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Abstract 
The intersection of Commutative and Multivariate cryptography contains studies of 

cryptographic applications of subsemigroups an90d subgroups of affine Cremona semigroups 

defined over finite commutative ring K with the unity. We consider special subsemigroups in 

a semigroup of all endomorphisms of K[x1, x2, …, xn] which preserve the variety (K*)n. 

Efficiently computed homomorphisms between such subsemigroups can be used in Post 

Quantum key exchange protocols and their inverse versions when correspondents elaborate 

mutually inverse transformations of (K*)n. The security of these schemes is based on the 

complexity of the decomposition problem for an element of a semigroup into a product of 

given generators. We suggest two public key cryptosystems for which security rests on the 

complexity of the problem to compute the inverse of a given semigroup element. The usage 

of the protocols allows converting these encryption schemes into new cryptosystems which 

are not public keys and have some similarity with El Gamal cryptosystem. New protocols can 

be used for the Post Quantum key exchange for one-time pad encryption. 
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Noncommutative cryptography, multivariate cryptography, key exchange protocol, inverse 
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1. Post Quantum, Multivariate, and Noncommutative Cryptography 

Post Quantum Cryptography (PQC) is an answer to a threat coming from a full-scale quantum 

computer able to execute Shor’s algorithm. With this algorithm implemented on a quantum computer, 

currently used public-key schemes, such as RSA and elliptic curve cryptosystems, are no longer 

secure. The U.S. NIST made a step toward mitigating the risk of quantum attacks by announcing the 

PQC standardization process [1]. In March 2019, NIST published a list of candidates qualified for the 

second round of the standardization process. Few public key candidates are implemented, like 

candidate called Round 5 [2] or the classic McEliece algorithm [3]. In July 2020 the third round was 

started, only rainbow-like oil and vinegar digital signatures are among selected algorithms of 

multivariate cryptography. They use nonbijective quadratic maps of affine space and can not be used 

as encryption algorithms. The outcome of the NIST competition stimulates innovative research on 

studies of cryptographical applications of multivariate maps of unbounded degree and studies of 

multivariate cryptosystems which are not public keys. 

In this publication, we continue to develop new cryptosystems within an alternative approach [4–

6] to public-key cryptography based on the idea of modified Diffie-Hellman type protocol which 

output is a pair of mutually inverse multivariate transformations of affine space Kn defined over finite 

commutative ring K. Security of these algorithms rests on the complexity of word problem to 

decompose given multivariate map into generators of affine Cremona [7] semigroup. The first usage 

of the complexity of word problems for groups was considered in [8]. 
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In the inverse protocols considered in this paper, the encryption rule is not given publicly. We 

introduce new cryptosystems defined in terms of semigroups of transformations of affine space Kn 

which consist of transformations moving variable to a single monomial term. 

One of the directions of PQC is multivariate cryptography [9] which uses polynomial maps of 

affine space K n defined over a finite commutative ring into itself as encryption tools. It exploits the 

complexity of finding a solution to a system of nonlinear equations from many variables. Multivariate 

cryptography uses as encryption tools nonlinear polynomial transformations of kind x1→f1(x1, 

x2,…,xn), x2→f2(x1, x2,…,xn), …, xn→fn(x1, x2,…,xn) transforming affine space Kn, where fi ϵ K[x1, 

x2,…,xn], i=1,2,…,n are multivariate polynomials usually given in the standard form, i. e. via a list of 

monomials in a chosen order. 

We are going to present new crypto algorithms in the area of the intersection of multivariate 

cryptography and non-commutative cryptography which appeared with attempts to apply 

combinatorial group theory to information security. 

If G is a noncommutative group then correspondents can use conjugations of elements involved in 

the protocol, some algorithms of this kind were suggested in [10–13], where group G is given with the 

usage of generators and relations. Security of such algorithms is connected to Conjugacy Search 

Problem (CSP) and Power Conjugacy Search Problem (PCSP), which combine CSP and Discrete 

Logarithm Problem and their generalizations. 

