
Multi-Agent Simulation of Epidemics' Distribution on

Modern Supercomputers

Svetlana Lapshina
 [0000-0002-2570-5811]

Joint Supercomputer Center of the Russian Academy of Sciences - Branch of

Federal State Institution "Scientific Research Institute for System Analysis of

the Russian Academy of Sciences",

Lenin Ave. 32 a, Moscow, Russia, 119334

jscc@jscc.ru

Abstract. The possibility of using modern supercomputers in solving the re-

source-intensive tasks of multi-agent modeling of the spread of mass epidem-

ics based on the theory of growth of percolation clusters is considered in this

article.

The determination of quarantine zones during the spread of epidemics is based

on the multi-agent percolation model. It includes the formation of a lattice of

interaction between representatives of the population, modeling the spread of

the disease, collecting information about the population, implementing a par-

allel algorithm for multiple labeling of percolation clusters with a linking

technique for labels, visualizing the results.

The article describes a variant of the algorithm for multiple labeling of

Hoshen-Kopelman percolation clusters, improved for use on a multiprocessor

system, and the current prototype of its implementation developed at the JSCC

RAS - Branch of SRISA. The input to this algorithm is data in a format inde-

pendent of the application. Therefore, it can be used in any field as a tool for

differentiating large lattice clusters.

The article provides estimates of the execution time of the multiple labeling

algorithm for Hochen-Kopelman percolation clusters for various input param-

eters on the four main high-performance computing systems installed in the

JSCC RAS - Branch of SRISA.

Keywords: multi-agent simulation, theory of percolation, percolation’s clus-

ter, epidemics' distribution, high-performance computing systems.

1 Computer models of epidemic spread

The classical models of the spread of large-scale epidemics, based on integro-

differential equations, are completely deterministic. However, the nature of epidemic

processes is stochastic in nature. The process of development of these processes is

influenced by a whole range of random factors that determine the random nature of

the spread of the epidemic itself.

Models of computer simulation deserve special attention today, as they best meet

the characteristics of studying the behavior of complex processes and phenomena that

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0

International (CC BY 4.0).

Proceedings of the of the XXIII International Conference "Enterprise Engineering and Knowledge Management"

(EEKM 2020), Moscow, Russia, December 8-9, 2020.

accompany the formation, development, and spread of mass epidemics and pandem-

ics.

Simulation modeling refers to the development, execution on a computer of a

software system that reflects the behavior and structure of the simulated object, pro-

cess or phenomenon and the analysis of the results of computer experiments.

Simulation has significant advantages over analytical modeling when:

• relations between variables in the model are non-linear, and therefore analytical

models are difficult or impossible to build;

• the model contains stochastic components;

• to understand the behavior of the system, visualization of the dynamics of the

processes occurring in it is required;

• the model contains many parallel-functioning interacting components.

According to one of the classifications, simulation modeling includes four direc-

tions: modeling of dynamic systems, discrete-event modeling, system dynamics, and

agent modeling.

1.1 Agent-based approach to the development of simulation models of

epidemic spread and percolation theory

The agent approach in the development of simulation models is used in all cases

when it is the individual behavior of objects that is essential in the system, and the

integral characteristics and dynamics of the whole system are derived from these in-

dividual features. An agent is understood as a certain entity that has activity, autono-

mous behavior, can make decisions in accordance with certain rules, can interact with

the environment and other agents, and can also change (evolve). Agent models are

used to study decentralized systems, the dynamics of which are determined not by

global rules by laws, but rather, these global rules and laws are the results of individu-

al activity of an agent or group of agents. The purpose of the agent model is to get an

idea of these global rules, based on the assumptions about the individual, private be-

havior of its active objects and the interaction of these objects in the system.

The logic of agent behavior and their interaction can not always be expressed by

purely graphical means; here you often have to use program code.

When studying the behavior of complex systems, an abrupt and avalanche-like

change in the characteristics of the behavior of the system under the influence of

smooth changes in one or more basic parameters is often observed.

So, relatively small changes in the values of one or several parameters when study-

ing the spread of mass epidemics (for example, the probability of infection) can lead

to an abrupt change in the behavior of the entire system (a disease from a local stage

takes on a planetary scale).

On January 30, 2020, at a meeting of the World Health Organization (WHO)

Emergency Committee, the outbreak of the new Coronavirus was recognized as a

public health emergency of international concern. WHO therefore have made the

assessment that COVID-19 can be characterized as a pandemic.

