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Abstract 
The information-oriented model is a multi-agent simulation model in which the integrated 

characteristics of information resources are the result of many local interacting individuals. The 

information-oriented approach in modeling involves the creation of simulation models that 

reproduce some criteria of information reliability and their local interaction for the built integrated 

models of many information resources. Information within this model is considered as a unique, 

discrete unit in which there is a set of characteristics that change with the introduction of the life 

cycle. 
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1. Introduction 

Building a model at the level of describing a particular information resource provides a number of 

advantages such as transparency about objective mechanisms, the ability to describe the object under 

study, with a high degree of detail, to obtain more useful information from the simulation results. 

Based on the information-oriented model, we obtain data that fully correspond to the usual state of 

the data in the information space. To this end, the level of threat is introduced into the model as a result 

of obtaining and perceiving data. That is, in this case, each cell contains a demand for data and some 

class of threat. Under the new rules, data is moved to a free cell, where the ratio (demand/threat class) 

is maximum. 

Later modifications of the information-oriented model consider different types of interactions 

between information, as well as other complications. This makes it possible to analyze a wider range of 

social processes and procedures. 

2. Information-Oriented Model Framework 

The following issues are investigated within the framework of the information-oriented model: 

 Distribution of the amount of information between the data. 

 Distribution of data by significance. 

 Data migration. 

 Introduction of new properties into the model, such as the demand/threat class ratio, and the 

corresponding modification of the rules. 

 Introduction of new properties of information, such as the impact of information on the 

individual. 
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 Change of rules of the emergence of new data. 

 Introduction of inheritance rules, for example, when the amount of information that loses 

demand is evenly distributed in the new information that has appeared. 

 Introduction of multiple units, such as demand. 

 Introduction of rules for the exchange of demand between information. 

Information-oriented modeling encompasses spatially distributed models in which each unit of 

information is associated with a specific position in space. Thus, the properties of the model 

significantly depend on its space-time scale. Models also differ in the amount of information 

considered. The scope of calculations directly depends on the scale of the problem [1, 2]. 

It should be noted that the information-oriented model requires more computation than the analytical 

one. However, in many areas, the development of an information-oriented model is justified due to the 

fact that: 

 Data of real observations of the studied parameters are often not enough to identify the 

analytical model. 

 It is necessary to take into account spatial aspects. 

 It is necessary to take into account the mechanisms of the information space. 

3. Main Part 

To assess the state of information in the information-oriented model, we use partial a priori 

statistical uncertainty. in which the law of distribution of components-evaluated and measured random 

processes is known to the nearest certain set of parameters. The parametric description must meet two 

sometimes conflicting requirements. At first, it must qualitatively and correctly reflect the limited a 

priori knowledge. At second, the number of parameters should not be too large. The increase in the 

number of parameters leads to a deterioration in the quality of the main task both due to the complexity 

of the technical implementation and due to the loss of input to be used to determine parameter values 

or to exclude unknown and unnecessary parameters. Thus, in the case of parametric a priori uncertainty, 

instead of a single probability distribution law for random processes, we define a whole class of 

distributions. The evaluation algorithm must select from a given class of distributions to ensure that the 

optimization criterion is met. This means that the estimation algorithm must be parametrically adaptive 

[3]. 

Under parametrically adaptive estimation algorithm we will understand such algorithm which on the 

basis of process of the measuring information is capable not only to give an estimation of necessary 

components of the random process, but also to restore statistical characteristics of the a priori 

description of the dynamic system. 

Consider the construction of a recurrent algorithm for estimating the information state vector хk and 

the constant correlation matrix R of measuring the impact of a sample of measurements of increasing 

volume Yk1 = {yi, i = ¯(1,k)} [4]. Consider the case when the linear model of the system and 

measurements are described by stochastic differential equations, and the measurement model includes 

the influence of vk in the form of a definition of Bkvk, where Вk is a time-dependent matrix. 