The extension of group-based cryptography is essentially wider direction of Non-commutative 

cryptography which is an active area of cryptology, where the cryptographic primitives and systems 

are based on algebraic structures like groups, semigroups, and noncommutative rings [14–18, 20, 21]. 

This direction of security research has very rapid development [22, 23] and further references in these 

publications). One of the earliest applications of a non-commutative algebraic structure for 

cryptographic purposes was the usage of braid groups to develop cryptographic protocols. Later 

several other non-commutative structures like Thompson groups and Grigorchuk groups have been 

identified as potential candidates for cryptographic post-quantum applications. The standard way of 

presentations of groups and semigroups is the usage of generators and relations (combinatorial group 

theory). This direction must be well supported by cryptanalytic research [29–33] Semigroup-based 

cryptography consists of general cryptographical schemes defined in terms of wide classes of 

semigroups and their implementations for chosen semigroup families (so-called platform 

semigroups). 

Papers [4], [5], and [6] contain some modifications of the Diffie-Hellman protocol when G is 

given as a subgroup of affine Cremona semigroup S(Kn) over finite commutative ring K of all 

polynomial transformations. These papers use the assumption that each element is given in its 

standard form of multivariate cryptography. To use semigroup operation one has to compute the 

composition of transformations. This was an attempt to combine methods of non-commutative 

cryptography and multivariate cryptography. 

Paper [4] suggests some usage of homomorphisms of subsemigroups of affine Cremona groups for 

protocols and cryptosystems which are not generalizations of the Diffie-Hellman algorithm and its El 

Gamal type modifications. Some examples are given there. The implementations of these schemes 

with an evaluation of densities of involved polynomial transformations are described in [6]. Elements 

of graph-based stable subgroups used in [6] can serve as encryption tools of stream ciphers (see [25] 

and further references). 

The current paper aims to apply formal schemes of [4] to the case of transformations of variety 

(K*)n, where K* is a multiplicative group of commutative ring K with unity such that |K*| >1. Natural 

examples of such rings are K=Zm and K=Fq where m>2, q>2.  

We present the new post-quantum key exchange protocols and cryptosystems of El Gamal type of 

non-commutative cryptography which uses homomorphisms of two semigroups acting on (K*)n (3.1-

3.4), some straightforward algorithms without the usage of homomorphisms are given in [26]. We 

hope that some of the presented algorithms will be used in the post-quantum future. 
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2. On Eulerian Semigroup and Hard Computational Problem 

Let K be a finite commutative ring with the unit such that multiplicative group K* of regular 

elements of the ring contains at least 2 elemments. We take Cartesian power nE(K) =(K*)n and 

consider an Eulerian semigroup nES(K) of transformations of kind  

x1 → ϻ1x1 
a(1,1) x2 

a(1,2) … xm a(1,n),  

x2 → ϻ2x1 
a(2,1) x2 

a(2,2) … xm a(2,n),    (1) 

…  

xm →ϻnx1 
a(n,1) x2 

a(n,2) … xm a(n,n), 

where a(i,j) are elements of arithmetic ring Zd, d=|K*|, ϻiϵK*. 

Let nEG(K) stand for the Eulerian group of invertible transformations from nES(K). Simple 

example of an element from nEG(K) is a written above transformation where a(i,j)=1 for i ≠ j or 

i=j=1, and a(j,j)=2 for j ≥2. It is easy to see that the group of monomial linear transformations Mn is a 

subgroup of nEG(K). So semigroup nES(K) is a highly non-commutative algebraic system. Each 

element from nES(K) can be considered as a transformation of a free module Kn. 

Let π and δ be two permutations on the set {1,2,..., n}. Let us consider a transformation of (K*)n, 

K=Zm or K= Fq and d =|K*|. We define transformation AJG(π, δ), where A is a triangular matrix with 

positive integer entries 0≤a(i,j)≤d, i≥d defined by the following closed formula. 

yπ(1)=ϻ1xδ(1)
a(1,1)

 

yπ(2)= ϻ2xδ(1)
a(2,1) xδ(2)

a(2,2)
  

… 

yπ(n)= ϻnxδ(1)
a(n,1) xδ(2)

a(n,2)
 …xδ(n)

a(n,n)
 

where (a(1,1),d)=1, (a(2,2),d)=1,…,( a(n,n),d)=1. 

