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Abstract. The possibility of using modern supercomputers in solving the re-

source-intensive tasks of multi-agent modeling of the spread of mass epidem-

ics based on the theory of growth of percolation clusters is considered in this 

article. 

The determination of quarantine zones during the spread of epidemics is based 

on the multi-agent percolation model. It includes the formation of a lattice of 

interaction between representatives of the population, modeling the spread of 

the disease, collecting information about the population, implementing a par-

allel algorithm for multiple labeling of percolation clusters with a linking 

technique for labels, visualizing the results. 

The article describes a variant of the algorithm for multiple labeling of 

Hoshen-Kopelman percolation clusters, improved for use on a multiprocessor 

system, and the current prototype of its implementation developed at the JSCC 

RAS - Branch  of  SRISA. The input to this algorithm is data in a format inde-

pendent of the application. Therefore, it can be used in any field as a tool for 

differentiating large lattice clusters. 

The article provides estimates of the execution time of the multiple labeling 

algorithm for Hochen-Kopelman percolation clusters for various input param-

eters on the four main high-performance computing systems installed in the 

JSCC RAS - Branch  of  SRISA. 

Keywords: multi-agent simulation, theory of percolation, percolation’s clus-

ter, epidemics' distribution, high-performance computing systems. 

1 Computer models of epidemic spread 

The classical models of the spread of large-scale epidemics, based on integro-

differential equations, are completely deterministic. However, the nature of epidemic 

processes is stochastic in nature. The process of development of these processes is 

influenced by a whole range of random factors that determine the random nature of 

the spread of the epidemic itself. 

Models of computer simulation deserve special attention today, as they best meet 

the characteristics of studying the behavior of complex processes and phenomena that 
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accompany the formation, development, and spread of mass epidemics and pandem-

ics. 

Simulation modeling refers to the development, execution on a computer of a 

software system that reflects the behavior and structure of the simulated object, pro-

cess or phenomenon and the analysis of the results of computer experiments. 

Simulation has significant advantages over analytical modeling when: 

• relations between variables in the model are non-linear, and therefore analytical 

models are difficult or impossible to build; 

• the model contains stochastic components; 

• to understand the behavior of the system, visualization of the dynamics of the 

processes occurring in it is required; 

• the model contains many parallel-functioning interacting components. 

According to one of the classifications, simulation modeling includes four direc-

tions: modeling of dynamic systems, discrete-event modeling, system dynamics, and 

agent modeling. 

 

1.1 Agent-based approach to the development of simulation models of 

epidemic spread and percolation theory 

 

The agent approach in the development of simulation models is used in all cases 

when it is the individual behavior of objects that is essential in the system, and the 

integral characteristics and dynamics of the whole system are derived from these in-

dividual features. An agent is understood as a certain entity that has activity, autono-

mous behavior, can make decisions in accordance with certain rules, can interact with 

the environment and other agents, and can also change (evolve). Agent models are 

used to study decentralized systems, the dynamics of which are determined not by 

global rules by laws, but rather, these global rules and laws are the results of individu-

al activity of an agent or group of agents. The purpose of the agent model is to get an 

idea of these global rules, based on the assumptions about the individual, private be-

havior of its active objects and the interaction of these objects in the system. 

The logic of agent behavior and their interaction can not always be expressed by 

purely graphical means; here you often have to use program code. 

When studying the behavior of complex systems, an abrupt and avalanche-like 

change in the characteristics of the behavior of the system under the influence of 

smooth changes in one or more basic parameters is often observed. 

So, relatively small changes in the values of one or several parameters when study-

ing the spread of mass epidemics (for example, the probability of infection) can lead 

to an abrupt change in the behavior of the entire system (a disease from a local stage 

takes on a planetary scale). 

On January 30, 2020, at a meeting of the World Health Organization (WHO) 

Emergency Committee, the outbreak of the new Coronavirus was recognized as a 

public health emergency of international concern. WHO therefore have made the 

assessment that COVID-19 can be characterized as a pandemic. 



 

As of September 21, 2020, 30 949 804 cases of infection worldwide, 

959 116 deaths were confirmed [1]. In the USA - 6 703 698 cases of infection, 

198 094 deaths, in the India - 5 487 580 cases, 87 882 deaths, in the Brazil - 

4 528 240 cases, 136 532 deaths. In Europe, the majority of cases occurred in the 

Russian Federation - 1 109 595 cases of infection, 19 489 deaths. 

When analyzing the spread of Coronavirus disease 2019 (COVID-19) and the epi-

demics of past years, it is clearly seen that at some point an abrupt transition occurs in 

the spread of the epidemic. 

One of the interesting and effective tools for studying such situations is the method 

of constructing and analyzing the growth of percolation clusters. 

In the theory of percolation, a number of rigorous statements are proved that de-

scribe processes on virtual lattices. To implement applications of large-scale percola-

tion processes, the capabilities of modern supercomputer technologies are effectively 

used. Which in turn requires the development of appropriate models of computer 

simulation, including multi-agent [2-4], as well as specialized parallelization algo-

rithms [5-6]. 

