
Analysis of Algorithms for Generating the Matrix of
Coefficients of Non-Stationary Queuing System Models

Kirill Shardakova and Vladimir Bubnova

a Emperor Alexander I St. Petersburg State Transport University, 9 Moskovsky pr., Saint Petersburg, 190031,

Russia

Abstract
The article discusses recursive and recursive with grouping algorithms for generating a
list of states of a non-stationary queuing system and generating a matrix of coefficients
for the system of homogeneous differential Chapman-Kolmogorov equations which
describes the queuing system under consideration. The analysis of the operation of
these algorithms has been carried out. Pros and cons considered.

Keywords
Non-stationary queuing system, modeling, numerical-analytical model, system of
homogeneous differential equations, matrix of coefficients, list of states

1. Introduction
1 The current state of the issue of non-stationary

queuing systems is considered in more detail in [1].
The beginning of the “non-stationary” queuing
systems was laid in [2–4] and continued in [5–6].

In [7-8], a model is proposed that uses a
recursive with grouping algorithm for generating a
list of system states and a matrix of coefficients of
a homogeneous differential equations system
without constructing a graph of states and
transitions of the non-stationary queuing systems
and deriving the general equation of the
homogeneous nary differential equations system as
in [9-12]. In this paper, the advantages and
disadvantages of the proposed recursive grouping
algorithm are considered in comparison with the
recursive algorithm for generating a list of states
and a matrix of coefficients. The result of the work
makes it possible to justify the choice of a recursive
grouping algorithm for use in a non-stationary
model, as the fastest and does not lose accuracy.

2. Comparative analysis
A recursive with grouping algorithm for

generating a list of possible states of a non-
stationary queuing system was developed as an

1 Intelligent Transport Systems. Transport Security - 2021, May
14, St. Petersburg, Russia
EMAIL: k.shardakov@gmail.com (K.S. Shardakov);
bubnov1950@yandex.ru (V.P. Bubnov);
ORCID: 0000-0001-9645-7301 (K.S. Shardakov); 0000-0002-
6742-3011 (V.P.Bubnov)

©� 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

alternative to the existing recursive [13] and
sequential algorithms [14].

One of the key differences between recursive
and grouped recursive algorithms is the need to
pre-calculate the number of possible system states.
Another such difference is making changes to the
state storage structure. To store undersubgroups,
the recursive grouping algorithm uses dictionaries,
that is, “key”: “value” pairs to quickly check for the
existence of a state and find it. Thus, a structure for
storing the list of states is obtained, shown in
Figure 1, where the state is described by two
vectors.

The logic of the recursive algorithm is
implemented in such a way that, first of all, the
number of possible states of the non-stationary
queuing system is calculated, then a zero matrix of
coefficients A is created, and only after that new
states are generated and changes are made to the
matrix on the fly. This gives rise to the need for
each individual model to specially select a formula
that makes it possible to calculate the possible
number of states of the non-stationary queuing
system.

The recursive with grouping algorithm avoids
this action, since it first generates all possible
states, and only when all possible states of the non-
stationary queuing system and their number are
known, a zero matrix of coefficients A of the
required dimension is created.

Figure 1: Storage structure of a list of states for a recursive with grouping algorithm

Measurements were taken to compare the

performance of these two algorithms. Both
algorithms for generating the matrix of coefficients
of the homogeneous differential equations system
without deriving the general equation of the system
were implemented using Python3. All
measurements were carried out when running the
algorithms on the same device, which allows the
obtained values to be considered valid for
comparison. The execution time of the algorithms
may differ upward or downward depending on the
platform performance on which the algorithms are
run, but the general trends will remain correct. The
recursive algorithm was launched on the simplest
single-channel model, and the recursive with
grouping on a parallel-sequential model with 2
proxies. However, the initial data were selected in
such a way that the total number of possible states
of both models for comparable results was as close
to each other as possible. The timer starts together
with the start of the algorithm and stops after the
matrix of coefficients A is completely filled and

brought to the lower triangular form. The results of
the comparative analysis are presented in table 1
and table 2.