We refer to AJG(π, δ) as Jordan - Gauss multiplicative transformation or simply JG element. It is 

an invertible element of nES(K) with the inverse of kind BJG(δ, π) such that a(i,i)b(i,i)=1 (mod d). 

Notice that in the case K=Zm straightforward process of computation the inverse of JG element is 

connected with the factorization problem of integer m. If n=1 and m are a product of two large primes 

p and q the complexity of the problem is used in RSA public key algorithm. The idea to use the 

composition of JG elements or their generalizations with injective maps of Kn into Kn was used in [27] 

(K=Zm) and [28] (K=Fq). 
We say that   is a tame Eulerian element over Zm or Fq. if it is a composition of several Jordan 

Gauss multiplicative maps over commutative ring or field respectively. It is clear that  sends variable 

xi to a certain monomial term. The decomposition of  into product of Jordan Gauss transformation 

allows us to find the solution of equations bx )( for x from 
n

mZ )( *
 or (F*q)

m. So tame Eulerian 

transformations over Zm or Fq. are special elements of nEG(Zm) or nEG(Fq) respectively. 

We refer to elements of nES(K) as multiplicative Cremona elements. Assume that the order of K is 

a constant. As it follows from the definition the computation of the value of element from nES(K) on 

the given element of Kn is estimated by O(n2). The product of two multiplicative Cremona elements 

can be computed in time O(n4). 

We are not discussing here the complexity of computing the inverse for general element gϵ nEG(K) 

on Turing machine or Quantum computer and the problem of finding the inverse for computationally 

tame Eulerian elements. 

Remark 2.1. Let G be a subgroup of nEG(K) generated by Jordan-Gauss elements g1, g2, …, gt. The 

word problem of finding the decomposition of gϵG into the product of generator gi is difficult, i. e. 

polynomial algorithms to solve it with Turing machine or Quantum Computer is unknown. If the 

word problem is solved and the inverses of gi are computable then the inverse of g is determined. 

Notice that if n=1, K=Zm, m=pq where p and q are large primes and G is generated by g1=ϻg1
a the 

problem is unsolvable with the Turing machine but it can be solved with Quantum Computer. 

Each element of the semigroup nES(K) is written in the chosen basis e1, e2,…, en. Let J={i(1), 

i(2),…, i(k)} be a subset of {1,2,..,n} and WJ= <ei(1), ei(2),…, ei(k)> be a corresponding symplectic 

subspace . We refer to totality nPJ (K) of maps F ϵ nES(K) preserving WJ as parabolic semigroup of 

nES(K) . The map F from nPJ (K) transforms tuple (xi(1), xi(2), …, xi(n)) accordingly to the rule xi(1) 

→ϻi(1) xi(1)
a(1,1) xi(2)

a(1,2)… xi(k)
a(1,k), xi(2) →ϻi(2) xi(1)

a(2,1) xi(2)
a(2,2)… xi(k)

a(2,k),…, xi(k) →ϻi(k) xi(1)
a(k,1) 

xi(2)
a(k,2)… xi(k)

a(2,k). 
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Let πJ be the restriction of element F from nPJ(K) onto WJ. The map πJ defines the canonical 

homomorphism of nPJ(K) onto kES(K). If Q is an extension of K we can consider semigroup nPJ,K(Q) 

of maps from nES(Q) transforming (xi(1), xi(2), …, xi(n)) accordingly to written above rule. The 

restriction of map Fϵ nPJ,K(Q) on WJ defines homomorphism πJ,K from nPJ,K(Q) onto kES(K). 

