productivity - due to the HotSpot JIT compiler, the code is executed very quickly.

c. Efficiency is a wide range of libraries that contain optimized code that is easy to

write.
d. Portability - programs written in Java can run on almost any device.

Language Support – the developer company, continues to improve language capabilities by

correcting past bugs, improving performance, and simplifying the complexity of writing code.
Algorithms. Let's move on to the selection of algorithms. The main algorithm for the

recommendations was the Slope One algorithm. The Slope One algorithm is a shared filtering system

based on element evaluation [24]. It means that it is based entirely on the ranking of user positions.
When we calculate the similarity between objects, we only know the history of ratings, not the content

itself. This similarity is then used to predict the rating of potential users for user-element pairs that are

not in the dataset. Initially, users evaluate various elements in the system. Next, the algorithm calculates

the similarity. After that, the system predicts the rating of goods that the user has not yet rated. Co-
filtration (CF) is a technique used by recommended systems [25].

Technical characteristics of selected software development tools.

Java version 8 was chosen for this system. This version is considered the company's most significant
release and remains a stable version for many companies worldwide. You can highlight the following

advantages of this version:

 Better type output. The Java 8 compiler has significantly improved inference type. In many

cases, explicit type parameters can be output by the compiler, supporting cleaner code.

 Lambda and Functional Interfaces. Lambda (also known as secure or anonymous methods) is

the most significant and most anticipated language change in the entire Java 8 release programming.
Many languages on the JVM platform had lambda from day one, but Java developers had no choice

but to submit lambda through anonymous classes.

 Default interfaces and static methods. In Java 8, the definition of interfaces has been expanded

with two new concepts: the default method and the static method. They allow adding new methods
to existing interfaces without compromising backward compatibility for previously written versions

of these interfaces. The difference between default and abstract methods is that abstract methods

must be implemented, and there are no default methods. Instead, each interface must provide a so-
called default implementation, and all successors will receive it by default (with the ability to

override this default implementation if necessary).

 Repeated annotations. Since annotation support was introduced in Java 5, this feature has

become very popular and widely used. However, one of the limitations of using annotations was the

fact that the same instruction could not be announced more than once in one place. Java 8 violates
this rule and contains repetitive annotations. It allows the same annotations to be repeated several

times in the place where they are announced. Duplicate annotations should annotate themselves

using the @Repeatable annotation [26, 27].
Maven. Maven is an assembly management tool. It determines how your .java files are compiled

into .class, packaged into .jar files (or .war or .ear), (pre / after) processed by tools, managing your

CLASSPATH and all other types of tasks needed to build your project. It's similar to Apache Ant or
Gradle or Makefiles in C / C ++. Still, it tries to be utterly standalone because one doesn't need additional

tools or scripts, including other everyday tasks such as downloading and installing the necessary

libraries. It is also designed with the idea of portability building so that you don't get problems like
having the same code with the same build script on one computer but not on another (this is a known

issue, we have Windows 98 virtual machines because we could not build some of our Delphi programs

anywhere). Because of this, it's also the best way to work on a project between people using different

IDEs because the Ant IDs created are difficult to import into other IDEs, but all IDEs today understand
and support Maven (IntelliJ, Eclipse, and NetBeans). Even if you don't like Maven, it will eventually

become a starting point for all other modern build tools. Why was Maven used? Maven will download

all the libraries you use and the libraries they use for you automatically. It avoids the "hell of
dependence" of libraries. It uses the "Configuration Convention", so you do not need to specify the

tasks you want to perform by default. You don't need to write step "compile", "test", "package", or

"clean" as you would in Ant or Makefile. Just put the files where Maven is waiting for them. Maven
also has many excellent plug-ins that you can install that will handle many routine tasks: from creating

Java classes from an XSD schema using JAXB to measuring the amount of code covered by tests using

Cobertura. Just add them to pom.xml, and they will integrate with everything one wants to do.

Liquibase. Liquibase is an open-source schema change management solution that makes it easy to
manage changes to your database. Liquibase uses changeSets to represent a single change in your

database [28]. ChangeSet is what you use to group databases and is a unit of transition that Liquibase

makes in a database. A changeLog is a list of changes created by multiple sets of changes. Three
elements define the set of changes: "ID" and "Author" and the path to the ChangeLog file name.

Liquibase allows to perform the following tasks:

 Rollback Support: one can use the liquibase.bat rollback to undo an update, as it allows for

rolling back changeSets based on the number of changeSets, to a specified date, or to a specified tag
stored in the database.

 Automatic update: instead of performing updates or rollbacks directly against the database, one

can create SQL that will be run for validation and/or execution manually.

 Exiting a future rollback: before applying the update to the database, one can generate the SQL

that one will need to run to return the database to its current state for validation.

 ChangeSet Contexts: changeSet can be assigned the "contexts" in which they will run. Contexts

are selected at runtime and can be used to modify sets that work only in test instances or other unique
circumstances.

 Prerequisites of ChangeLog and ChangeSet: conditions can be added to changeLog or

individual changeSets to check the status of the database before attempting to execute them.

 ChangeSet checksums: when a changeSet is executed, Liquibase retains the checksum and may

not run or change the execution if it detects a change between the original changeSet definition when
it was started and the current report.

 Difference support: although Liquibase is designed to use database comparisons to manage

change, Liquibase has support for this, which is helpful in many cases, such as validation between

databases.
Spring Framework provides a comprehensive model of development and configuration for modern

business applications in Java - on any platform. A key element of Spring is program-level infrastructure

support: the focus is on the "plumbing" of business applications, so developers can focus on business

logic without unnecessary tweaks depending on the runtime environment [29].

5. Experiments, Results and Discussions

Description of the created software. General Information. Program name: "Search Engine". The

program can be run on almost any platform: Linux, Windows, macOS, etc. Basically, the program is

written in Java using the Spring framework.
Two databases are used:

 MySQL – to save data on purchases and recommendations.

 Elasticsearch – to save search documents and index data.