So, given: 

1. System model: 

𝑥𝑘+1 = 𝑎0(𝑘) + Ф(𝑘 + 1|𝑘)𝑥𝑘 + 𝑏(𝑘)𝑤𝑘 .                                              (1) 

2. Measurement model: 

𝑦𝑘 = 𝐴0(𝑘) + 𝐻𝑘𝑥𝑘 + 𝐵𝑘𝑣𝑘.                                                                                 (2) 
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3. A priori data:  

𝑤𝑘~𝑁(0; 𝑄𝑅); 𝑣𝑘~𝑁(0; 𝑅);                                                                     (3) 

where R is a const; QR is an unknown matrix; 𝑥0~𝑁(𝑥(0|0), 𝑃0; 

𝑐𝑜𝑣(𝑤𝑘 , 𝑤𝑗) 𝑐𝑜𝑣(𝑣𝑘 , 𝑣𝑗) = 𝑐𝑜𝑣(𝑥0, 𝑣𝑘) = 𝑐𝑜𝑣(𝑥0, 𝑤𝑘) = 0; 𝑘 ≠ 𝑗 

4. Optimization criterion is the maximum total density of the probability distribution of the 

estimated and measured parameters 

max 𝜋 (𝑥1
𝑘 , 𝑌1

𝑘|𝑅)                                                          (4) 

𝑋1
𝑘 , 𝑅                                                                                                                       

where 𝑋1
𝑘 = {𝑥𝑖, 𝑖 = 1, 𝑘. 

We first convert criterion (4) to an equivalent notation form. First of all, we note that since the 

natural logarithm is a monotonically increasing function of its argument, instead of (4) we can use an 

equivalent criterion. 

𝑚𝑎𝑥 ln 𝜋 (𝑋1
𝑘 , 𝑌1

𝑘|𝑅).                                       (5) 

𝑋1
𝑘 , 𝑅                                                                                                                        

Using the formula of total probability, the marking of the process (xk, yk), and the independence of 

measurements 𝑦𝑖 ∈ 𝑌1
𝑘 , 𝑖 = 1, 𝑘, we represent the community of density distribution 𝑋1

𝑘  і 𝑌1
𝑘 in two 

forms: 

ln 𝜋 (𝑋1
𝑘 , 𝑌1

𝑘|𝑅) = ln 𝜋 (𝑋1
𝑘−1, 𝑌1

𝑘−1|𝑅) + + ln 𝜋 (𝑥𝑘 , 𝑦𝑘|𝑋1
𝑘−1, 𝑌1

𝑘−1, 𝑅) ==

ln 𝜋 (𝑋1
𝑘−1, 𝑌1

𝑘−1, 𝑅) + + ln 𝜋 ( 𝑦𝑘|𝑥𝑘−1, 𝑦𝑘−1, 𝑅) + ln 𝜋 (𝑥𝑘|𝑥𝑘−1, 𝑦𝑘 , 𝑅) ;                                      (6) 

ln 𝜋 (𝑋1
𝑘 , 𝑌1

𝑘|𝑅) = ln 𝜋 (𝑋1
𝑘) + ln 𝜋 (𝑌1

𝑘|𝑋1
𝑘 , 𝑅) = ln 𝜋 (𝑋1

𝑘) + + ∑ ln 𝜋 (𝑦𝑖|𝑋1
𝑘 , 𝑅).𝑘

𝑖=1              (7) 

Given (6) and (7), we convert criterion (5) into a component: 

{

max
𝑥𝑘

ln 𝜋 (𝑥𝑘|𝑦𝑘, 𝑥(𝑘 − 1|𝑘 − 1), 𝑅𝑘 )̂

max
𝑅

∑ ln 𝜋 (𝑦𝑖|𝑋1
�̂� , 𝑅)                          

̂𝑘
𝑖=1

   

where 𝑋1
�̂� = {x (i | і), і = 1, 𝑘}, x (k | k) і 𝑅�̂� is the estimates xk and R, obtained from a sample of 

measurements 𝑌1
𝑘. 

The optimization for criteria (8) for the conditions that R = 𝑅�̂�, gives the usual Kalman-type 

(8)  

  

(9)  
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extrapolation and filtering algorithms. 

Let us now turn to the optimization for criterion (9). Let us first imagine ln 𝜋 (𝑦𝑖| 𝑋1
𝑘 ,̂ 𝑅) explicitly. 

To do this, we note that due to the linearity of the transformation 𝐵𝑖𝑣𝑖 and condition (3) 

𝐵𝑖𝑣𝑖~𝑁(0, 𝐵𝑖𝑅𝐵𝑖
𝜏).                                                                     (10) 

It follows from relation (2) 

𝐵𝑖𝑣𝑖 = 𝑦𝑖 − 𝐻𝑖𝑥𝑖 − 𝐴0(𝑖)                                           (11) 

and transformation from the variables 𝐵𝑖𝑣𝑖 to the variables 𝑦𝑖 is equal to one, so, given (10) and (11), 

we can write 

𝐽(𝑅) = ∑ ln 𝜋 (𝑦𝑖| 𝑋1
𝑘 ,̂ 𝑅) = −(𝑘𝑚/2) ln 2�̃� +

1

2
∑ ln |(𝐵𝑖𝑅𝐵𝑖

𝜏)−1 −   −1/𝑘
𝑖=1

𝑘
𝑖=1

2 ∑ 𝑣𝑖
𝜏 (𝑘

𝑖=1 (𝐵𝑖𝑅𝐵𝑖
𝜏)−1𝑣𝑖,                                                                                            (12) 

where 𝑣𝑖 = 𝑦𝑖 − 𝐻𝑖𝑥(𝑖|𝑖 − 1) − 𝐴0(𝑖);  �̃� = 3,1415 …. 