3. Protocols and Cryptosystems in Terms of Semigroup nES(K) 

Let us consider some protocols and cryptosystems based on the idea of a hidden canonical 

homomorphism. Notice that if commutative ring K’ is an extension of K then embedding of K into K’ 

defines canonical embedding of nES(K) into nES(K’). Let nJG(K) stand for the totality of all Jordan-

Gauss transformations from nES(K). 

 

3.1 Tahoma Protocol 
Alice takes finite extensions Q and R of Kϵ{Zm., Fq} and J of cardinality k and consider a zigzag 

diagram  
nPJ,K (Q) → nES(Q) 

↓ 
kES(R) ← kES (K) 

The horizontal arrows correspond to embeddings of semigroups, vertical arrow corresponds to 

πJ,K.. Alice takes elements h1, h2, …, hs from kES(K) and creates elements ext(hi) from their 

πJ,K.reimages via adding the rules xj → ϻjx1 
a(j,1) x2 

a(j,2) … xn 
a(j,n) where ϻjϵ Q* and j is not an element 

of J. She selects set S= {g1, g2, …, gt} of Jordan-Gauss elements gi, i=1,2, …,t in nES(Q) and word in 

alphabet S to form tame element w of subgroup G =<S> of nES(Q) together with w-1. Similarly Alice 

takes Jordan-Gauss generators S’={u1, u2, …, ur} in kES(R), selects word in alphabet S’ and forms 

tame element u ϵ <S’> and its inverse u-1. She forms pairs (ai =w-1ext(hi)w, bi =u-1(hi)u), i=1, 2,…,s 

and sends them to Bob. He takes formal alphabet Z={z1, z2, …, zs} and writes word wB=v(z1, z2, …, 

zs) in Z of length d, d>s and computes specialization zi=ai and zi=bi and takes resulting elements 

a=v(a1, a2, …, as)ϵ
 nES(Q) and b=v(b1, b2, …, bs)ϵ

 kES(R) respectively. Bob keeps b for himself and 

sends a to Alice. 

Alice computes 1a=wa w-1. She takes 2a=πJ,K.(
1a) and obtains collision element b as u- 1(2a)u. 

 

3.2. Inverse Tahoma Protocol 
As in the previous protocol, Alice works with the presented above zigzag diagram. She selects sets 

of Jordan - Gauss generators S in nES(Q) and S’ in kES(R) to construct pairs of tame elements w, w-1 

and u, u-1. Now she takes set 1S of Jordan Gauss elements over R from kES(K)∩kJG(R) and forms 

elements h1, h2, …, hs from <1S > and their inverses h1
-1 h2

-1, …, hs
-1 in kEG(R). Notice that elements 

hi
-1, i=1,2,…,s are elements of kES(K) and larger semigroups kES(R) and kES(Q). 

Alice forms ext(hi) in nES(Q). In the new algorithm she computes pairs (ai =w-1ext(hi)w, bi =u-1(hi
-

1)u), i=1, 2,…,s and sends them to Bob. He takes formal alphabet Z={z1, z2, …, zs} and writes word 

wB=v(z1, z2, …, zs)=(u1, u2, …, ud) in Z of length d, d>s together with the reverse word Rev(wB)=(ud, 

ud-1, …, u1 ). Bob computes the specialization zi=ai of word wB and zi=bi of word Rev(wB) and takes 

resulting elements a=v(a1, a2, …, as)ϵ
 nES(Q) and b=v(b1, b2, …, bs)ϵ

 kES(R) respectively. Notice that 

bϵ kEG(R). He sends a to Alice and keeps b for himself. Alice computes 1a=wa w-1. She takes 2a=πJ,K.(
 

1a) and obtains element b-1 as u- 1( 2a)u. 

Remark. Alice and Bob can securely communicate in the following way. Alice writes a message 

as a string of characters (p1, p2, …, pk) in alphabet R* encrypts it by application of b-1. Bob decrypts it 

with his transformation b. 

Similarly, Bob uses b for the encryption of his message from the plain space (R*)k and Alice 

decrypts it with b-1. 