To simplify the management of database schemas, the Liquibase framework is used, which allows

changing the database structure quickly. Maven technology is used to manage the dependency between
Java libraries.

Functionalities. The program's primary functions are intelligent search for documents uploaded to
the repository and the possibility of recommendations for users [30-36]. In addition, to fill the

warehouse with data, a module for loading and indexing data into the storage was created. To simulate

the purchase of goods, a unique entry point was built in the program.

Description of the logical structure. The program consists of three main modules:

 Data loader.

 Engine API.

 Engine-Server.
Fig. 10 shows the primary interaction between the modules.

Figure 10: Interaction between software modules

Data-loader is a module that is required to load data into the repository. It contains the structure of

the document. The document can consist of different fields. Therefore, it is necessary to create a general

design considering all documents with their types. An example of such a structure shows in Fig. 11.

The Search-API is an input module that accepts all incoming requests. It specifies what type each input
request has, along with all input parameters. Search-server is the main module, where all the basic logic

of the program is executed. To make it easier to control the processing of each request, a concept such

as a Pipeline was created. The Pipeline is a specific sequence of program code execution. It is a high-
level code concept so that it can be used universally for each type of request. The Pipeline consists of

stages or Stage-s. Each step, or phase, processes the input parameters and passes the processed

parameters further to the next step. For the convenience of describing these Pipeline and their stages, a
unique structured data format was created. An example of such a Pipeline shows in Fig. 12.

In the beginning, in the field "name", the name of this Pipeline is set. The following are the main

stages of this Pipeline. The project contains three main Pipeline:

 / search - describes the process of performing the intelligent search.

 /search/recommendation - describes the process of executing the algorithm of

recommendations.

 /search/suggestion - describes the process of generating auto-search words.

Figure 11: The structure of documents in the repository Figure 12: Example Pipeline

In addition, filters are used to ease the search. Filters are based on the concept of aggregation. For

the convenient use of aggregations, a particular document with a strictly defined structure was created,

which describes the main aggregations and their capabilities. Fig. 13 shows an example of such a
document. This example shows four filters:

 Shop - a filter that allows filtering products by the manufacturer.

 Discount - a filter that filters goods at a deal.

 Price - a filter that filters goods at the selected price.

 Rate - a filter that filters products by rating.

Figure 13: File with defined aggregations Figure 14: Example file with table structure

To sort the results found by specific criteria, the concept of Sort is used. For convenient and fast use

of new sorting options, a document was created to describe the desired sorting by specifying the
required field. Fig. 13 shows an example of such a file. This example shows two sorting options:

 Default - which sorts the "_score" field in descending order.

 Cheap is which sorts the "product_price" field in ascending order.

Liquibase technology is used to determine the structure of the database, as was mentioned earlier.

To use this technology, one needs to create an appropriate file called "liquibase-changeslog.yml". An
example of such a file shows in Fig. 14. It defines the main tables in the database, as well as the fields

and their type. The following are the main tables (Table 2-4) used in the program.

Table 2
Description of tables in the database

Table Fields Description

purchases id - int
itemId - varchar (50)
user - varchar (50)

date - datetime
keywords - varchar

(50)

Contains basic data on purchases of goods

rates id - int
itemId - varchar (50)
keywords - varchar

(50)
user - varchar (50)

date - datetime
rate – int

Contains information about the evaluation of goods

recommendations id - int
itemId - varchar (50)
user - varchar (50)

Contains products that should be recommended to
users

Call and download the program. The source code is contained on the GitHub service. After

downloading the source code, from the root point of the code, one needs to call the command: mvn
clean install. After that, .jar files of each file will be generated. To run the program, go to the root

directory of engine-api and run the command java -jar engine-api.jar.

Incoming data. The program contains 6 main entry points after starting the server.

Table 3
Description of entry points

Entry point Parameters Description

/ search query - search phrase
category - product

category
count - the desired
number of returned

results
sort - sort order

The main entry point for finding products.

/ search / suggestion query - part of a word
or phrase

count - the desired
number of returned

results

An entry point that offers auto-completion of
a word or phrase if the query contains

unfinished words

/ search /
recommendation

userId - user ID Provides a list of recommendations for the
user with the specified ID

/ search / inner /
recommendation

userId - user ID Launches the collaborative filtering algorithm

/ search / shop itemId - product
identifier

userId - user ID
category - product

category

Records the purchase of goods with the
selected ID for the specified user

/ search / rate itemId - product
identifier

userId - user ID
category - product

category
rate - product

evaluation

Entry point for evaluating the product with the
selected ID for the specified user

Output data. In table 6 the source data and their format for each entry point are described.

Table 4
Description of the source data

Entry point Format

/ search

/ search / suggestion

/ search / recommendation

items - array of goods with the following structure:
id - product identifier

source - manufacturer of goods
sourceUrl - manufacturer link

query - product keywords
productImage - photo of the goods

productTitle - product title
productDescription - description of the goods

productPrice - the price of the product
productPriceWithSale - discounted product price

onSale - shows whether the product contains a discount

suggestion - auto-completed word

topItems - an array of goods that are in the top 10 for sale
recommendations - an array of products recommended by the

system for the specified user
bucketModels - an array of available filters, with the following

structure:
name - selection option in the filter

count - the number of products with such a filter
/ search / inner /
recommendation

-

/ search / shop -
/ search / rate -

User manual. Full program name: "Search-engine". Abbreviated name of the program: "SrchNgn".

Primary programming language: Java. Development environment: IntelliJ IDEA Community edition.

The program's primary purpose is to provide the user with the ability to search in e-commerce and
recommendations intelligently [37-44]. The program can be used for online stores for small and medium

businesses. This system can find the relevant product according to the search query. In addition, if the

search bar is incomplete or contains errors, the system can find the most appropriate product. Fig. 15
shows an example of a search in a system where the search bar includes two words, two of which are

incomplete. The system can publish the top 10 products purchased by other users and recommend

products that the user may like based on the preferences and ratings of similar users. Fig. 16 shows an
example of user recommendations, along with the top 10 products and search filters.

