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ABSTRACT

We present a structural approach of some results about jumps in the behavior of the profile (alias
generating function) of hereditary classes of finite structures. We consider the following notion due
to N.Thiéry and the second author. A monomorphic decomposition of a relational structure R is a
partition of its domain V (R) into a family of sets (Vx)x∈X such that the restrictions of R to two
finite subsets A and A′ of V (R) are isomorphic provided that the traces A∩Vx and A′ ∩Vx have the
same size for each x ∈ X . Let Sµ be the class of relational structures of signature µ which do not
have a finite monomorphic decomposition. We show that if a hereditary subclass D of Sµ is made of
ordered relational structures then it contains a finite subset A such that every member of D embeds
some member of A. Furthermore, for each R ∈ A the profile of the age A(R) of R (made of finite
substructures of R) is at least exponential. We deduce that if the profile of a hereditary class of finite
ordered structures is not bounded by a polynomial then it is at least exponential. This result is a part
of classification obtained by Balogh, Bollobás and Morris (2006) for ordered graphs.

Keywords ordered set, well quasi-ordering, relational structures, profile, asymptotic enumeration, indecomposability,
graphs, tournaments, permutations.

1 Introduction and presentation of the results

The profile of a class C of finite relational structures is the integer function 'C which counts for each non negative
integer n the number of members of C on n elements, isomorphic structures being identified. The behavior of this
function has been discussed in many papers, particularly when C is hereditary (that is contains every substructure
of any member of C ) and is made of graphs (directed or not), tournaments, ordered sets, ordered graphs or ordered
hypergraphs. Futhermore, thanks to a result of Cameron [7], it turns out that the line of study about permutations (see
[1]) originating in the Stanley-Wilf conjecture, solved by Marcus and Tardös (2004) [20], falls under the frame of the
profile of hereditary classes of ordered relational structures (see [23, 25]). The results show that the profile cannot be
arbitrary: there are jumps in its possible growth rate. Typically, its growth is polynomial or faster than every polynomial
([29] for ages, see [34] for a survey) and for several classes of structures, it is either at least exponential (e.g. for
tournaments [4, 6], ordered graphs and hypergraphs [2, 3, 16] and permutations [14]) or at least with the growth of the
partition function (e.g. for graphs [5]). For more, see the survey of Klazar [17].

In this paper, we consider hereditary classes of ordered relational structures. We describe those with polynomially
bounded profile, we identify those with unbounded polynomial profile which are minimal w.r.t. inclusion and prove
that their profile is exponential. The case of ordered binary relational structures and particularly the case of ordered
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irreflexive directed graphs are treated in Chapter 8 of [22] and are presented in [26]. On the surface, the cases of ordered
binary relational structures and the case of ordered relational structures are similar. But the case of ternary relations is
more involved.

Let us present our main results. Each structure we consider is of the form R ∶= (V,≤, (⇢j)j∈J), where ≤ is a linear
order on V and each ⇢j is a nj-ary relational structure on V , that is a subset of V nj for some non-negative integer
nj , the arity of ⇢j . We will say that the sequence µ ∶= (nj)j∈J is the restricted signature of R. The age of R is the
set A(R) consisting of the structures induced by R on the finite subsets of V , these structures being considered up
to isomorphy. A relational structure of the form (V,≤) where ≤ is a linear order on V is a chain; if it is of the form
B ∶= (V,≤,≤′) where ≤ and ≤′ are two linear orders on V this is a bichain, and if it is of the form G ∶= (V,≤,⇢) where
⇢ is a binary relation this is an ordered directed graph. Chains, bichains and ordered directed graphs are the basic
examples of ordered structures.

An interval decomposition of R is a partition P of V into intervals I of the chain C ∶= (V,≤) such that for every integer
n and every pair A, A′ of n-element subsets of V , the induced structures on A and A′ are isomorphic whenever the
traces A∩I and A′∩I have the same number of elements for each interval I . For example, if R is the bichain (V,≤,≤′),P is an interval decomposition of V iff each block I is an interval for each of the two orders and they coincide or are
opposite on I (see [21]). If a relational structure R has an interval decomposition decomposition into finitely many
blocks, say k + 1, then trivially, the profile of A(R) is bounded by some polynomial whose degree is, at most, k.
According to a result of [35] this must be a quasi-polynomial, that is a sum ak(n)nk +� + a0(n) whose coefficients
ak(n), . . . , a0(n) are periodic functions. Here, we show that this is in fact a polynomial.

We prove that essentially the converse holds.
Theorem 1.1. Let C be a hereditary class of finite ordered relational structures with a finite restricted signature µ.
Then, either there is some integer k such that every member of C has an interval decomposition into at most k + 1
blocks, in which case C is a finite union of ages of ordered relational structures, each having an interval decomposition
into at most k + 1 blocks, and the profile C is a polynomial, or the profile of C is at least exponential.

The jump of the growth of profile from polynomial to exponential was obtained for bichains by Kaiser and Klazar [14]
and extended to ordered graphs by Balogh, Bollobás and Morris (2006) (Theorem 1.1 of [3]). Their results go much
beyond exponential profile.

