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Abstract
In recent years, the paradigm of eXplainable Artificial Intelligence (XAI) systems has gained wide re-
search interest and beyond. The Natural Language Processing (NLP) community is also approaching
this new way of understanding AI applications: building a suite of models that provide an explanation
for the decision, without affecting performance. This is certainly not an easy task, considering the wide
use of very poorly interpretable models such as Transformers, which in recent years are found to be
almost ubiquitous in the NLP literature because of the great strides they have allowed. Here we propose
two different methodologies to exploit the performance of these models in a task of sentiment analysis
and, in the meantime, to generate a summary that serves as an explanation of the decision taken by the
system. To compare the classification performance of the two methodologies, we used the IMDB dataset
while, to assess the explainability performance, we annotated some samples of this dataset to retrieve
human extractive summaries, benchmarking them with the summaries generated by the systems.

1. Introduction

As more and more content is shared by people on the web, the use of automated Sentiment
Analysis (SA) tools has become increasingly present. Just think of solutions for monitoring public
opinion on social media, or for drawing feedbacks from products and/or services reviews, to
understand what consumers like and do not. However, today’s systems often lack transparency,
as they cannot provide an interpretation of their reasoning. In recent years, this has been
a well-known problem in the scientific community. In fact, the contribution that Artificial
Intelligence (AI) algorithms are making in shaping tomorrow’s society is constantly growing.
Given the high performance that today’s models can achieve, their application is spanning
an increasingly large landscape of fields. This is motivating a rapid paradigm shift in the
use of these technologies. We are moving from a paradigm in which AI models are required
to deliver the highest possible performance, to one in which such systems are required to
provide information about taken decisions that is interpretable by humans. We are referring
to the eXplainable Artificial Intelligence (XAI) paradigm. As stated by DARPA’s XAI program
launched in 2017, the main goal of XAI is to create a suite of models that provide an explanation
without affecting performance [1, 2, 3]. That is, to pass from the concept of black-box models,
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in which it is hard (or even impossible) to get any sort of explanation from them, to white-box
ones, in which the model also provides results that are understandable by the final users, or at
least by the experts in the application domain [4]. This may lead systems of the near future
to address the needs of government organizations and the users who use them, such as the
right to explanation, which can raise the reliability of users in the system, and the right to
decision rejection, especially in applications where a human-the-loop approach is expected
(Articles 13-15, 22 of the EU GDPR). Also the Natural Language Processing (NLP) community is
beginning to approach to this new paradigm [5]. However, the task of explaining NLP systems
is certainly not an easy one, in a context where models based on deep neural networks, usually
referred to as the least explicable models of machine learning, take the lead. In fact, since the
Transformer architecture was introduced by Vaswani et al. [6] (Sec. 2.2), the NLP research
has made great strides. In an effort to investigate the behaviour of these models and provide
some sort of human-understandable interpretation, the weights of the attention mechanism
inherent in these structures have often been taken into account (Sec. 2.4). In this work, we
propose and compare two Transformer-based models to perform tasks of sentiment analysis,
while retrieving an explanation of the models’ decisions through a summary built by extracting
the sentences of the document that are the most informative for the task in hand. That is, we
exploited the extractive (single document) summarization paradigm (Sec. 2.1). In particular, for
one of the two models, we made use of the attention weights of the Transformer model to get
insights on the most relevant sentences. To do so, we exploited a hierarchical configuration
(Sec. 2.3). We evaluated our models on a binary sentiment classification task using the IMDB
movie reviews dataset [7]. To also assess the explainability performance, we annotated some
samples of the dataset to retrieve human extractive summaries from the training and test sets,
and then assessed the overlap between these and the models’ ones. The annotation phase was
necessary since there are not so many works in literature dealing with the explainability side of
sentiment analysis models.

In fact, the past literature in the Explainable Sentiment Analysis field just focused on the
intrinsic explainable Aspect-based and lexicon-based approaches. In the former, models combine
aspect polarity to provide a polarity score at the document level, while giving finer-grained
insights [8]. The main disadvantage of this approach is the effort to annotate entities and
attributes. In the latter, models exploit some dictionaries in which words are associated with
some polarity score. Such resources may be external, such as SentiWordNet [9] or SenticNet [10]
and its newer versions, or they may be built by extracting aspects and opinions [11]. To the
best of our knowledge, this is the first work proposing to extract summaries as an explanation
of a document classification task such as the sentiment analysis one. The main contributions
of this work may be resumed as: a new approach for explainable document classification
tasks as sentiment analysis, exploring the use of attention weights of a hierarchical transformer
architecture as a base to achieve extractive summaries as an explanation of the document
classification task; a new annotated dataset for the evaluation of extractive summaries as
an explanation of a sentiment analysis task. We shared the annotated dataset together with
the algorithm code on our Github page1; two different proposed models, both based on
transformer architectures, analyzed in terms of the performance in both the classification and

1www.github.com/lbacco/ExS4ExSA
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explanation tasks.