Figure 15: Search functionality

Figure 16: Recommendations

Levenstein's algorithm was used to implement fuzzy search [45-55], which counts the number of
letter substitutions in a word and calculates the required word length based on this. For the possibility

of product recommendations, a collaborative filtering algorithm was used, which does not depend on

the specific topic of the site. NLP algorithms were used to index the data [56-60]. For example, edge-
gram, which divides one word by the selected number of parts.

The average execution time of a search query is 10-250ms. The initial request can take up to 350ms.

It is since the system has not yet optimized the critical path of the program. After optimization,
execution time is reduced to 100ms. Fig. 17 shows the execution time of the request:

Figure 17: Query execution time

The program can run smoothly. To update the data, one must index the data on the new index and

then restart the program by specifying a new index with the data.

To run the program, you must meet the following conditions:

 Install JDK 8 and prescribe the necessary paths to the JDK in Windows environment variables

 Install Maven and define the required paths to Maven in Windows environment variables

 Install Elasticsearch 7.12

 Install MySQL 15.1

After downloading the source code from the Git repository, you must run the command mvn clean

install in the root directory of the downloaded code. This command will generate .jar files for each of

the modules. After that, it is necessary to load the data. For this purpose, it is required to pass to the
folder with the data-loader module and further to the target folder. There will be a generated .jar file.

To run it, run the java -jar data-loader.jar command. After downloading the data, you need to create the

necessary database structure in MySQL. To do this, go to the project's root directory and run the
command mvn liquibase: update -Denv = dev. After creating the database schema, you need to go to

the folder with the search-API module and then to the target folder. Then run the java-jar command

search-api.jar. After that, we will perform search queries at http: // localhost: 8080 / search? query =.

The MySQL and Elasticsearch databases must be running and have the necessary tables and indexes
for the program to work correctly.

Analysis of the control example. In the beginning, check the data in the repository. To do this, we

will use a tool such as Kibana, which usually comes with Elasticsearch. Fig. 18 shows all existing
indexes in the warehouse. We are interested in the e-commerce index. As one can see in the figure

below, we do not have such an index.

Figure 18: Indexes in storage

http://localhost:8080/search?query=

To create an e-commerce index, you need to run the data-loader module and specify the path to the
data. The data file is shown in Fig. 19.

Figure 19: Data file

This file contains all the necessary information about the goods. To update product information, one

needs to prepare a file of the same structure, delete the previous index and run the data-loader module.
Upload the data to the repository. Using IntelliJ IDEA, one needs to create the next entry point into the

program and run it.

Figure 20: Data-loader settings

After downloading the data to the repository, we will see the following messages:

Figure 21: Messages after downloading data

Now let's check the data in our repository. To do this, again, use Kibana. We will perform a search

query on the index named e-commerce.

Figure 22: Data on goods in storage

Having prepared the data to be searched, we will create tables in MySQL to monitor purchases and

recommendations among users. Fig. 23 shows that so far, we do not have any database.

Figure 23: MySQL database

We will receive the following message by executing the command mvn liquibase: update -Denv =
dev in the engine-server module.

Figure 24: Notification of successful database creation

And let's recheck the database. Fig. 25 shows the new e-commerce database and tables: purchases,
rates, and recommendations. Now that all the necessary conditions are met for the program to run

successfully let's try to run it. Using IntelliJ IDEA, we will create an entry point, as is shown in Fig. 26.

Figure 25: Ecommerce database

Figure 26: Engine-API settings

After a successful launch, we should see the following messages:

Figure 27: Messages after successful startup

We will perform several search queries. We use Postman to send search queries. Let's try to look at

what products the program will offer us, looking for the phrase "wi r".

Figure 28: Search for the phrase "wi r"

Fig. 29 shows that the program has found several products. The top 5 products that meet the search

query are:

 Wireless mouse is two types - wireless mouse.

 WII (R) - 5 types - game console.

 wii microphone - 3 types – microphone.

Figure 29: Search results for the phrase "wi r"

Let's try to find "Skinny Jeans", but making several mistakes in the search query. Instead of "Skinny
Jeans" we will look for "Skn Jen".

Figure 30: Search by the phrase "Skn Jen"

Fig. 31 shows the search result. The program found the goods despite a vague request. Levenstein's

fuzzy search algorithm helped us in this. In addition, the result in Fig. 32 is sorted by relevance. Let's

try to sort these results in descending order of price. Fig. 33 shows the first product has a price of 6135.0,
and the second after it - 4260.99. Thus, the goods are sorted in descending order of price.

Figure 31: Search Results for "Skn Jen"

Figure 32: Sorting in descending order

Figure 33: Sort result

Let's see how auto-completion of search words works. To do this, imagine that the user typed the

word "rck" in the search bar. Fig. 35 shows the options for completing the word "rck" => "wine rack",

"hat rack", "Rachel ray cookware", "ice cream maker", etc.

Figure 34: AutoComplete the word "rck"

Figure 35: Auto-completion results for the word "rck"

Let's try this functionality for the word "ipn", meaning the word "iphone".

Figure 36: Auto-completion of the word "Ipn"

According to Fig. 37 the program offered us the following options for completing this word: "speck
iPhone 5 case", "iphone 5", "apple iPhone 32 GB", etc., which in principle is close to the desired. Now

fill in the shopping table using the entry point/search/shop. Imagine that we have three users User1,

User2, User3.