Using the provisions of percolation theory a working prototype for the implemen-

tation of the Hoshen-Kopelman's cluster multiple labeling technique (CML technique) 

[7] in C with the MPI library was developed at the JSCC RAS - Branch  of  SRISA. It 

allows you to select connected subgraphs (clusters) of a graph (lattice), as well as to 

find out which cluster a particular node of the lattice belongs to. The algorithm has 

been adapted for use on a multiprocessor system. This version of the algorithm coin-

cides with the single-processor version with one exception: instead of passing through 

the entire lattice, each processor activates the CML technique only on the assigned 

group of nodes with the subsequent exchange of information between the processors. 

The developed prototype was used to study the emergence and spread of large-

scale epidemics [8]. To form the analyzed lattice, publicly available demographic data 

on the population of cities around the world and some assumptions about the intensity 

and nature of the interaction between people were used. To obtain information on the 

population of cities, an algorithm was developed for processing and analyzing popula-

tion density maps (implementation in the java). Maps were borrowed from Google 

using the Google Maps API, and for the convenience of perceiving the results of sim-

ulation experiments, appropriate visualization tools were developed. 

 

1.2 Schematic diagram of the prototype 

The prototype of the implementation of the CML technique consists of the steps 

shown in Fig. 1: 

 



 
 

Fig. 1. Scheme of the prototype 

Using the algorithm for collecting information about the population (MapManager 

map analyzer), data on cities in the world is collected and stored in a database in the 

format «city number, population, latitude, longitude». 

The algorithm for generating a lattice of interaction between representatives of the 

population (the graph builder GridBuilder) creates the original lattice (implementation 



 

in java) and is stored in three files: the grid lattice and 2 edges1 and edges2 files, edg-

es. For each value of the input variable parameter of the probability of infection in 

contact with the patient (parameter p = 0.01 -... 1.00 in increments of 0.01) of the 

original lattice, the analyzed lattice is formed in the main memory. 

Next, the graph of neighboring cities is divided into related subsets by the Hochen-

Kopelman algorithm (labeling Load clusters). For each analyzed lattice, the CML 

algorithm is launched. The algorithm can be divided into 3 stages: 

1. Initialization: the first process loads the lattice into RAM from a file, converts it 

according to input parameters, distributes nodes into groups by processes and sends 

them. Other processes are waiting for their group of nodes. Having received such a 

group, processes distinguish from them a subgroup of externally connected nodes, i.e. 

nodes associated with nodes from groups of other processes. For each node in its 

group, initial label values are set in accordance with the absolute (within the entire 

lattice) node number. Each process creates a group of external nodes associated with 

the nodes of its group, and initializes them with labels of the connected nodes of its 

group. 

2. The operation of the algorithm itself. Each process launches the MMK algorithm 

on its own group of nodes. 

3. Exchange of information. It takes several steps until after the next exchange the 

labels of the nodes of all processes cease to change. The exchange of information can 

be divided into 3 stages: 1 - each process sends node label values from a subgroup of 

externally connected nodes to those processes with which these nodes are associated. 

2 - each process takes label values from processes that have nodes associated with 

nodes of a given one. These values are assigned to node labels from a group of exter-

nal nodes. If at least one of the node labels from the external group has been changed, 

then the process should repeat the exchange of information. All node labels of the 

group equal to the replaced labels of the external group must also be replaced. 3 - 

sending a message to the first process about whether or not this process should repeat 

the exchange of information with other processes. The first process receives similar 

information from all processes. If all processes do not need to be exchanged again, the 

first process sends a signal to everyone else to complete the work of the entire algo-

rithm and begins the process of collecting data by the labels of their nodes. If at least 

one process has sent a message that it needs to continue the exchange, all processes 

will have to repeat the procedure for exchanging information. 

As a result of labeling the clusters, an array of cluster labels was obtained (with in-

dices from 1 to 100). 

The Load cluster labeling program was launched at the Joint Supercomputer Cen-

ter of the Russian Academy of Sciences - Branch of  Federal State Institution «Scien-

tific Research Institute for System Analysis of the Russian Academy of Sciences» on 

supercomputers with 48-304 processors. The average runtime of a program with an 

input parameter p from 0.01 to 1 in increments of 0.01 with constant values of t = 1, 

3, 5, 10, 15, 20, 25, 30 days was about 5-10 minutes for each value t. 

The next stage is a simulation experiment with a specific city (cluster converter 

GridTransformer). Visualization of the results obtained in the model is implemented 

using Google Maps Api. 



The city — the source of infection — is selected, the number of infected nodes in 

this city was set, and for the data p and t, the calculated earlier array of cluster labels 

was loaded. After determining the labels of infected nodes of the selected city, the 

labels of all nodes from the loaded array are sequentially traversed, and if the label is 

“potentially infected”, then the city in which the node with this label belongs is also 

declared potentially infected. Thus, a list of potentially infected cities is formed. This 

list is saved as java-script commands of the Google Maps API in an html file. De-

pending on the population, the infected city is marked with a red circle of a certain 

size. To visualize the results, the html file is launched in the browser. 