As of September 21, 2020, 30 949 804 cases of infection worldwide,

959 116 deaths were confirmed [1]. In the USA - 6 703 698 cases of infection,

198 094 deaths, in the India - 5 487 580 cases, 87 882 deaths, in the Brazil -

4 528 240 cases, 136 532 deaths. In Europe, the majority of cases occurred in the

Russian Federation - 1 109 595 cases of infection, 19 489 deaths.

When analyzing the spread of Coronavirus disease 2019 (COVID-19) and the epi-

demics of past years, it is clearly seen that at some point an abrupt transition occurs in

the spread of the epidemic.

One of the interesting and effective tools for studying such situations is the method

of constructing and analyzing the growth of percolation clusters.

In the theory of percolation, a number of rigorous statements are proved that de-

scribe processes on virtual lattices. To implement applications of large-scale percola-

tion processes, the capabilities of modern supercomputer technologies are effectively

used. Which in turn requires the development of appropriate models of computer

simulation, including multi-agent [2-4], as well as specialized parallelization algo-

rithms [5-6].

Using the provisions of percolation theory a working prototype for the implemen-

tation of the Hoshen-Kopelman's cluster multiple labeling technique (CML technique)

[7] in C with the MPI library was developed at the JSCC RAS - Branch of SRISA. It

allows you to select connected subgraphs (clusters) of a graph (lattice), as well as to

find out which cluster a particular node of the lattice belongs to. The algorithm has

been adapted for use on a multiprocessor system. This version of the algorithm coin-

cides with the single-processor version with one exception: instead of passing through

the entire lattice, each processor activates the CML technique only on the assigned

group of nodes with the subsequent exchange of information between the processors.

The developed prototype was used to study the emergence and spread of large-

scale epidemics [8]. To form the analyzed lattice, publicly available demographic data

on the population of cities around the world and some assumptions about the intensity

and nature of the interaction between people were used. To obtain information on the

population of cities, an algorithm was developed for processing and analyzing popula-

tion density maps (implementation in the java). Maps were borrowed from Google

using the Google Maps API, and for the convenience of perceiving the results of sim-

ulation experiments, appropriate visualization tools were developed.

1.2 Schematic diagram of the prototype

The prototype of the implementation of the CML technique consists of the steps

shown in Fig. 1:

Fig. 1. Scheme of the prototype

Using the algorithm for collecting information about the population (MapManager

map analyzer), data on cities in the world is collected and stored in a database in the

format «city number, population, latitude, longitude».

The algorithm for generating a lattice of interaction between representatives of the

population (the graph builder GridBuilder) creates the original lattice (implementation

in java) and is stored in three files: the grid lattice and 2 edges1 and edges2 files, edg-

es. For each value of the input variable parameter of the probability of infection in

contact with the patient (parameter p = 0.01 -... 1.00 in increments of 0.01) of the

original lattice, the analyzed lattice is formed in the main memory.

Next, the graph of neighboring cities is divided into related subsets by the Hochen-

Kopelman algorithm (labeling Load clusters). For each analyzed lattice, the CML

algorithm is launched. The algorithm can be divided into 3 stages:

1. Initialization: the first process loads the lattice into RAM from a file, converts it

according to input parameters, distributes nodes into groups by processes and sends

them. Other processes are waiting for their group of nodes. Having received such a

group, processes distinguish from them a subgroup of externally connected nodes, i.e.

nodes associated with nodes from groups of other processes. For each node in its

group, initial label values are set in accordance with the absolute (within the entire

lattice) node number. Each process creates a group of external nodes associated with

the nodes of its group, and initializes them with labels of the connected nodes of its

group.

2. The operation of the algorithm itself. Each process launches the MMK algorithm

on its own group of nodes.

3. Exchange of information. It takes several steps until after the next exchange the

labels of the nodes of all processes cease to change. The exchange of information can

be divided into 3 stages: 1 - each process sends node label values from a subgroup of

externally connected nodes to those processes with which these nodes are associated.

2 - each process takes label values from processes that have nodes associated with

nodes of a given one. These values are assigned to node labels from a group of exter-

nal nodes. If at least one of the node labels from the external group has been changed,

then the process should repeat the exchange of information. All node labels of the

group equal to the replaced labels of the external group must also be replaced. 3 -

sending a message to the first process about whether or not this process should repeat

the exchange of information with other processes. The first process receives similar

information from all processes. If all processes do not need to be exchanged again, the

first process sends a signal to everyone else to complete the work of the entire algo-

rithm and begins the process of collecting data by the labels of their nodes. If at least

one process has sent a message that it needs to continue the exchange, all processes

will have to repeat the procedure for exchanging information.