Figure 37: Auto-completion of the word "ipn"

Table 5
User purchases

User Purchased goods

User1

User2

Sony PlayStation 4 (PS4) (Latest Model) - 500 GB Jet Black Console (711158459)
Porter-Cable 3-1 / 4 HP Five-Speed Router 7518 - Power Tools Routers (711158511)

Cosco Slim Fold High Chair, Kontiki, Free Shipping, New (711158585)
2.4GHz Red Wireless Optical Mouse Mice (711158784)

Anti-Venom IN HAND Marvel Legends (711158812)

Sony PlayStation 4 (PS4) (Latest Model) - 500 GB Jet Black Console (711158459)
2.4GHz Red Wireless Optical Mouse Mice (711158784)

Porter-Cable 3-1 / 4 HP Five-Speed Router 7518 - Power Tools Routers (711158511)
iPhone 5 Ease Fit Arm Band (711168736)

Nintendo Wii U Pro Controller (711175233)
Oster 14 Speed Blender (713196549)

User3 iPhone 5 Ease Fit Arm Band (711168736)
Sony PlayStation 4 (PS4) (Latest Model) - 500 GB Jet Black Console (711158459)

Porter-Cable 3-1 / 4 HP Five-Speed Router 7518 - Power Tools Routers (711158511)
Batman Joker Graffiti (713196402)

samsung 60in 1080p 120hz smart led tv (713196223)

Fig. 38 shows an example of a request to purchase goods.

Figure 38: Example of a request to purchase goods.

We will query the database and check whether all purchases are saved.

Figure 39: Goods of buyers

Now imagine a situation where buyers begin to appreciate the product. The system provides for the

case when the buyer cannot evaluate the product if the system does not have a record of this user's
purchase of this product. To evaluate the product, we will use the entry point/search/rate. In Table 6

you can conveniently view the ratings of all users.

Table 6
User ratings

User PS
4

routers High
chair

Wireless
mouse

Spiderman Iphone5 PS
2

Blender Batman TV

1 5 4 3 4 3 ? ? ? ? ?
2 4 4 ? 4 ? 3 5 4 ? ?
3 2 3 ? ? ? 5 ? ? 4 3

Fig. 40 shows an example of a query for a user to rate a product.

Figure 40: Example of a request to evaluate the product

After evaluating the products, we will review the rating data in the database. In addition, after each

evaluation of the product, the field "rate" will change depending on the arithmetic mean of all

assessments. Fig. 41 shows the product data to user ratings, and in Fig. 42 after evaluation.

Figure 41: User rating data

Figure 42: Product data before user reviews

Figure 43: Product data after user reviews

In Table 6, some cells contain?. It means that these buyers were not able to purchase the specified
product. Therefore, it can be a potentially recommended product for the user if its rating is higher than

4. Let's start the recommendation algorithm and review the results of the recommendations.

Figure 44: The starting point for launching recommendations

Fig. 45 shows after executing the recommendation request, new recommendations about

recommendations appeared in the recommendations table, namely: for users User2 and User1 to

recommend a product with ID 713196223, and for user User3 to recommend a product with ID
711175233. In Table 7 green highlighted products will be recommended to users. Looking at User3's

ratings, one can see a trend of lower ratings compared to User1 and User2. Therefore, it is logical to

assume that if user User3 gives a rating of 3 to a particular product, users User1 and User2 may have a
4 or even 5. It is the case with the product tv.

Figure 45: Records of recommendations in databases

Table 7
Recommendations for users

User PS
4

routers High
chair

Wireless
mouse

Spiderman Iphone5 PS
2

Blender Batman TV

1 5 4 3 4 3 ? ? ? ? +
2 4 4 ? 4 ? 3 5 4 ? +
3 2 3 ? ? ? 5 + ? 4 3

Execute the following query for user User1.

Figure 46: Request for recommendations for user User1

This query will return us the Top 5 products by several purchases among all users, products

recommended for the specified user, and several filters for ease of search. In Fig. 47 - Fig. 49, one can

see the result of this query. Fig. 47 shows the most popular products are PlayStation 4 and a wireless
mouse. Goods purchased by all users according to Table 10. Fig. 48 shows the recommended product

generated by the system in Fig. 45.

Figure 47: Top 5 products among users

Figure 48: Recommended products for user User1

Figure 49: Filters

Let's try to use one of the filters. To do this, perform the query in Fig. 50. In this figure, we use the

Shop filter, which has Walmart's value, i.e. all found products must be from the Walmart store. Fig. 51

shows the Walmart store publishes all the results.

Figure 50: Query using a filter

Figure 51: The result of the query with the filter

Also, a number of search queries with and without the NLP algorithm were performed. Fig. 52 shows
the number of matches when searching with the NLP algorithm and without it.

Figure 52: Comparison of search results with and without NLP-algorithm

The query execution speed was also compared with existing systems. This way, the amount of data

in the repository may vary. That is why 60-70ms may be an error when comparing.
Fig. 53 shows that a query consisting of 1 or 2 words will be found much faster than analogues. But

for 3 or more, the results are about the same.

Figure 53: Comparison of query execution speed with analogues

The created software product was described in this section. The structure of the database, the

mechanisms of inference, the structure and functions of the software used were considered. The

software was described in accordance with the standard GOST 19.402-78 "Description of the program"
or ISO / IEC 26514: 2008 "Systems and software engineering". Also, a user manual was added to help

use the developed information system. After that, the control example was analysed. The control

example confirmed the efficiency of the information system and the compliance of the results of the

system with the task.

6. Conclusion

In this work, an intelligent product search system in e-commerce with the possibility of

recommendations for the user was developed. It required several studies. It was determined exactly how

to store and analyse product information. Different types of storage, their advantages and disadvantages
were taken into account. It was shown how the repository could index the data. It was proved that it is

necessary to use the recommended algorithm of collaborative filtering for this system because

collaborative filtering takes into account the ratings and ratings of users, and there is no attachment to
the subject of the service. Thus, the plan was able to show the recommendations compared to existing

services more accurately. The main fuzzy search algorithms were compared, and their accuracy is also

demonstrated in a table. Based on these studies, Levenstein's algorithm was chosen because it
corresponds to words, taking into account the number of deletions, insertions, replacement of letters in

the word. A tree of goals has been created in which the main goals and points that need to be taken into

account when developing this system have been described. Also, three-level IDEF0 and DFD diagrams

were created, showing the interaction of processes within the system.
Technical means and technologies were chosen to solve the above goals and justified the feasibility

of their use. An intelligent search system has been developed to auto-complete search words, use filters

for search speed, sort results, and use NLP algorithms. In essence, an efficient, profitable and stable
search engine has been built for almost any type of business, which contains many information or goods

and is in demand among users. Also, a control example was shown, which confirms the functionality

of the program and the main functionality discussed above.