 

3.3. Group Enveloped Diffie-Hellman Key Exchange Protocol 
As in the inverse protocol of the previous unit Alice works with the presented above zigzag 

diagram. She selects sets. For simplicity assume that Q=K=R. Alice selects sets of Jordan - Gauss 
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generators S in nES(K) and S’ in kES(K) to construct pairs of tame elements w, w-1 and u, u-1. Now she 

takes set 1S of Jordan Gauss elements over K from kES(K) and forms elements h1, h2, …, hs from <1S > 

and their inverses h1
-1 h2 

-1, …, hs
-1 in kEG(K). Alice takes gϵ kES(K) and positive integer parameter kA. 

Alice creates elements ext(hi), ext( hi
-1) and ext(g) from their πJ .reimages via adding the rules xj → 

ϻjx1 
a(j,1) x2 

a(j,2) … xn 
a(j,n) where ϻjϵ K* and j is not an element of J. She forms pairs (ai =w-1ext(hi)w, bi 

=u-1(hi) u), i=1, 2,…,s and sends them to Bob together with pairs (ai
-1, bi

-1), gA = u-1gl u, l= kA and 

g’=w-1ext(g)w. 

Bob takes formal alphabet Z={z1, z2, …, zs} and writes word wB=v(z1, z2, …, zs)= (u1, u2, …, ud) in 

Z of length d, d>s together with the reverse word Rev(wB)=(ud, ud-1, …, u1). Bob computes the 

specialization zi=ai of word wB and zi = ai
-1 of Rev(wB) and writes resulting elements a and a-1 from 

nES(K). Similarly, he creates b and b-1 via specialization zi=bi of wB and specialization and zi=bi 
-1 of 

word Rev(wB) in the group kEG(K) respectively. Bob takes his natural integer kB. He computes Bg=a-1 

gda, d=kB and sends it to Alice, and keeps the collision map c=b-1gA 
db, d=kB. Alice computes the 

collision map as u-1(πJ (w
 Bg w-1)) l u, l= kA. 

Remark 3.1. The adversary has to decompose Bg into ai and g’. After that he/she has to substitute 

gA instead of g’ and bi instead of ai. 

 

3.4. The Inverse Version of Group Enveloped Diffie-Hellman Key Exchange 
Protocol 

Assume that K=R=Q and Alice works with the simplified zigzag diagram kES(R)= kES(K). She 

forms the same data as in the case of 3.4 but gϵkES(K) has to be invertible. So Alice takes an 

additional set 2S of Jordan-Gauss elements from kEG(K) and forms pair of kind (g, g-1), gϵ<2S>. She 

sends Bob pairs (ai
-1, bi

-1), gA = u-1gl u, l= kA and g*=w-1ext(g-1)w instead of g’ of 3.4. 

Bob uses a word in the alphabet of formal variables and generates elements a and a-1 from nEG(K) 

and b, b-1 ϵ kEG(K) in the same way with the case of 3.4 and takes his natural integer kB. Now he 

computes Bg=a-1 g*da, d=kB and sends it to Alice and keeps the map f=b-1gA 
db, d=kB. Alice computes 

the inverse map for f as u-1(πJ (w
 Bg w-1)) l u, l= kA. 

Remark 3.2. Alice and Bob have bijective transformations f and f-1 of the variety (K*) k. So they 

can exchange messages written in the alphabet. 

4. New Cryptosystems related to the Semigroup of Eulerian Transformations 
and Their Transition into Private Mode 

Algorithm 4.1. Let us assume that K is a finite commutative group with unity with nontrivial 

group K*. Several Jordan - Gauss transformations J1, J2, …, Js from EGn(K) of kind 

x1 → b1x1
a(1,1) 

 

x2 → b2x1
a(2,1)x2

 a(2,2)  

... 

xn →bnx1
 a(n,1)x2

 a(n,2) … xn
 a(n,n), 

where a(i, j)ϵ Zm, m=|K*|, (a(i,i), m)=1 are selected by Alice. She can select s+1 monomial bijective 

affine transformations 1T, 2T, ..., s+1 T from AGLn(K) and use 

G=1T J1
 2T J2

 3T J3
 … sT Js 

s+1T.    (2) 

Noteworthy that the knowledge of decomposition (2) allows her to find the inverse of G via 

straightforward algorithms of computing inverses of Ji and jT. Alice computes G in its standard form 

and sends it to Bob. Correspondents use (K*)n as plain space and cipher space. 