The first step of the proof of Theorem 1.1 is a reduction to the case where C is of the form A(R). For that, we prove
the following lemma:
Lemma 1.2. If a hereditary class C of finite ordered relational structures with a finite signature µ contains for every
integer k some finite structure which has no interval decomposition into at most k + 1 blocks, then it contains a
hereditary class A with the same property which is minimal w.r.t. inclusion.

Clearly, A cannot be the union of two proper hereditary classes, hence it must be up-directed w.r.t. embeddability.
Thus, according to an old and well know result of Fraïssé [8] p.279, this is the age of some relational structure R.
Clearly, R is ordered and does not have a finite interval decomposition. Hence our reduction is done.

For the second step, we introduce the class Dµ of ordered relational structures of signature µ, µ finite, which do not
have a finite interval decomposition. We define an equivalence relation ≡R on the domain of a relational structure R
whose classes form a monomorphic decomposition, a notion previously introduced in [35]. This equivalence is an
intersection of equivalences ≡k,R. When R is ordered, there is some integer k such that ≡R and ≡k,R coincide. Using
Ramsey’s theorem, we prove that
Theorem 1.3. There is a finite subset A made of incomparable structures of Dµ such that every member of Dµ embeds
some member of A.

Note that if D is the subclass of Dµ made of bichains then A ∩D has twenty elements [21]. If D is made of ordered
reflexive (or irreflexive) directed graphs, A ∩D contains 1246 elements (cf Theorem 8.23 of [26]).

The members of A have a special form. There are almost multichainable (a notion introduced by the second author in
his thèse d’État [29] which appeared in [32] and [30]).

Next, we prove that the profile of members of A grows at least exponentially.

Theorem 1.4. : If R ∈ D(k)µ then the profile 'R is at least exponential. Indeed, for n large enough it satisfies
'R(n) ≥ d.cn where c is the largest solution of Xk+1 −Xk − 1 = 0 and d is a positive constant depending upon k.

In the case of ordered undirected graphs, it was proved in [3] that it grows as fast as the Fibonacci sequence.



From Lemma 1.2 and Theorem 1.1, we can deduce the following.
Corollary 1.5. If the profile of a hereditary class C of finite ordered relational structures (with a finite restricted
signature µ) is not bounded by a polynomial then it contains a hereditary class A with this property which is minimal
w.r.t. inclusion.

Proof. If the profile of C is not bounded by a polynomial then for every integer k it contains some finite structure
which has no interval decomposition into at most k + 1 blocks. According to Lemma 1.2 it contains a hereditary class
A with this property which is minimal w.r.t. inclusion. As already observed, there is some R such that A = A(R).
According to Theorem 1.1, the profile of A is exponential. Since the profile of every proper subclass of A is bounded
by a polynomial, A is minimal.

This result holds for arbitrary hereditary classes of relational structures (provided that their arity is finite). It appears in
a somewhat equivalent form as Theorem 0.1 of [35]. It is not trivial, the main argument relies on a result going back to
the thesis of the second author [29], namely Lemma 4.1 p. 23 of [35]. No complete proof has been yet published. The
proof of Corollary 1.5 is complete.

The proof of Lemma 1.2 relies on properties of well-quasi-ordering and of ordered structures. The proof of Theorem 1.3
relies on Ramsey’s theorem. These results are part of the study of monomorphic decompositions of a relational structure,
a notion introduced in [35] in the sequel of R. Fraïssé who invented the notion of monomorphy and C. Frasnay who
proved the central result about this notion [9]. Indeed, an ordered relational structure has a finite interval decomposition
iff it has a finite monomorphic decomposition. The profile of a class of finite relational structures, not necessarily
ordered, each admitting a finite monomorphic decomposition in at most k + 1 blocks, is the union of finitely many ages
of relational structures admitting a finite monomorphic decomposition in at most k + 1 blocks and is a quasi-polynomial
(this is the main result of [35]). Lemma 1.2 extends. But, we do not know if Theorem 1.3 extends in general. We state
that as a conjecture.

Let Sµ be the class of all relational structures of signature µ, µ finite, without any finite monomorphic decomposition.
Conjecture 1.6. There is a finite subset A made of incomparable structures of Sµ such that every member of Sµ

embeds some member of A.

The difficulty is with ternary structures. We may note that if one restricts Sµ to tournaments, there is a set A with
twelve elements [6]. The first author has shown that the conjecture holds if Sµ consists of binary structures. She proved
that for ordered reflexive graphs, A contains 1242 elements. We show that if we consider the class of undirected graphs,
A has ten elements. The proof is easy, we give it in order to illustrate in a simple setting the technique used in the proof
of Theorem 1.3. We may note that a graph has a finite monomorphic decomposition iff it decomposes into a finite
lexicographic sum of cliques and independent sets. Hence our latter result can be stated as follows:
Proposition 1.7. There are ten infinite graphs such that a graph does not decompose into a finite lexicographic sum of
cliques and independent sets iff it contains a copy of one of these ten graphs.

We may note that some of these graphs have polynomial profile, hence our machinery is not sufficient to illustrate the
jump in profile beyond polynomials.

Results of this paper are included in Chapter 7 of the thesis of the first author [26]. They have been presented in part at
ICGT 2014 (June 30-July 4 2014, Grenoble) [24]. Proofs are included in the full version of the paper.
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