 

2 Simulation experiments on supercomputers 

An important point in the work of the CML algorithm is the correct selection of the 

number of processor cores on which the processing of the original lattice will be per-

formed. 

During the operation of the algorithm, it is loaded into the RAM of the node and, 

taking into account its large size, it would be logical to parallelize the process of its 

processing into a large number of parts. 

But on the other hand, during the operation of the algorithm, it is necessary to ex-

change data between the boundary cells of the parts of the original lattice. And if 

there are too many such parts, then the data exchange time may exceed the allotted 

time limit for processing the task. 

When running the algorithm on a supercomputer, it is necessary to find a balance 

between an increase in the number of requested computing cores and delays associat-

ed with the exchange of data between boundary cells. 

 

2.1 Supercomputer Systems on which the simulation experiment was 

conducted 

To study the optimal number of requested processor cores to run the algorithm, the 

Load cluster labeling program was launched in the JSCC with an input probability 

parameter p from 0.01 to 1 in increments of 0.01 with constant model times t = 30 

days on 48-304 processor cores on the following supercomputers: MVS -10P OP, 

MVS-10P MP2, MVS-10P Tornado, MVS-100K. 

MVS-10P OP is provided to users of the Center in the mode of collective access to 

three sections: Haswell, Broadwell and Skylake: 

• Haswell (42 computing modules based on Intel Xeon E5-2697 v3 processors, 128 

GB of RAM per module, peak module performance is 1.1648 TFLOPS, 1176 cores in 

a section); 

• Broadwell (136 computing modules based on Intel Xeon E5-2697 v4 processors, 

128 GB of RAM per module, peak module performance - 1.3312 TFLOPS, 4352 

cores in a section); 



 

• Skylake (58 computing modules based on Intel Xeon Gold 6154 processors, 192 

GB of RAM per module, peak module performance is 3.456 TFLOPS, 2088 cores per 

section). 

Common to installations on the MVS-10P OP is the use of the Intel Omni-Path low 

latency network as the communication medium. 

MVS-10P MP2 KNL is a supercomputer of 38 computing modules based on Intel 

Xeon Phi 7290 processors, 96 GB of RAM per module, peak module performance is 

3.456 TFLOPS, 2736 cores in the system. 

MVS-10P Tornado is a supercomputer of 207 computing modules, each module 

has 2 Xeon E5-2690 processors, 64 GB of RAM, two Intel Xeon Phi 7110X copro-

cessors, peak module performance is 371.2 GFLOPS, 3312 cores in the system. 

MVS-100K is a supercomputer of 110 computing modules based on Intel Xeon 

E5450 processors, 8 GB of RAM per module, peak module performance is 

96 GFLOPS, 880 cores in the system. 

 

2.2 Analysis of the optimal choice of the number of processor cores 

Figure 2 shows a graph of the load program operating time versus the number of 

requested processor cores on various sections of the MVS-10P OP. 

At MVS-10P OP, the average calculation time was: 

• Haswell section - 360 sec; 

• Broadwell section - 376 sec; 

• Skylake section - 417 sec. 

Minimum runtime: 

• Haswell section - 322 sec on 128 cores; 

• Broadwell section - 361 seconds on 208 cores; 

• Skylake section - 371 sec on 128 cores. 

 



 

Fig. 2. Calculation on sections MVS-10P OP 

Figure 3 shows a graph of the load program operating time versus the number of 

requested processor cores on MVS-10P MP2 KNL. The average calculation time was 

1201 seconds (almost three times longer than on any of the MVS-10P OP sections), 

the minimum launch time was 1172 seconds on 128 cores. 

 

 

Fig. 3. Calculation on MVS-10P MP2 KNL 
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Figure 4 shows a graph of the load program operating time versus the number of 

requested processor cores on the MVS-10P Tornado. The average calculation time 

was 263 seconds (approximately 25% less than on any of the MVS-10P OP sections), 

the minimum launch time was 235 seconds on 160 cores. 

 

 

Fig. 4. Calculation on MVS-10P Tornado 

Figure 5 shows a graph of the load program operating time versus the number of 

requested processor cores on the MVS-100K. The average calculation time was 570 

seconds (approximately 50% more than in the MVS-10P OP sections), the minimum 

launch time was 480 seconds on 128 cores. 

 

 

Fig. 5. Calculation on MVS-100K 
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Figure 6 shows a summary graph of the load program operating time versus the 

number of requested processor cores on the main systems of the MSC RAS. The min-

imum calculation time is shown by MVS-10P Tornado. For most supercomputers, the 

minimum counting time is achieved using 128 - 208 cores. 

 

 

Fig. 6. A summary graph of the calculation time versus the number of requested processor 

cores 
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