As can be seen from Tables 1 and 2, for both
algorithms and models, the number of possible
states of the system, and, consequently, the number
of equations in the homogeneous differential
equations system grows exponentially depending
on the number of tasks that can enter to the non-
stationary queuing system. The graph for the
recursive with grouping algorithm in the parallel-
serial model with 2 proxies is shown in Figure 2.

As can be seen from Figure 2, the number of
possible states for the parallel-sequential model, as
well as for the simplest single-channel model
considered earlier, grows exponentially.

Figure 3 shows a comparison of the total
execution time of the recursive and recursive with
grouping algorithms. The criterion for turning off
the timer is a fully filled and triangular form of
matrix of coefficients.

Table 1
Recursive algorithm execution time

Tasks States
Execution time excluding
sorting step, seconds Total execution time, seconds

2 6 0.0010004043579101562 0.0010004043579101562
4 15 0.0010001659393310547 0.0010001659393310547
7 36 0.0009999275207519531 0.008000612258911133
10 66 0.002000093460083008 0.023001432418823242
14 120 0.0060002803802490234 0.11900663375854492
19 210 0.012000799179077148 0.2560145854949951
24 325 0.026001453399658203 0.7240414619445801
30 496 0.06500387191772461 2.1061205863952637
36 703 0.13100767135620117 5.188296794891357
43 990 0.2390139102935791 14.486828565597534
50 1326 0.45102596282958984 37.64615321159363

Table 2
Recursive wuth groupong algorithm execution time

Tasks States Full execution time, seconds
1 5 0.0010001659393310547
2 15 0.0009999275207519531
3 35 0.002000093460083008
4 70 0.0060002803802490234
5 126 0.008000612258911133
6 210 0.01500082015991211
7 330 0.029001712799072266
8 495 0.04500269889831543
9 715 0.06800389289855957
10 1001 0.09200549125671387
11 1365 0.11600661277770996

Figure 2: Dependence of the number of states of the non-stationary queueing system on the number of tasks
entering to the non-stationary queueing for a parallel-serial model with 2 proxies

Figure 3: Generation time of triangular matrix of coefficients by recursive and recursive with grouping

As you can see from Figure 3, the behavior is
similar to the comparison between sequential and
recursive algorithms in [14]. The time taken by the
recursive algorithm is significantly greater than the
time taken by the recursive grouped algorithm. It
should be noted that the more the number of states,
the more the gap in the running time of these
algorithms increases.

As noted earlier, the recursive algorithm spends
most of its time sorting the coefficient matrix when

sorting the list of states. Figure 4 shows a graph
illustrating a comparison of the total execution time
of the recursive with grouping algorithm and the
execution time of the recursive algorithm excluding
the sorting stage and reducing the matrix of
coefficients to a triangular form. This will allow us
to compare the pure speed of the algorithms, taking
into account only the process of generating the list
of states and the initial filling of the coefficient
matrix.

Figure 4: Time of filling the matrix of coefficients with recursive and recursive with grouping algorithms

As you can see from Figure 4, even in the case

of skipping the steps of sorting the coefficient
matrix A and reducing it to a triangular form in the
recursive algorithm, it is still inferior in speed to
the proposed recursive with grouping.

Upon closer examination of the recursive
algorithm, you can see that most of the time
(already keep in mind the exclusion of time for

sorting procedure) this algorithm spends on finding
a state in the list of already existing states when
calling the is_exist() method. A detailed
comparison is presented in tables 3 and 4.

According to the values from Tables 3 and 4,
several graphs were built, illustrating the division
of the running time of the algorithms.