7. References

[1] S. Albota, Requirements for the Linguistic Quality Control of Wikipedia Article, in: Proceedings

of the 14th. International Scientific and Technical Conference on Computer Sciences and

Information Technologies, CSIT 2019, pp. 16-19, doi: 10.1109/STC-CSIT.2019.8929771.
[2] S. Albota, Linguistic and Psychological Features of the Reddit News Post, in: Proceedings of the

15th. International Scientific and Technical Conference on Computer Sciences and Information

Technologies, CSIT 2020, pp. 295-299, doi: 10.1109/CSIT49958.2020.9321991.

[3] The Search Backend, 2021. URL: https://eileen-code4fun.medium.com/system-design-interview-
mini-google-search-6fd319cd66ca

[4] Traditional Database (Forward Indexes) vs Search Engines (Inverted Index), 2021. URL:

https://dev.to/im_bhatman/introductionto-inverted-indexes-l04
[5] A. Franz, Th. Brants. All Our N-gram are Belong to You, 2006. URL:

https://ai.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html

[6] D. Guthrie. A Closer Look at Skip-gram. NLP Research group, Computer Science, 2017.
URL:https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.440.598&rep=rep1&type=pdf

[7] V. I. Levenstein, Binary codes with correction of drops, insertions and replacements, USSR, 1986.

[8] N. Gonzalo, A guided tour to approximate string matching, Department of Computer Science,

University of Chile, 2006. URL: https://www.dcc.uchile.cl/TR/1999/TR_DCC-1999-005.pdf
[9] Definition, Example, 2021. URL: https://www.cuel.ogic.com/blog/the-levenshtein-

algorithmhttps://www.cuel.ogic.com/blog/the-levenshtein-algorithm

[10] The Levenshtein distance, 2021. URL: https://habr.com/ru/post/114997/
[11] M.A. Ghazanfar, M.A. Prügel-Bennett, S. Szedmák, Kernel-Mapping Recommender system

algorithms, Inf. Sci., 208 (2012). doi.org/10.1016/j.ins.2012.04.012

[12] F. Ricci, L. Rokach, B. Shapira, Introduction to Recommender Systems Handbook. In:

Recommender Systems Handbook. Springer, Boston, MA (2011).

https://eileen-code4fun.medium.com/system-design-interview-mini-google-search-6fd319cd66ca
https://eileen-code4fun.medium.com/system-design-interview-mini-google-search-6fd319cd66ca
https://eileen-code4fun.medium.com/system-design-interview-mini-google-search-6fd319cd66ca
https://eileen-code4fun.medium.com/system-design-interview-mini-google-search-6fd319cd66ca
https://eileen-code4fun.medium.com/system-design-interview-mini-google-search-6fd319cd66ca
https://eileen-code4fun.medium.com/system-design-interview-mini-google-search-6fd319cd66ca
https://eileen-code4fun.medium.com/system-design-interview-mini-google-search-6fd319cd66ca
https://eileen-code4fun.medium.com/system-design-interview-mini-google-search-6fd319cd66ca
https://eileen-code4fun.medium.com/system-design-interview-mini-google-search-6fd319cd66ca
https://eileen-code4fun.medium.com/system-design-interview-mini-google-search-6fd319cd66ca
https://eileen-code4fun.medium.com/system-design-interview-mini-google-search-6fd319cd66ca
https://eileen-code4fun.medium.com/system-design-interview-mini-google-search-6fd319cd66ca
https://eileen-code4fun.medium.com/system-design-interview-mini-google-search-6fd319cd66ca
https://eileen-code4fun.medium.com/system-design-interview-mini-google-search-6fd319cd66ca
https://eileen-code4fun.medium.com/system-design-interview-mini-google-search-6fd319cd66ca
https://eileen-code4fun.medium.com/system-design-interview-mini-google-search-6fd319cd66ca
https://dev.to/im_bhatman/introduction-to-inverted-indexes-l04
https://dev.to/im_bhatman/introduction-to-inverted-indexes-l04
https://dev.to/im_bhatman/introduction-to-inverted-indexes-l04
https://dev.to/im_bhatman/introduction-to-inverted-indexes-l04
https://dev.to/im_bhatman/introduction-to-inverted-indexes-l04
https://dev.to/im_bhatman/introduction-to-inverted-indexes-l04
https://dev.to/im_bhatman/introduction-to-inverted-indexes-l04
https://dev.to/im_bhatman/introduction-to-inverted-indexes-l04
https://dev.to/im_bhatman/introduction-to-inverted-indexes-l04
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.440.598&rep=rep1&type=pdf
https://www.dcc.uchile.cl/TR/1999/TR_DCC-1999-005.pdf
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://www.cuel.ogic.com/blog/the-levenshtein-algorithm
https://habr.com/ru/post/114997/
https://habr.com/ru/post/114997/
https://doi.org/10.1016/j.ins.2012.04.012

[13] S. Zare, Automated Detection and Exposure of Behavor-Based Relationships between Browsable
Itemis (2017).

[14] L. Terveen, W. Hill, Beyond Recommender Systems: Helping People Help Each Other (2001).