As a result of labeling the clusters, an array of cluster labels was obtained (with in-

dices from 1 to 100).

The Load cluster labeling program was launched at the Joint Supercomputer Cen-

ter of the Russian Academy of Sciences - Branch of Federal State Institution «Scien-

tific Research Institute for System Analysis of the Russian Academy of Sciences» on

supercomputers with 48-304 processors. The average runtime of a program with an

input parameter p from 0.01 to 1 in increments of 0.01 with constant values of t = 1,

3, 5, 10, 15, 20, 25, 30 days was about 5-10 minutes for each value t.

The next stage is a simulation experiment with a specific city (cluster converter

GridTransformer). Visualization of the results obtained in the model is implemented

using Google Maps Api.

The city — the source of infection — is selected, the number of infected nodes in

this city was set, and for the data p and t, the calculated earlier array of cluster labels

was loaded. After determining the labels of infected nodes of the selected city, the

labels of all nodes from the loaded array are sequentially traversed, and if the label is

“potentially infected”, then the city in which the node with this label belongs is also

declared potentially infected. Thus, a list of potentially infected cities is formed. This

list is saved as java-script commands of the Google Maps API in an html file. De-

pending on the population, the infected city is marked with a red circle of a certain

size. To visualize the results, the html file is launched in the browser.

2 Simulation experiments on supercomputers

An important point in the work of the CML algorithm is the correct selection of the

number of processor cores on which the processing of the original lattice will be per-

formed.

During the operation of the algorithm, it is loaded into the RAM of the node and,

taking into account its large size, it would be logical to parallelize the process of its

processing into a large number of parts.

But on the other hand, during the operation of the algorithm, it is necessary to ex-

change data between the boundary cells of the parts of the original lattice. And if

there are too many such parts, then the data exchange time may exceed the allotted

time limit for processing the task.

When running the algorithm on a supercomputer, it is necessary to find a balance

between an increase in the number of requested computing cores and delays associat-

ed with the exchange of data between boundary cells.

2.1 Supercomputer Systems on which the simulation experiment was

conducted

To study the optimal number of requested processor cores to run the algorithm, the

Load cluster labeling program was launched in the JSCC with an input probability

parameter p from 0.01 to 1 in increments of 0.01 with constant model times t = 30

days on 48-304 processor cores on the following supercomputers: MVS -10P OP,

MVS-10P MP2, MVS-10P Tornado, MVS-100K.

MVS-10P OP is provided to users of the Center in the mode of collective access to

three sections: Haswell, Broadwell and Skylake:

• Haswell (42 computing modules based on Intel Xeon E5-2697 v3 processors, 128

GB of RAM per module, peak module performance is 1.1648 TFLOPS, 1176 cores in

a section);

• Broadwell (136 computing modules based on Intel Xeon E5-2697 v4 processors,

128 GB of RAM per module, peak module performance - 1.3312 TFLOPS, 4352

cores in a section);

• Skylake (58 computing modules based on Intel Xeon Gold 6154 processors, 192

GB of RAM per module, peak module performance is 3.456 TFLOPS, 2088 cores per

section).

Common to installations on the MVS-10P OP is the use of the Intel Omni-Path low

latency network as the communication medium.

MVS-10P MP2 KNL is a supercomputer of 38 computing modules based on Intel

Xeon Phi 7290 processors, 96 GB of RAM per module, peak module performance is

3.456 TFLOPS, 2736 cores in the system.

MVS-10P Tornado is a supercomputer of 207 computing modules, each module

has 2 Xeon E5-2690 processors, 64 GB of RAM, two Intel Xeon Phi 7110X copro-

cessors, peak module performance is 371.2 GFLOPS, 3312 cores in the system.

MVS-100K is a supercomputer of 110 computing modules based on Intel Xeon

E5450 processors, 8 GB of RAM per module, peak module performance is

96 GFLOPS, 880 cores in the system.

2.2 Analysis of the optimal choice of the number of processor cores

Figure 2 shows a graph of the load program operating time versus the number of

requested processor cores on various sections of the MVS-10P OP.

At MVS-10P OP, the average calculation time was:

• Haswell section - 360 sec;

• Broadwell section - 376 sec;

• Skylake section - 417 sec.

Minimum runtime:

• Haswell section - 322 sec on 128 cores;

• Broadwell section - 361 seconds on 208 cores;

• Skylake section - 371 sec on 128 cores.