Bob writes plain space (p)=(p1, p2, …, pn) computes the ciphertext G((p)), and sends it to Alice. 

She decrypts because of her knowledge of decomposition (1). 

Algorithm 4.2. Correspondents use plain space Mn(Zm) of square matrices (a(i,j)), i=1,2,…,n, 

j=1,2,…,n of size n over arithmetic ring Zm of residues modulo m=|K*|. Cipherspace is formed by 

elements of nES(K). 

Alice chooses invertible transformations B and C of kind (1) formed via selected decompositions 

of kind 2. She sends standard forms of B and C to Bob. 
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Bob writes his message in the alphabet Zm in the form of matrix A=(a(i,j)) and pseudo-random 

parameters μi, i=1,2,…, n to write transformation G written as (1). Bob computes the composition 

D=BAC and sends it to Alice. She computes B-1DC-1 and gets plaintext A. 

Remark 4.1. We can generalize the algorithm via the selection of μi, i=1,2,…, n from K-{0}.  

5. Symbiotic Combination of Protocols with One-Time Pads 

Noteworthy that cryptosystem 3.1 and 3.3 can be combined with a one-time pad similar to the 

classical combination of Diffie-Hellman key exchange protocol and absolutely secure encryption in 

the sense of C. Shannon. 

Let us consider the case K=Zm, m=2r . Group Z*m is formed by all odd residues r(j)=2j+1, j=0, 1, 

…, 2(2 r-2)+1. 

Let j be a residue of Zm’
, m’=2 r-1. The map π(r(j))=j is a bijection of (Z*)m onto Z m’. 

So correspondents use protocol 3.1 or 3.3. So they are elaborate collision element G of nES(K) in 

the form (I). The change μi for π(μi)=a i allows us to identify G with the password tuple (a)= (a1, 

a(1,1), a(1,2),…, a(1,n), a2, a(2,1), …, a(2,n),….,an, a(n,1), a(n,2),…, a(n,n)) from (Z m’)
n(n+1)=V. So 

correspondents can use V as plainspace, Bob writes plaintext ((p1, p(1,1), p(1,2),…, p(1,n), p2, p(2,1), 

…, p(2,n),….,pn, p(n,1), p(n,2),…, p(n,n)) and add password tuple (a) to form ciphertext ((p1 + a1, 

p(1,1)+ a(1,1), p(1,2)+a(2,2),…, p(1,n)+a(1,n), p2+a1, p(2,1)+a(2,1), …, p(2,n)+a(2,n),…,pn + an, 

p(n,1)+a(n,1), p(n,2)+a(n,2),…, p(n,n)+a(n,n)). 

Thus we can use m=28, m’=27 and encrypt files with extension .txt. or use m=29, m’=28 to encrypt 

various files in the binary alphabet. We use pairs (233, 232) and (265, 264) to work with numerical data 

in popular alphabets of residues modulo 232 or 264. 

We can use prime field F257 to work with binary files. F* 257 is a cyclic group of order 256. So 

correspondents use nES(F257). Let us consider bijection π between F* 257 and Z 256 given by rule π(x 

mod 257) =x-1 mod 256. Then we can identify G with the element of (Z256)
 t, t=n(n+1) and use 

described above combination of the protocols and one-time pad based on the group (Z 256, +). 

Similarly, they can use next Fermat’s prime number 216+1=65537. They conduct the protocol in 
nES(F65537) and work with a one-time pad with alphabet Zq, q=216. Correspondents could not use the 

next two Fermat numbers 232+1 and 264+1 because they are composite integers (the smallest one has 

prime factors 641 and 6708417). 