[15] Collaborative Filtering Recommender System, 2021. URL:

https://medium.com/@chaitanyarb619/recommendationsystems-a-walk-trough-33587fecc195
[16] Introducing intelligence in relevance search, 2021. URL: https://powerapps.microsoft.com/ru-

ru/blog/intelligence-in-relevancesearch/

[17] The IDEF Family of Methods, 2021. URL:
http://www.sba.oakland.edu/faculty/mathieson/mis524/resources/readings/idef/idef.ht ml

[18] How search algorithms work, 2021. URL:

https://www.google.com/intl/uk/search/howsearchworks/algorithms/
[19] What is DFD (data flow charts), 2021. URL: https://habr.com/ru/company/trinion/blog/340064

[20] What is an Elasticsearch index? 2021. URL: https://www.elastic.co/what-is/elasticsearch

[21] 5 reasons to choose MySQL. URL: https://dataconomy.com/2017/04/5-reasons-challenges-mysql/

[22] Java, 2021. URL: https://techterms.com/definition/java
[23] Answer, 2021. URL: https://stackoverflow.com/questions/209555/why-would-you-choose-the-

javaprogramming-language-over-others

[24] The Slope One Algorithm, 2021. URL: https://www.baeldung.com/java-collaborative-filtering-
recommendations

[25] Sh.Yue, M. Larson, A. Hanjalic, Collaborative Filtering beyond the User-Item Matrix: A Survey

of the State of the Art and Future Challenges, ACM Comput. Surv. 47, 1, Article 3 (2014).
doi.org/10.1145/2556270

[26] A. Figueroa, J. Atkinson, Contextual Language Models for Ranking Answers to Natural Language

Definition Questions, Computational Intelligence, 28 (2012).

[27] New features in the language Java 8, 2021. URL: https://javarush.ru/groups/posts/1037-
osobennosti-java-8--maksimaljhnoerukovodstvo-chastjh-1

[28] Liquibase allows you to perform the following, 2021. URL: https://medium.com/podiihq/getting-

started-with-liquibase8965897092aa
[29] Answer, 2021. URL: https://stackoverflow.com/questions/18193253/what-exactly-is-an-n-gram

[30] V. Lytvyn, V. Vysotska, V. Shatskykh, I. Kohut, O. Petruchenko, L. Dzyubyk, V. Bobrivetc, V.

Panasyuk, S. Sachenko, M. Komar, Design of a recommendation system based on Collaborative

Filtering and machine learning considering personal needs of the user, volume 4(2-100) of Eastern-
European Journal of Enterprise Technologies, 2019, pp. 6-28.

[31] V. Husak, O. Lozynska, I. Karpov, I. Peleshchak, S. Chyrun, A. Vysotskyi, Information System

for Recommendation List Formation of Clothes Style Image Selection According to User’s Needs
Based on NLP and Chatbots, volume 2604 of CEUR workshop proceedings, 2020, pp. 788-818.

[32] O. Artemenko, V. Pasichnyk, N. Kunanets, K. Shunevych, Using sentiment text analysis of user

reviews in social media for e-tourism mobile recommender systems, volume Vol-2604 of CEUR
workshop proceedings, 2020, pp. 259-271.

[33] S. Makara, L. Chyrun, Y. Burov, Z. Rybchak, I. Peleshchak, R., Peleshchak, R. Holoshchuk, S.

Kubinska, A. Dmytriv, An Intelligent System for Generating End-User Symptom

Recommendations Based on Machine Learning Technology, volume Vol-2604 of CEUR
workshop proceedings, 2020, pp. 844-883.

[34] N. Shakhovska, K. Shakhovska, S. Fedushko, Some Aspects of the Method for Tourist Route

Creation, volume 902 of Advances in Artificial Systems for Medicine and Education II, 2019, pp.
527-537.

[35] N. Shakhovska, S. Fedushko, M. Greguš, I. Shvorob, Y. Syerov, Development of Mobile System

for Medical Recommendations, in: The 15th International Conference on Mobile Systems and
Pervasive Computing (MobiSPC), 2019, pp. 43-50.

[36] A. Chiche, Hybrid Decision Support System Framework for Crop Yield Prediction and

Recommendation, volume 18(2) of International Journal of Computing, 2019, pp. 181-190.

[37] N. Antonyuk, M. Medykovskyy, L. Chyrun, M. Dverii, O. Oborska, M. Krylyshyn, A. Vysotsky,
N. Tsiura, O. Naum, Online Tourism System Development for Searching and Planning Trips with

User’s Requirements, volume 1080 of Advances in Intelligent Systems and Computing IV,

Springer Nature Switzerland AG, 2020, pp. 831-863.