Using the definition and properties of a pseudo-inverse matrix [5], the following transformations 

should be performed: 

(𝐵𝑖𝑅𝐵𝑖
𝜏)−1 = 𝐵𝑖𝐵𝑖 + (𝐵𝑖𝑅𝐵𝑖

𝜏) + (𝐵𝑖
𝜏) + 𝐵𝑖

𝜏 = 𝐵𝑖[(𝐵𝑖
𝜏𝐵𝑖) × 𝑅(𝐵𝑖

𝜏𝐵𝑖) + 𝐵𝑖
𝜏 ==

𝐵𝑖(𝐵𝑖
𝜏𝐵𝑖)−1𝑅−1(𝐵𝑖

𝜏𝐵𝑖)−1𝐵𝑖
𝜏.                                                               (13) 

Also, note that 

|(𝐵𝑖𝑅𝐵𝑖
𝜏)−1| = |𝐵𝑖𝑅𝐵𝑖

𝜏|−1                                           (14) 

Substituting (13) and (14) into (12), we obtain 

𝐽(𝑅) = − (
𝑘𝑚

2
) ln 2�̃� − 1/2 ∑ ln|𝐵𝑖𝑅𝐵𝑖

𝜏| − 1/ 2 ∑ 𝑣𝑖
𝜏𝐵𝑖

𝑘
𝑖=1

𝑘
𝑖=1 (𝐵𝑖

𝜏𝐵𝑖)−1𝑅−1(𝐵𝑖
𝜏𝐵𝑖)−1𝐵𝑖

𝜏𝑣𝑖    (15) 

The necessary condition for the extremum of the functional (15) is described by equation 

𝑑𝐽(𝑅)

𝑑𝑅
|

𝑅=𝑅�̂�
= 0 

which can be given an explicit look: 

−𝑘 (𝑅�̂�
−1

)
𝜏

+ (𝑅�̂�
−1

(∑ (𝐵𝑖
𝜏𝐵𝑖)−1𝐵𝑖

𝜏𝑣𝑖𝑣𝑖
𝜏𝑘

𝑖=1 𝐵𝑖(𝐵𝑖
𝜏𝐵𝑖)−1)𝑅�̂�

−1
)

𝜏
= 0                                        (16) 

Transporting (16) and multiplying it left and right by 𝑅�̂�, we obtain  

𝑅�̂� =
1

𝑘
∑ (𝐵𝑖

𝜏𝐵𝑖)−1𝐵𝑖
𝜏𝑣𝑖𝑣𝑖

𝜏𝑘
𝑖=1 𝐵𝑖(𝐵𝑖

𝜏𝐵𝑖)−1.                                        (17) 



 

276 

Write (17) in the form 

𝑅�̂� =
1

𝑘
(𝐵𝑘

𝜏𝐵𝑘)−1𝐵𝑘
𝜏𝑣𝑘𝑣𝑘

𝜏𝐵𝑘(𝐵𝑘
𝜏𝐵𝑘) + +

𝑘−1

𝑘

1

𝑘−1
∑ (𝐵𝑖

𝜏𝐵𝑖)−1𝑘−1
𝑖=1 𝐵𝑖

𝜏𝑣𝑖𝑣𝑖
𝜏𝐵𝑖(𝐵𝑖

𝜏𝐵𝑖)−1           (18) 

4. Conclusions 

The study of this algorithm using software and hardware allows identifying of some features. If the 

diagonal elements (Rk) is in the range 𝑅�̂� ≤ (R) ≤〖15R〗, i = (1,m) (R is a true correlation matrix of 

measurements). Then the estimate х (k | k) is not very sensitive to changes in the elements of the matrix 

Ck. If (Rk)  < R, then this can lead to large errors in estimating x (k | k) due to the deterioration of the 

conditionality of the matrix Ck. To improve the operation of the algorithm, it is advisable to use an 

iterative procedure for calculating the matrix Rk. It is enough to perform three iterations when 

calculating the estimate of the matrix Rk, so that the estimate (Rk) almost stopped changing. 
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