2. Related Works

2.1. Automatic Text Summarization

The Automatic Text Summarization (ATS) topic is gaining more and more interest in research,
not only in the academic but also in the industrial field. This is due to the increasingly large
amount of textual data on the various archives of the Internet. It is not difficult to imagine the
value it may have to automatically summarize scientific papers, to give an example close to
our world. Also, such an approach could be beneficial to analyse clinical documents (usually,
kinds of documents that are very long), social media opinions, product reviews, etc. From
these points of view, it becomes even more obvious how it would be worthy to automatize
a summarization process if you think about how much a Manual Text Summarization (MTS)
may cost, in terms of both time and human efforts. Not least, the ATS may be used as an
explanation of a model decision, as in this work. However, ATS is not a monolithic topic of
research, but it may be seen as spread in many sub-fields where researchers are putting their
efforts in. Following the nomenclature in [12], we may distinguish the first and most important
differences between ATS techniques presented in the literature. First of all, ATS systems may be
classified by the size of their input. We may have a system which target is to shorten a single
document given in input (SDS, Single Document Summarization) or to compress the important
pieces of information from a set of multiple documents (MDS, Multi-Document Summarization).
Obviously, the MDS paradigm is not suitable for the case at hand, where we were interested in
achieving an interpretation (the summary) on the classification of a single document. Systems
may also be divided by the nature of the summary. Some methods are defined as extractive,
because they build summaries by extracting the most important sentences from the document.
Others are called abstractive, because they aim to generate a summary made by new (generated)
sentences. Even if the abstractive paradigm can theoretically solve issues like redundancy
and information lost, because of the task complexity the research efforts focused more on the
extractive kind. A third way is the hybrid one, that may be seen as a trade-off between the
two paradigms. Since our models focus on extracting sentences from the original document, it
falls within the extractive paradigm. We could also define our models as deep learning-based
(because, of course, Transformers are deep neural networks models) and informative (because
the extracted summaries contain important information of the original document). For an
in-depth analysis of the nomenclature of the summarization systems, we suggest the reader to
refer to [12].

2.2. Transformers vs. RNNs

Since modeling the contextual content in documents is a key point to success in many NLP tasks
such as document classification, Recurrent Neural Networks [13] (RNNs) had an increasingly
growing trend in the computational linguistic community. At least, prior to the advent of
Transformers models [6]. In fact, even with the Bidirectional variant [14] (Bi-RNNs), such
networks are intrinsically sequential. This means that their use is limited to restricted corpora
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because of their expensive computational cost. Furthermore, due to two phenomena during
the training phase, named exploding gradient and vanishing gradient [15], the dependency
of the text of a sequence is limited to not so long context. Their variation with Long-Short
Term Memory [16] and Gated Recurrent Unit [17] cells (LSTMs and GRUs) helped to partially
overcome this issue. In fact, just a few years ago, it was not so surprising to see these networks
applied to complex NLP tasks, such as Language Modeling (𝐿𝑀 ) [18, 19]. However, since 2017,
the interest of the NLP community in this kind of networks is constantly fading, in favour of
the Transformers architectures. Vaswani et al. were, indeed, able to overcome the recurrency
issues by applying a self-attention mechanism. The idea behind the attention mechanism was
first introduced in the computer vision domain [20]. However, for attention models, we usually
refer to structures like the neural machine translation introduced by Bahdanau et al. [21]. A
Transformer model, as proposed by Vaswani et al., consists of an encoder-decoder architecture.
The main features of each structure are: to be highly parallelizable, thanks to the (multi-head)
attention mechanisms and point-wise fully-connected layers; and to be able to capture a long-
term dependency, thanks to the attention mechanisms and the positional encoding. Such features
allowed researchers to exploit this kind of architecture to develop Language Models from large
size unlabeled corpora. Examples are GPT [22] and its 1.5 and 17 billion parameters successors
GPT-2/3 [23, 24], XLNET [25], BERT [26], in its 𝐵𝑎𝑠𝑒 (110 millions parameters) and 𝐿𝑎𝑟𝑔𝑒 (340
millions parameters) versions, and its optimized variants RoBERTa [27] and DistilBERT [28]
(the latter, counting "only" 66 millions parameters). Most of the Transformer-based models,
and their pre-trained versions, are available through the transformers package from Hugging
Face [29]. This is particularly useful from a Transfer Learning paradigm [30] point of view.
Those LMs were pre-trained on a very large amount of unlabeled text in a task-agnostic manner,
and can therefore be fine-tuned for a specific task without training them from scratch. This
kind of pipeline has already been shown to be very powerful: models have been effectively
fine-tuned to a large variety of NLP tasks, both token-, sentence- and document-level tasks
(such as the GLUE benchmark [31]), reaching the state-of-the-art performance in just a few
epochs of training. In many cases they overcome the performance of fine-tuned RNN-based
LMs such as ELMO [32] and ULMFiT [33].