https://powerapps.microsoft.com/ru-ru/blog/intelligence-in-relevance-search/
https://powerapps.microsoft.com/ru-ru/blog/intelligence-in-relevance-search/
https://powerapps.microsoft.com/ru-ru/blog/intelligence-in-relevance-search/
https://powerapps.microsoft.com/ru-ru/blog/intelligence-in-relevance-search/
https://powerapps.microsoft.com/ru-ru/blog/intelligence-in-relevance-search/
https://powerapps.microsoft.com/ru-ru/blog/intelligence-in-relevance-search/
https://powerapps.microsoft.com/ru-ru/blog/intelligence-in-relevance-search/
https://powerapps.microsoft.com/ru-ru/blog/intelligence-in-relevance-search/
https://powerapps.microsoft.com/ru-ru/blog/intelligence-in-relevance-search/
https://www.google.com/intl/uk/search/howsearchworks/algorithms/
https://habr.com/ru/company/trinion/blog/340064
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
https://dataconomy.com/2017/04/5-reasons-challenges-mysql/
https://dataconomy.com/2017/04/5-reasons-challenges-mysql/
https://dataconomy.com/2017/04/5-reasons-challenges-mysql/
https://dataconomy.com/2017/04/5-reasons-challenges-mysql/
https://dataconomy.com/2017/04/5-reasons-challenges-mysql/
https://dataconomy.com/2017/04/5-reasons-challenges-mysql/
https://dataconomy.com/2017/04/5-reasons-challenges-mysql/
https://techterms.com/definition/java
https://techterms.com/definition/java
https://stackoverflow.com/questions/209555/why
https://stackoverflow.com/questions/209555/why
https://stackoverflow.com/questions/209555/why-would-you-choose-the-java-programming-language-over-others
https://stackoverflow.com/questions/209555/why-would-you-choose-the-java-programming-language-over-others
https://stackoverflow.com/questions/209555/why-would-you-choose-the-java-programming-language-over-others
https://stackoverflow.com/questions/209555/why-would-you-choose-the-java-programming-language-over-others
https://stackoverflow.com/questions/209555/why-would-you-choose-the-java-programming-language-over-others
https://stackoverflow.com/questions/209555/why-would-you-choose-the-java-programming-language-over-others
https://stackoverflow.com/questions/209555/why-would-you-choose-the-java-programming-language-over-others
https://stackoverflow.com/questions/209555/why-would-you-choose-the-java-programming-language-over-others
https://stackoverflow.com/questions/209555/why-would-you-choose-the-java-programming-language-over-others
https://stackoverflow.com/questions/209555/why-would-you-choose-the-java-programming-language-over-others
https://stackoverflow.com/questions/209555/why-would-you-choose-the-java-programming-language-over-others
https://stackoverflow.com/questions/209555/why-would-you-choose-the-java-programming-language-over-others
https://stackoverflow.com/questions/209555/why-would-you-choose-the-java-programming-language-over-others
https://stackoverflow.com/questions/209555/why-would-you-choose-the-java-programming-language-over-others
https://stackoverflow.com/questions/209555/why-would-you-choose-the-java-programming-language-over-others
https://stackoverflow.com/questions/209555/why-would-you-choose-the-java-programming-language-over-others
https://stackoverflow.com/questions/209555/why-would-you-choose-the-java-programming-language-over-others
https://www.baeldung.com/java-collaborative-filtering-recommendations
https://www.baeldung.com/java-collaborative-filtering-recommendations
https://www.baeldung.com/java-collaborative-filtering-recommendations
https://www.baeldung.com/java-collaborative-filtering-recommendations
https://www.baeldung.com/java-collaborative-filtering-recommendations
https://www.baeldung.com/java-collaborative-filtering-recommendations
https://www.baeldung.com/java-collaborative-filtering-recommendations
https://www.baeldung.com/java-collaborative-filtering-recommendations
https://www.baeldung.com/java-collaborative-filtering-recommendations
https://www.baeldung.com/java-collaborative-filtering-recommendations
https://www.baeldung.com/java-collaborative-filtering-recommendations
https://www.baeldung.com/java-collaborative-filtering-recommendations
https://www.baeldung.com/java-collaborative-filtering-recommendations
https://www.baeldung.com/java-collaborative-filtering-recommendations
https://www.baeldung.com/java-collaborative-filtering-recommendations
https://www.baeldung.com/java-collaborative-filtering-recommendations
https://javarush.ru/groups/posts/1037-osobennosti-java-8--maksimaljhnoe-rukovodstvo-chastjh-1
https://javarush.ru/groups/posts/1037-osobennosti-java-8--maksimaljhnoe-rukovodstvo-chastjh-1
https://javarush.ru/groups/posts/1037-osobennosti-java-8--maksimaljhnoe-rukovodstvo-chastjh-1
https://javarush.ru/groups/posts/1037-osobennosti-java-8--maksimaljhnoe-rukovodstvo-chastjh-1
https://javarush.ru/groups/posts/1037-osobennosti-java-8--maksimaljhnoe-rukovodstvo-chastjh-1
https://javarush.ru/groups/posts/1037-osobennosti-java-8--maksimaljhnoe-rukovodstvo-chastjh-1
https://javarush.ru/groups/posts/1037-osobennosti-java-8--maksimaljhnoe-rukovodstvo-chastjh-1
https://javarush.ru/groups/posts/1037-osobennosti-java-8--maksimaljhnoe-rukovodstvo-chastjh-1
https://javarush.ru/groups/posts/1037-osobennosti-java-8--maksimaljhnoe-rukovodstvo-chastjh-1
https://javarush.ru/groups/posts/1037-osobennosti-java-8--maksimaljhnoe-rukovodstvo-chastjh-1
https://javarush.ru/groups/posts/1037-osobennosti-java-8--maksimaljhnoe-rukovodstvo-chastjh-1
https://javarush.ru/groups/posts/1037-osobennosti-java-8--maksimaljhnoe-rukovodstvo-chastjh-1
https://javarush.ru/groups/posts/1037-osobennosti-java-8--maksimaljhnoe-rukovodstvo-chastjh-1
https://javarush.ru/groups/posts/1037-osobennosti-java-8--maksimaljhnoe-rukovodstvo-chastjh-1
https://javarush.ru/groups/posts/1037-osobennosti-java-8--maksimaljhnoe-rukovodstvo-chastjh-1
https://medium.com/podiihq/getting-started-with-liquibase-8965897092aa
https://medium.com/podiihq/getting-started-with-liquibase-8965897092aa
https://medium.com/podiihq/getting-started-with-liquibase-8965897092aa
https://medium.com/podiihq/getting-started-with-liquibase-8965897092aa
https://medium.com/podiihq/getting-started-with-liquibase-8965897092aa
https://medium.com/podiihq/getting-started-with-liquibase-8965897092aa
https://medium.com/podiihq/getting-started-with-liquibase-8965897092aa
https://medium.com/podiihq/getting-started-with-liquibase-8965897092aa
https://medium.com/podiihq/getting-started-with-liquibase-8965897092aa
https://stackoverflow.com/questions/18193253/what-exactly-is-an-n-gram
https://stackoverflow.com/questions/18193253/what-exactly-is-an-n-gram
https://stackoverflow.com/questions/18193253/what-exactly-is-an-n-gram
https://stackoverflow.com/questions/18193253/what-exactly-is-an-n-gram
https://stackoverflow.com/questions/18193253/what-exactly-is-an-n-gram
https://stackoverflow.com/questions/18193253/what-exactly-is-an-n-gram
https://stackoverflow.com/questions/18193253/what-exactly-is-an-n-gram
https://stackoverflow.com/questions/18193253/what-exactly-is-an-n-gram
https://stackoverflow.com/questions/18193253/what-exactly-is-an-n-gram
https://stackoverflow.com/questions/18193253/what-exactly-is-an-n-gram
https://stackoverflow.com/questions/18193253/what-exactly-is-an-n-gram
https://stackoverflow.com/questions/18193253/what-exactly-is-an-n-gram

[38] O. Pavlenko, I. Tymofieieva, Search Query Data Analysis: Challenges and Opportunities, volume
Vol-2604 of CEUR workshop proceedings, 2020, pp. 452-461.