Table 3
State searching time for recursive algorithm

Tasks States
Execution time excluding sorting
step, seconds State searching time, seconds

20 231 0.016000747680664062 0.012000560760498047
25 351 0.034001827239990234 0.027001380920410156
30 496 0.08300471305847168 0.06400418281555176
35 666 0.11100625991821289 0.10400629043579102
40 861 0.17500996589660645 0.15900921821594238
45 1081 0.27001523971557617 0.24901413917541504
50 1326 0.4470255374908447 0.42302393913269043
55 1596 0.6100349426269531 0.575031042098999
60 1891 0.8840506076812744 0.8310489654541016
65 2211 1.2500712871551514 1.1970674991607666

Table 4
State searching time for recursive with grouping algorithm

Tasks States Execution time, seconds State searching time, seconds
6 210 0.014000892639160156 0.004000663757324219
7 330 0.02800130844116211 0.008000612258911133
8 495 0.052002906799316406 0.011000871658325195
9 715 0.0870048999786377 0.013001203536987305
10 1001 0.10800600051879883 0.0260007381439209
11 1365 0.14000797271728516 0.034002065658569336
12 1820 0.1740100383758545 0.04200029373168945
13 2380 0.29001688957214355 0.057003021240234375
14 3060 0.38802194595336914 0.08100318908691406
15 3876 0.593034029006958 0.09700489044189453

Let us first of all consider the operation of the

recursive algorithm for the simplest one-channel
model. Figure 5 shows a graph of the ratio of the
total execution time of the recursive algorithm
(excluding the time for sorting) and the time spent
in the process of searching for a state in the list of
states. As can be seen from Figure 5, the recursive
algorithm spends most of its execution time in the
process of searching for a specific state among the
existing states in the list. Figure 6 shows a graph of
the time spent on the search as a percentage of the
total execution time of the recursive algorithm.

As you can see from Figure 6, in percentage
terms, the recursive algorithm spends from 75 to 95
percent of its execution time looking for a state in
the general list of states.

Consider a recursive with grouping algorithm in
a parallel-serial 2-proxy model. Figure 7 shows a

graph of the ratio of the total execution time of the
recursive with grouping algorithm and the time
spent in the process of searching for a state in the
structure of states.

As you can see in Figure 7, the recursive with
groupong algorithm spends much less of its
execution time searching for a specific state among
the existing states in the list. Figure 8 shows a
graph of the time spent on the search as a
percentage of the total execution time of the
recursive grouped algorithm.

As shown in Figure 8, in the case of the
recursive clustering algorithm, the time spent
searching for the desired state in the state structure
varies between 16 and 28 percents of the total
execution time of the algorithm. Which is much
lower compared to the 75-95 percent range for the
recursive algorithm.

Figure 5: The total time (excluding sorting) to execute the recursive algorithm and the time to search for a state
in the list of states

Figure 6: Percentage of time to search for a state in the list of states of the total execution time (excluding
sorting) of the recursive algorithm

Figure 7: The total time to execute the recursive with grouping algorithm and the time to search for a state in
the state structure

Figure 8: Percentage of time to search for a state in the structure of states of the total execution time of the
recursive grouping algorithm

3. Conclusion
The indicators described in the paper confirms

the effectiveness of using the grouping of states in
the proposed structure for storing states, as well as
the use of dictionaries (a data type that stores pairs
{"key:" value}) within this structure.

Thus, the recursive with grouping algorithm is
much faster than the recursive algorithm due to:

1. there is no need to sort the resulting list of
states and the matrix of coefficients to bring it to a
triangular form;

2. states grouping addition and a structure for
storing them instead of a regular list, which makes
it possible to find it immediately when searching
for a state, referring to a specific address within the
structure instead of going through all the states in
the list until the desired one is found.

Further optimization of the recursive with
grouping algorithm may include:

1. add parallelization of changes in the
coefficient matrix, which will allow to process
large models with a large number of possible states
more efficiently;

2. add optimization of the structure of storing
the list of states by getting rid of empty nested
structures, which will save the memory spent on
storing the list of states.