2.3. Hierarchy in Transformer Models

One of the greatest limitations of the Transformer-based models is to be limited to input of a
fixed length of text, usually less than a few hundred tokens, even if they have the potentiality
to learn longer-range context dependencies. This is due to the computational and memory
requirements of the self-attention mechanism, which quadratically grows with the number of
tokens in the sequence. The simplest approach to use for long document classification tasks
with Transformers is, therefore, the truncation of the document. This obviously may lead to
a significant loss of information. Trying to overcome this issue, some groups of researchers
developed an extension of those models, usually exploiting a hierarchical architecture, in which a
classifier is built on the representations of some chunks of text obtained from a first Transformer
model. For example, in [34] two kinds of architecture were investigated: RoBERT and ToBERT.
In RoBERT, a Recurrency over BERT was implemented using an LSTM layer and two fully-
connected layers. In ToBERT, another Transformer was used over BERT, substituting the LSTM
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layer with a 2-layers Transformer. At a cost of a greater computational cost, ToBERT showed
better performance on some evaluated tasks, especially on the one dataset consisting of longer
documents. For both models, each document was divided into chunks counting 200 tokens, with
an overlap of 50 tokens for consecutive chunks. Inspired by this work, in [35] documents were
divided into chunks of 512 tokens (with 50 overlapping tokens within consecutive segments),
and an investigation on the merge method was conducted. In particular, the classification was
based on the most representative vector (the one with the highest norm), on the average of all
the vectors, and on a representation built through a 1D Convolutional layer. Closer to our task,
there is the work in [36], where HIBERT, a hierarchical transformer (again, based on BERT)
was first pre-trained in an unsupervised fashion and then fine-tuned on a supervised extractive
summarization task, where all the sentences of each document are labelled as belonging or not to
the summary of that document. Following this work, in [37] proposed to pre-train a hierarchical
transformer model with a masked sentence prediction (in which the model is required to predict
a masked sentence) and a sentence shuffling tasks (in which the model is required to predict
the original order of the shuffled sentences). Then, also using the self-attention weights matrix
(obtained by averaging over the heads for each layer and then averaging over the layers), the
hierarchical pre-trained encoder is used to compute a ranking score for the sentences. The
top-3 sentences are then used to constitute the summary. To the best of our knowledge, this
last work is the closest to our, exploiting the attention weights of a hierarchical transformer
model to generate a ranking useful to the extractive summarization. However, this last model
was used with the aim to generate summaries in an unsupervised manner, while we aimed to
collaterally generate summaries that explain the decision of a hierarchical model in a task of
document classification.