Correspondents can work with nES(F3), use π(x mod 3)=x-1 mod 2, and encrypt tuples over F2. 

Alternatively, they can use protocols defined for nES(F4) to work with classical one-time pads over F2. 

Another option is the usage of finite fields of characteristic two and works with nES(Fq), q=2m. In this 

case order of Fq is Mersenne number 2m-1. We can identify element of F*q of kind am-1x
m-1

 + am-2x
m-2

 

+..+ a1x + a0 with (am-12
m-1

 + am-22
m-2

 +..+ a12 +a0)-1 of Zd, d=2m -1 and work with one time pad over 

the additive group of this ring. These one time pads are especially attractive in the case of Mersenne 

primes 2m -1 ( for m=2,3,7,13, 17,19, 31, 61, 89,107, 127,…). 

Remark 5.1. We can easily switch from one time pad over (Zq,+) and (Fq,+), q=2r which 

isomorphic to additive subgroup of vector space (F2)
 r . The natural bijection π is the map sending ar-

1x
r-1+ar-2x

r-2+ +a1x+…+ a0 from Fq to ar-12
r-1+ar-22

r-2+ +a12+…+ a0 (mod 2r).  

Remark 5.2. Correspondents can use inverse protocols 3.2 and 3.4. to get keys for one-time pad 

encryption. If Alice gets H and Bob receives Hr-1. Then Alice can generate “pseudorandom G” and 

sends HG (or HGH) to Bob and he restores G. 

6. Conversion of Algorithm 4.1 to Cryptosystem of El Gamal Type 

Option 1. Correspondents use one of the protocols 3.1 and 3.3 based on the semigroup nES(K), and 

described above homomorphism of m(n)ES(K), where m(n) some linear expression in variable n such 

that m(n)>n. Recall that the security of these protocols rests on the complexity of word problems in 

the semigroup. 

So they elaborate the collision element H ϵ nES(K) written in the form xi→hi(x1, x2,…,xn), 

i=1,2,…,n where hi are monomial terms from K[x1, x2,…, xn]. 

Alice creates map G of Algorithm 4.1 via decomposition of kind (2) written as 
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xi →gi(x1, x2, …, xn). She sends the tuple (h1g1, h2g2,…, hngn) with all components written in standard 

form to Bob. He restores g1, i=1,2,…,n and correspondents start algorithm 4.1. 

Option 2. Correspondents use homomorphism of m(n)ES(K) onto mEG(K). They use protocol 4.2. 

and elaborate mutually inverse transformations G-1 (in the possession of Alice) and G (on the Bob 

side). So Bob uses G for the encryption of the plaintext (p) and Alice uses her G-1 to decrypt. 

Option 3. Alice selects expression G’=1T J1
 2T J2

 3T J3
 … sT Js 

s+1T. She sends F= G-1 G’ (or G-1 

G’G-1). Bob computes G’ as GF (or GFG). He uses G’ as an encryption tool. Alice uses her 

knowledge on the decomposition of kind (2) and decrypts. 

Remark 6.1. Adversaries can use some cyber-terrorist tools to get more than n pairs of kind 

(plaintext (pi), corresponding ciphertext (ci)). It allows him to start the investigation of equations 

G(pi)=ci, i=1,2,…,t, t>n for the approximation of G (or G’). Noteworthy that the polynomial 

algorithm for solving this approximation problem is unknown. 

Remark 6.2. Noteworthy that correspondents can restrict the number of exchanged messages by 

[n/2]. This restriction does not allow an adversary to collect sufficient data for the approximation 

process. When the number of Bob’s messages rich [n/2] correspondents they start a new protocol of 

kind 4.1 to establish a new encryption rule for Bob. 

Noteworthy that in the presented schemes correspondents can use protocol 3.3 instead of 3.1 and 

protocol 3.4 instead of 3.2. 