4. Acknowledgements

The research described in this paper is
partially supported by the Russian Foundation
for Basic Research (19–08–00989, 20-08-
01046), state research 0073–2019–0004.

References

[1] V. Bubnov, V. Safonov, K. Shardakov,
Overview of existing models of non-
stationary queuing systems and methods
for their calculation. Systems of Control,
Communication and Security, 2020, no.
3, pp. 65–121 (in Russian). DOI:
10.24411/2410-9916-2020-10303

[2] I. Kovalenko About the queuing system
with the speed of service, depending on
the number of requirements in the system,
and periodic shutdown of channels.
Problems of Information Transmission,
1971, vol. 7, no. 2, pp. 108–114 (in
Russian).

[3] I. Ezhov, M. Korneichuk, I. Oliinyk D.
Distribution of the number of repair
system channels when the flow rate
changes in a special way. Kibernetika,
1976, no. 3, pp. 92–97 (in Russian).

[4] L. Nonstationary queuing problem for
systems with an infinite number of
channels with group receipt of
requirements. Problems of Information
Transmission, 1968, vol. 4, no. 3, pp. 99–
102 (in Russian).

[5] G. Arsenishvili Singleline queuing system
with queue-dependent incoming flow
rate. Soobshcheniia Akademii nauk
Gruzinskoi SSR, 1974, vol. 76, no. 2, pp.
285–288 (in Russian).

[6] B. Conolly Generalized State Dependent
Eriangian Queues (speculation about
calculating easure of effectiveness).
Applied Probability, 1975, no. 2. рр. 358–
363.

[7] K. Shardakov, V. Bubnov, Stochastic
Model Of A High-Loaded Monitoring
System Of Data Transmission Network //
Proceedings of Models and Methods of
Information Systems Research Workshop.
2019. P. 29–34.

[8] K. Shardakov, V. Bubnov, Non-stationary
parallel-serial model of a high-load
monitoring system. Informatsiia i kosmos,
2020, No. 3, pp. 56-67 (2020). (in
Russian).

[9] V. Bubnov, V. Safonov, V. Smagin
About the loading of a computing system
with a varying intensity of receipt of
tasks, Automatic Control and Computer
Sciences, 1987, no. 6, pp. 19–22 (in
Russian).

[10] V. Bubnov, V. Safonov Development of
dynamic models of non-stationary
queuing systems. Saint-Petersburg, 1999.
64 p. (in Russian).

[11] V. Bubnov A. Khomonenko, A. Tyrva
Software reliability model with coxian
distribution of length of intervals between
errors detection and fixing moments//
International Computer Software and
Applications Conference. 2011.pp. 310-
314.

[12] V. Bubnov, A. Tyrva, A. Khomonenko
Model of reliability of the software with
coxian distribution of length of intervals
between the moments of detection of
errors // International Computer Software
and Applications Conference. 34th
Annual IEEE International Computer
Software and Applications Conference,
COMPSAC 2010. 2010. pp. 238-243

[13] V. Bubnov, A. Khomonenko, S. Sergeev
A recursive method for generating a

matrix of coefficients of a system of
homogeneous differential equations
describing a non-stationary queuing
system. Proceedings of 2015 XVIII
International Conference on Soft
Computing and Measurements (SCM-
2015). Saint-Petersburg, 2015, vol. 1, pp.
164–166 (in Russian).

[14] K. Shardakov Sequential algorithm for
generating a matrix of a coefficients for a
system of homogeneous differential
equations in a non-stationary queueing
system model. Intellectual technologies
on transport, 2018, No 4, p. 20–25 (in
Russian).

	1. Introduction
	2. Comparative analysis
	3. Conclusion
	4. Acknowledgements
	The research described in this paper is partially supported by the Russian Foundation for Basic Research (19–08–00989, 20-08-01046), state research 0073–2019–0004.
	References