2.4. Attention as Explanation

In the recent literature, various works proposed to analyse the attention patterns of the Trans-
former architecture to have an insight on how such a model works. In [38] the author proposed a
useful visualization tool, named 𝐵𝑒𝑟𝑡𝑉 𝑖𝑧. This tool provides an interactive interface to visualize
attention weights between tokens for every attention head in every layer. Through this tool
the author was able to find that some particular heads (in some particular layer) may capture
lexical features such as verbs and acronyms, or may relate to the coreference resolution, also
showing the eventuality for such heads to also encode gender bias. Another kind of visualization
tool for the attention weights is the attention (heat-)map. Using these maps, the authors in
[39] found patterns that are consistent with the previous ones. In details, they divided the
patterns in five categories: vertical (which mainly corresponds to attention to the delimiter
tokens), diagonal (attention to previous/next word), a mix of these two, block (intra-sentence
attention), and heterogeneous (said, no distinct structure). In this work, also a heads/layers
disabling study was conducted, showing that in some cases a pruning strategy does not lead to
a drop in performance (sometimes it even leads to an increase). Besides these two, other studies
have been conducted showing that the self-attention heads allow BERT, as other Transformer
models, to capture linguistic features, such as anaphora [40], subject-verb pairings [41] (then
extended by [42]), dependency parse trees in encoder-decoder machine translation models
[43, 44], part-of-speech tags [45], and dependency relations and rare words [46]. However,

5



Luca Bacco et al. CEUR Workshop Proceedings 1–12

in our study, we did not aim to reach an explanation of how the Transformer model deals
with such features but to reach an interpretation of the document classification given by the
model. Talking about this paradigm, various works focus on the weights of the attention layer
in Transformers [47] or other kind of network, such as recurrent or convolutional ones, to
highlight the words or n-grams in the text that are the most relevant for the decision. Regarding
the sentiment analysis task, authors in [48] observed a strong interaction between neighboring
words visualizing the attention matrix of a Transformer-like network. Furthermore, in [49], the
authors of the work discussed the use of attention scores from an attention layer as a good and
less computationally burdensome alternative to external explainer models like LIME [50, 51]
and Integrated Gradients [52] methods. However, the result of such method is, again, to just
highlight parts of the discourse. This kind of approach does not lead to an actual interpretative
summary, that may be more easily readable and therefore interpretable.

3. Materials and methods

To benchmark our models, we used the IMDB Large Movie Review Dataset. Such dataset consists
of 50𝐾 movie reviews written in English and collected by [7]. Those reviews (no more than 30
reviews per movie) where highly polarized, as a negative review corresponds to a 𝑠𝑐𝑜𝑟𝑒 ≤ 4 (out
of 10), and a positive one has a 𝑠𝑐𝑜𝑟𝑒 ≥ 7. We downloaded the data through the Tensorflow2 API.
The data is already divided in two equivalent sets, one for training and one for testing (plus 50𝐾
unlabelled reviews that one might used for unsupervised learning, not used in this work). Each
of the subset presents a 50 : 50 proportion between negative and positive examples. To assess
the explainability of our methods we randomly extracted a total of 150 reviews, divided in two
subsets, 50 from the training set and 100 from the test set. Documents were chosen maintaining
the proportion between the two classes, ensuring that both the models can correctly classify
them. Four annotators were instructed to select the three most important (out of 𝑁 = 15)
sentences in each document. To make such a choice, the annotator is allowed to look at the
sentiment of the document. To evaluate the agreement between the annotators, we calculated
the so-called Krippendorff’s alpha. First proposed by Klaus Krippendorff [53], to which it owes
its name, it is a statistic measure of the inter-annotator agreement/reliability. The strength of
this index is to apply to any number of annotators, no matter the missing data, and it can be
used on various levels of measurement, such as binary, nominal and ordinal. This measure may
be calculated as follows3: 𝛼 = 1− 𝐷𝑜

𝐷𝑒
, where 𝐷𝑜 is the disagreement 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, and 𝐷𝑒 is the

disagreement 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 by chance. Since the Krippendorff’s alpha is calculated by comparing
the pairs within each unit, those samples presenting at most one annotation are eliminated.
However, in this case each sample (sentence) is automatically annotated as within the three
most important sentences or not. Hence, such elimination phase was not required. Values of 𝛼
less then 0.667 are often discarded, while values above 0.8 are often considered as ideal [54, 55].
Anyway, except for 𝛼 = 1, we could say that there is no such thing as a magical number as a
threshold for this kind of analysis, especially for tasks as much subjective as this one. In our
case, 𝛼𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 0.47 and 𝛼𝑡𝑒𝑠𝑡 = 0.61.

2www.tensorflow.org/datasets/catalog/imdb_reviews
3https://github.com/foolswood/krippendorffs_alpha
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3.1. Models

Here we illustrate the two proposed architectures. In order to provide a visual explanation of
them, we report the simplified schemes in Fig. 1.