Fig. 2. Calculation on sections MVS-10P OP

Figure 3 shows a graph of the load program operating time versus the number of

requested processor cores on MVS-10P MP2 KNL. The average calculation time was

1201 seconds (almost three times longer than on any of the MVS-10P OP sections),

the minimum launch time was 1172 seconds on 128 cores.

Fig. 3. Calculation on MVS-10P MP2 KNL

0

100

200

300

400

500

600

48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304

R
u

n
ti

m
e

, s
e

c

Cores

MVS-10P OP

MVS-10P OP Haswell MVS-10P OP Broadwell

MVS-10P OP Skylake

0

500

1000

1500

2000

48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304

R
u

n
ti

m
e

, s
e

c

Cores

MVS-10P MP2 KNL

MVS-10P MP2 KNL

Figure 4 shows a graph of the load program operating time versus the number of

requested processor cores on the MVS-10P Tornado. The average calculation time

was 263 seconds (approximately 25% less than on any of the MVS-10P OP sections),

the minimum launch time was 235 seconds on 160 cores.

Fig. 4. Calculation on MVS-10P Tornado

Figure 5 shows a graph of the load program operating time versus the number of

requested processor cores on the MVS-100K. The average calculation time was 570

seconds (approximately 50% more than in the MVS-10P OP sections), the minimum

launch time was 480 seconds on 128 cores.

Fig. 5. Calculation on MVS-100K

0

200

400

600

48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304

R
u

n
ti

m
e

, s
e

c

Cores

MVS-10P Tornado

MVS-10P Tornado

0

200

400

600

800

48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304

R
u

n
ti

m
e

, s
e

c

Cores

MVS-100K

MVS-100K

Figure 6 shows a summary graph of the load program operating time versus the

number of requested processor cores on the main systems of the MSC RAS. The min-

imum calculation time is shown by MVS-10P Tornado. For most supercomputers, the

minimum counting time is achieved using 128 - 208 cores.

Fig. 6. A summary graph of the calculation time versus the number of requested processor

cores

Acknowledgments

The work was done at the Joint Supercomputer Center of the Russian Academy of

Sciences within the framework of the state assignment on the topic «Research and

development of methods and means of organizing high-performance computing, cre-

ating, processing, storing and distributing big data and digital content in distributed

information and computing environments» (No. 0065-2019-0014) and in the frame-

work of the project of the Russian Fund for Fundamental Research «Simulating the

processes of spreading mass epidemics on high-performance supercomputer computer

systems» (No. 19-07-00861).

The calculations were performed on the high-performance computing systems

MVS-10P MP2 KNL, MVS-10P OP, MVS 10P Tornado, MVS-100K at JSCC RAS -

Branch of SRISA.

References

1. World Health Organization Homepage https://www.who.int/, last accessed 2020/09/22.

2. Kalihman, R., Shebeko, Yu. Modeling the growth of percolation clusters on computers

with a pronounced parallel architecture. Collection of scientific works of the Russian

0

500

1000

1500

2000

48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304

R
u

n
ti

m
e

, s
e

c

Cores

MVS-10P OP Haswell MVS-10P OP Broadwell

MVS-10P OP Skylake MVS-10P MP2 KNL

MVS-10P Tornado MVS-100K

https://www.who.int/

Academy of Sciences "Computational Technologies", Siberian Branch of the Russian

Academy of Sciences., vol.4, issue 10 (1995).

3. Kondratev, M., Ivanovskij, R., Cybalova, L. Application of an agent approach to simula-

tion modeling of the disease spread process. SPbU Scientific and Technical Bulletins. Sci-

ence and Education, vol. 2, issue 2(100), pp. 189-195 (2010).

4. Tarasevich, Yu. Percolation: theory, applications, algorithms. M. URSS 2002. 64 p.

(2002).

5. Utakaeva, I. Simulation of the spread of epidemics based on the agent approach. Scientific

journal KubGAU, vol. 121(07) (2016). http://ej.kubagro.ru/2016/07/pdf/85.pdf, last ac-

cessed 2020/03/11.

6. Klinov, M., Lapshina, S., Telegin, P., Shabanov, B. Features of the use of multi-core pro-

cessors in scientific computing. Bulletin of USATU, vol. 16, issue 6(51), pp. 25-31 (2012).

7. Lapshina, S. Parallel Cluster Multiple Labeling Technique. Lobachevskii Journal of Math-

ematics, vol. 40, issue 5, pp.555-561 (2019).

8. Lapshina, S. High-Performance Computations in Multi-agent Simulation Problems of Per-

colation Cluster’s Behavior. Lobachevskii Journal of mathematics, vol. 40, issue 3,

pp.341-348 (2019).