7. Conversion of Algorithm 4.2 to a Cryptosystem of El Gamal Type 

Option 1. Correspondents use twice data for protocols of kind 3.1 or 3.3 based on the semigroup 
nES(K), and described above homomorphism of m(n)ES(K), where m(n) some linear expression in 

variable n such that m(n)>n. 

So correspondents elaborate two collision elements H and H’ from nES(K) written in the form 

xi→hi(x1, x2,…,xi) and xi→h’i(x1, x2,…,xi) i=1,2,…,n where hi, h’i, are monomial terms from K[x1, x2,…, 

xn]. Alice uses different sequences of Jordan-Gauss elements and different sequences of linear 

monomial transformations to construct two bijective transformations B and C from nEG(K) in their 

standard forms xi→bi(x1, x2,…,xi) and xi→ci(x1, x2,…,xi) together with their decompositions of kind 

(2). So she computes B-1 and C-1 presented in their standard forms together with corresponding 

decompositions. Alice sends tuples (h1b1, h2b2, …, hnbn) and (h’1c1, h’2c’2, …, h’nb’n) to Bob. He 

restores transformations B and C and uses Algorithm 4.2 with these data. 

All suggested algorithms were implemented in the case of finite fields K=Fq and arithmetic rings 

Zq, q=28, 216, 232. 

Remark 7.1. Adversary has to intercept many pairs of kind (plaintext pi, 

corresponding ciphertext ci), i=1,2,…,t. He/she can consider transformations 

Z: x1 → z1x1 
z(1,1) x2 

z(1,2) … xn 
z(1,n), x2 → z2x1 

z(2,1) x2 
z(2,2) … xn 

z(2,n), 

…, xn →znx1 
z(n,1) x2 

z(n,2) … xn
z(n,n) and Y: x1 → y1x1 

y(1,1) x2 
y(1,2) … xn 

y(1,n) 

, x2 → y2x1 
y(2,1) x2 

y(2,2) … xn 
y(2,n),…, xn →ynx1 

y(n,1) x2 
y(n,2) … xn

y(n,n ). 

where z i, yi, z(i,j), y(i,j) are variables. Adversary writes intercepted ciphertects C(l) as transformation 

of kind (1) with μi = lci, i=1,2,…,n and a(i,j)=lc(i,j). He/she forms elements P(l) of nES(K) from 

intercepted plaintexts pl with unknown μi =lui, i=1,2,…,n and a(i,j)=lp(i,j). Adversary has to 

investigate nonlinear system of equations XP(l)Y=C(l), l=1,2,…,t. 

Each equation in the group nES(K) corresponds to n2equalities in Zd and n equalities for variables 

from K*. 

We have 2n2 variables in Zd and 2n +tn variables which are parameters from K*. Simple counting 

of numbers of variables from Zd demonstrates that interception of one message does not allow an 

adversary to compute transformations B and C. So Alice and Bob can exchange two messages safely 

and start a new session of the protocol. 

So we have a postquantum version of the combination Diffie Hellman key exchange protocol and 

an absolutely secure one-time pad. The advantage is that we can use the encryption scheme at least 

two times. 
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In the case of arbitrary t the number of unknown parameters from K* is larger than a number of 

equations in terms of ring elements. It means that the usage of pseudorandom parameters in the 

algorithm allows avoiding new session of the protocol. 

8. Conclusion 

We present two public-key cryptosystems (Algorithms 4.1 and 4.2) for which security rests on the 

complexity of finding the inverse for an element from nEG(K). The polynomial algorithm for the 

solution to this problem is unknown. So we hope that the suggested PK system is an interesting one 

for cryptanalytics. 

The combinations of Algorithm 4.1, 4.2, and one-time pads with postquantum protocols of 

Section 3 produce cryptosystems that are not public keys. They have a certain similarity with the 

number-theoretic El Gamal cryptosystem. 

Security of these algorithms as well as security of corresponding protocols rest on the known hard 

problem of word decomposition. Noteworthy that used platforms nEG(K) are highly noncommutative 

semigroup for which word decomposition problem is NP-hard. So these two cryptosystems can be 

used as post-quantum instruments. 
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