Explainable Hierarchical Transformer (ExHiT) The first model exploits a hierchical
architecture, consisting of two Transformers (𝑇1 and 𝑇2) in cascade (Fig. 1a). Because of its
nature, we like to refer at this as ExHiT, the Explainable Hierarchical Transformer. The input of
the first Transformer is a sequence of 𝑡 tokens, while the output is an embedding representation
of that sequence. Each sequence represents one of the 𝑁 sentences {𝑠1...𝑠𝑁 } in which the
document is divided. If a document can be divided in just 𝑚 ≤ 𝑁 sentences, then 𝑁 −𝑚 empty
sentences (just the special tokens) are added to the document. After 𝑇1 has elaborated the 𝑁
sequences, the new generated representations {𝑟1...𝑟𝑁} are stacked together to become the
input of 𝑇2. 𝑇2 then outputs a contextual representation 𝑐𝑖 for the 𝑖-th sentence that depends on
the other sentences (𝑐𝑖 = 𝑓(𝑟1...𝑟𝑁 )). By merging these contextual representations we obtain
an unique document representation 𝑑 = 𝑈(𝑐1...𝑐𝑁 ). In this work, we investigated the following
merging strategies: by concatenation: 𝑈(.) = 𝐶𝑜𝑛𝑐𝑎𝑡(.); by averaging: 𝑈(.) = 𝐴𝑣𝑔(.); by
masked averaging: 𝑈(𝑐1...𝑐𝑁 ) = 𝐴𝑣𝑔(𝑐1...𝑐𝑚) with 𝑚 ≤ 𝑁 , for which {𝑠𝑚+1...𝑠𝑁} is the set
of the added empty sentences; by the application of a Bidirectional LSTM: 𝑈(.) = 𝐵𝑖𝐿𝑆𝑇𝑀(.).
Then vector 𝑑 is given as input to a classification layer. In this work, such a layer consists of a
two-units fully-connected dense layer with the softmax activation for the binary classification
task. Other than the contextual representations, we were able to retrieve from 𝑇2 also the
self-attention weights for each head of each layer inside the transformer itself. To give more
importance to the interpretability of the model instead of the performance, 𝑇2 consists only of
two layers and just one head per layer. In this way, it is easier to extract valuable information.
By averaging the attention weights associated with a specific sentence, we extracted the score
of that sentence. The sentences are ranked through such a score, and the most important ones
are then selected to provide an extractive summary of the document. Such summary serves
then as the explanation of the model decision.

Sentence Classification Combiner model (SCC) This second model has a simpler archi-
tecture, requiring just one Transformer model in its pipeline. The input of this Transformer
is again a sequence of 𝑡 tokens, i.e. the single sentence 𝑠𝑖. And again, its output is a new
representation 𝑟𝑖 of that sentence. Such representation is given in input to a Dense layer to
classify the sentiment of the sentence, outputting two probability scores, one for each class.
Then the negative scores are averaged together, and the same for the positive ones, to get a
final rating for each class. The prediction of the overall document sentiment will be given by
whoever has the greatest final score. Knowing the decision of the model, the sentences are
ranked by the inherent probability score. Then, the most relevant ones are extracted to build
the summary of the document, serving as an explanation of the model decision.

Experiments Following we listed the main features of the two models used in the experi-
ment’s session: T1: for a fair comparison, the first transformer model was the same for both
the architectures; we opted to use the pre-trained version of RoBERTa [27]; T2: we used a
transformer with two layers, one head per layer; this choice was motivated to facilitate the
explainability phase; N: the maximum number of sentences per document was set to 15; by this
way, we ensured that the 75% of the training documents were elaborated in their entirety; t:
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(a) Hierarchical Transformers model (b) Sentence Classification Combiner model

Figure 1: A visual schematic representation of the two proposed explainable models.

the maximum number of tokens per sentence was set to 32, comprehensive of the two special
delimiter tokens; by this way, we ensured that the 75% of the training sentences were elaborated
without being truncated. Besides the two models, we implemented a pre-processing phase con-
sisting of the replacement of the tokens ’<\br><\br>’ with the newline character, and, obviously,
a sentence splitting step. We used the sentence tokenizer provided by NLTK. Furthermore, for
documents that do not reach 𝑁 number of sentences, empty sentences (consisting of just the
special tokens) were added up to 𝑁 . Similar reasoning was applied to sentences that do not reach
the 𝑡 number of tokens: in these cases, the sequences were zero-padded on the right, and an
attention mask was applied. The first model was jointly trained on the document classification
task with an eight documents batch size. The second model was instead trained on the single
sentence classification task, with a batch size of 240 sequences.