[39] O. Kliuiev, N. Vnukova, S. Hlibko, N. Brynza, D. Davydenko, Estimation of the Level of Interest

and Modeling of the Topic of Innovation Through Search in Google, volume Vol-2604 of CEUR

workshop proceedings, 2020, pp. 523-535.
[40] P. Radiuk, N. Hrypynska, A Framework for Exploring and Modelling Neural Architecture Search

Methods, volume Vol-2604 of CEUR workshop proceedings, 2020, pp. 1060-1074.

[41] O. Cherednichenko, M. Vovk, O. Kanishcheva, M. Godlevskyi, Towards Improving the Search
Quality on the Trading Platforms, in: 11th SIGSAND/PLAIS, LNBIP 333, 2018, pp. 21-30.

[42] O. Veres, B. Rusyn, A. Sachenko, I. Rishnyak, Choosing the Method of Finding Similar Images

in the Reverse Search System, volume Vol-2136 of CEUR Workshop Proceedings, 2018, 99-107.
[43] T. Basyuk, A. Vasyliuk, V. Lytvyn, Mathematical Model of Semantic Search and Search

Optimization, volume Vol-2362 of CEUR Workshop Proceedings, 2019, pp. 96-105.

[44] A. Adamuthe, T. Nitave, Adaptive Harmony Search for Optimizing Constrained Resource

Allocation Problem, volume 17(4) of International Journal of Computing, 2018, pp. 260-269.
[45] N. Vasylkiv, L. Dubchak, A. Sachenko, Estimation Method of Information System Functioning

Quality Based on the Fuzzy Logic, volume 2631 of CEUR Workshop Proceedings, 2020, 40-56.

[46] A. Bakurova, M. Pasichnyk, E. Tereschenko, Y. Filei, Formalization of Ukrainian-Language
Content for Fuzzy Product in Court, vol. 2604 of CEUR workshop proceedings, 2020, 428-441.

[47] M. Bublyk, O. Rybytska, A. Karpiak, Y. Matseliukh, Structuring the fuzzy knowledge base of the

IT industry impact factors, in: Computer sciences and information technologies (CSIT), 2018.
[48] A. Gozhyj, I. Kalinina, V. Gozhyj, Fuzzy cognitive analysis and modeling of water quality, in:

International Conference on Intelligent Data Acquisition and Advanced Computing Systems:

Technology and Applications (IDAACS), 2017, pp. 289-294.

[49] S. Babichev, V. Lytvynenko, A. Gozhyj, at., A fuzzy model for gene expression profiles reducing
based on the complex use of statistical criteria and Shannon entropy, volume 754 of Advances in

Intelligent Systems and Computing, 2018, pp. 545-554.

[50] S. Sachenko, T. Lendyuk, S. Rippa, G. Sapojnyk, Fuzzy Rules for Tests Complexity Changing for
Individual Learning Path Construction. Svitlana Sachenko, in: Int. Conference on Intelligent Data

Acquisition and Advanced Computing Systems: Technology and Applications, 2015, pp. 945-948.

[51] S. Sachenko, O. Chereshnyuk, V. Panasyuk, A. Banasik, I. Golyash, Fuzzy-multiple Approach in

Choosing the Optimal Term for Implementing the Innovative Project, in: Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications, 2017, pp. 533-537.

[52] P. Kravets, The control agent with fuzzy logic, in: Perspective Technologies and Methods in

MEMS Design, MEMSTECH, 2010, pp. 40-41.
[53] P. Kravets, R. Kyrkalo, Fuzzy logic controller for embedded systems, in: International Conference

on Perspective Technologies and Methods in MEMS Design, MEMSTECH, 2009, pp. 58-59.

[54] M. Pasieka, N. Grzesik, K. Kuźma, Simulation Modeling of Fuzzy Logic Controller for Aircraft
Engines, volume 16(1) of International Journal of Computing, 2017, pp. 27-33.

[55] I. Perova, Y. Bodyanskiy, Fast Medical Diagnostics Using Autoassociative Neuro-Fuzzy Memory,

volume 16(1) of International Journal of Computing, 2017, pp. 34-40.

[56] O. Bisikalo, V. Vysotska, Y. Burov, P. Kravets, Conceptual Model of Process Formation for the
Semantics of Sentence in Natural Language, volume Vol-2604 of CEUR workshop proceedings,

2020, pp. 151-177.

[57] O. Iosifova, I. Iosifov, O. Rolik, V. Sokolov, Techniques Comparison for Natural Language
Processing, volume Vol-2631 of CEUR Workshop Proceedings, 2020, pp. 57-67.

[58] E. Fedorov, O. Nechyporenko, T. Utkina, Forecast Method for Natural Language Constructions

Based on a Modified Gated Recursive Block, volume Vol-2604 of CEUR workshop proceedings,
2020, pp. 199-214.

[59] V. Lytvyn, S. Kubinska, A. Berko, T. Shestakevych, L. Demkiv, Y. Shcherbyna, Peculiarities of

Generation of Semantics of Natural Language Speech by Helping Unlimited and Context-

Dependent Grammar, volume Vol-2604 of CEUR workshop proceedings, 2020, pp. 536-551.
[60] O. Bisikalo, Y. Ivanov, V. Sholota, Modeling the Phenomenological Concepts for Figurative

Processing of Natural-Language Constructions, volume Vol-2362 of CEUR Workshop

Proceedings, 2019, pp. 1-11.

https://www.scopus.com/sourceid/21100218356?origin=resultslist

	1. Introduction
	2. Related works
	3. Material and methods
	4. Software solving problems
	5. Experiments, Results and Discussions
	6. Conclusion
	7. References