4. Results

The proposed models were evaluated for both sentiment analysis and explainability outcomes.
In Tab. 1 we reported the sentiment analysis results achieved in terms of accuracy, and precision
and recall per class. For the ExHiT model, various proposed merging strategies were tested. As
the accuracy column highlights, changing the merging strategy does not significantly affect
classification performance. Following the same structure, in Tab. 2 we reported the explainability
outcomes in terms of precision averaged over all the documents. The performances are reported
for different annotators agreements, i.e. we built summaries by grouping the sentences for which
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Table 1
Sentiment analysis results in terms of accuracy, and precision and recall per class.

Model Merging strategy Accuracy (%) Precision (%) Recall (%)
Neg Pos Neg Pos

ExHiT

Concatenation 92.59 90.97 94.34 94.56 90.62
Average 92.35 92.18 92.51 92.54 92.15

Masked Average 92.77 92.07 93.49 93.60 91.94
BiLSTM 92.34 90.97 93.80 94.01 90.67

SCC - 93.51 95.42 91.75 91.40 95.62

Table 2
Explainability performance in terms of precision (averaged over all documents) for different annotators
agreements, evaluated on both the annotated documents from training and test sets.

Model Merging strategy
Agreement at least 1 Agreement at least 2 Agreement at least 3

Precision (%) Precision (%) Precision (%)
test train test train test train

ExHiT

Concatenation 53.82% 55.88%a 49.15% 45.00% 46.63% 46.45%
Average 58.04% 57.82% 50.42% 45.92%1 45.29% 41.84%

Masked Average 53.15%a 55.79% 45.97%a 44.92% 40.66% 39.80%
BiLSTM 55.51%a 55.85% 49.05%a 45.24%a 43.38%a 39.95%

SCC - 70.74% 65.61% 65.22% 57.83% 55.22% 47.52%

at least one, two or three out of the four annotators judged them among the most important
ones. This implies that some annotators summaries may contain more than three sentences
(𝑁 > 3, especially in the first case) or less than three sentences (𝑁 < 3, especially in the latter
case). So, we extracted the first 𝑁 sentences in the machines ranking and evaluated the overlap
of these summaries with the annotators’ ones. About the ExHiT performance, the results of the
best layer are reported. In general, the ranking from the first layer slightly outperformed the
rankings from the last layer1 and the rankings obtained by averaging both layersa. Furthermore,
the empty sentences were removed by the machine rankings.

5. Discussion and Conclusion

Analysing Tab. 1, the SCC model seems to achieve slightly better overall performance. However,
it is interesting to notice that SCC results particularly good for the precision for the negative
class and the recall for the positive one, while achieving the worst performances for their
counterpart metrics, for which the best results are obtained by ExHiT using the concatenation
merging strategy. About Tab. 2, the ExHiT explainability results are lower than those of SCC,
with respect to all the merging strategies. This outcome may be the result of an influence of
the task on the two models: it may be noticed that the task the second model accomplishes
is closer to the one performed by the annotators. This may therefore result in helping the
model in the explainability task. Furthermore, the average merging strategy leads to better
performance than the masked one, especially with respect to the test set (∼ +5%). This seems
to suggest that masking the empty sentences from the average combination does not help the
model to better understand the task. However, both underlying architectures allow their easy
adaptation in any document classification task (e.g. topic classification). Both models have
achieved good classification results, not so far from the state-of-the-art on the IMDB dataset,
while also performing an explanation in the form of a summary. To the best of our knowledge,
this is the first attempt to build a document classification paradigm of models that generate an
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extractive summary in order to provide an easy to interpret explanation to the user. Such models
may be implemented in some application systems, for example customer care or market research
tools. Indeed, while sentiment analysis may help to mark customer messages and reviews, the
explainability part may be helpful to get quick insights about strengths and weaknesses of some
product or service. Further research works may evaluate such models in different classification
tasks. Sentiment analysis is a task that particularly relies on the lexical meaning of individual
sentences. Testing a different kind of task may show ExHiT outperforming the SCC model
because able to get more insights from the context of the document. Also, the explainability
at a finer granularity (at tokens level) may be explored by investigating the attention weights
from the first Transformer. Furthermore, it would be interesting to exploit the potential of both
models to be able to operate on tasks involving longer documents, which is a sort of limitation
for traditional Transformer architectures.
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