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ABSTRACT
Data management in scientific domains is more important than ever
due to the increasing availability of experimental data. Automati-
cally integrating and managing the information would significantly
speed up their reuse and, in particular, the development of predic-
tive models for a given domain. However, the diversity, ambiguity,
and complexity of experimental data make it hard in practice. In this
work, we propose a general approach to overcome these challenges,
combining a human-in-the-loop process with a new methodology
to understand automatically the semantics of experimental data,
which can also be used as a data cleaning procedure. In addition,
we focus on assessing the domain coverage of an experimental data-
base using only categorical characteristics of the domain, which is
essential for model validation or to understand if and where there
is a need to perform additional experiments.

Reference Format:
Edoardo Ramalli and Barbara Pernici. Know your experiments:
interpreting categories of experimental data and their coverage. In the 2nd
Workshop on Search, Exploration, and Analysis in Heterogeneous
Datastores (SEA Data 2021).

1 INTRODUCTION
The collection of experimental data in many disciplines has pro-
duced a massive amount of data over the decades. However, the
quality of data and the collection methodologies have changed with
the evolution of the research fields and the improvements in the
technology used to carry out measurements. Over the years, this
progression has led to the availability of considerable amounts of
data, but that are likely affected by ambiguity problems due to their
heterogeneity and complexity.

At the same time, the increasing availability of experimental
data has stirred the development of predictive models to study a
domain and improve the related technologies. These data-driven
models are greedy of data, and, as a consequence, there is the
need to automatically collect, store, and manage large quantities of
information coming from different sources, representation formats,
and different quality levels. Data ecosystems address these problems
by integrating disparate or incompatible data sources, maintaining a
specific quality level [8]. As experimental data are a precious source
of value, the FAIR principles encourage the reuse and sharing of data
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ID Reactor Exp. Type T P Phi ...
12 PFR O.C.M 300k 1atm 0.5 ...

Experimental Data

Temperature 800 827 855 883 ...
Concentration 2E-04 2E-04 3E-04 3E-03 ...
Pressure 1.0 1.1 1.3 1.2 ...

Simulated Data

Temperature 800 827 855 883 ...
Concentration 0 0 0 4E-04 ...
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Figure 1: In the plot, a simplified example of the experimen-
tal data of interest and the corresponding simulated data of
an experiment. In the tables, the tabular data and metadata
of an experiment with the simulated data.

[27]. Nevertheless, their complexity often makes it hard to put these
ideas in practice. In fact, in many domains, the data management
system has an essential role, so that “the available data management
resources define what is discovered” [1], removing the differences,
the ambiguity, and making the data usable.

In our case study, combustion kinetics, as shown in a simplified
snapshot in Figure 1, we work with experimental data related to
an experiment with associated metadata and the corresponding
simulated data of a predictive model to compare them and validate

Copyright © 2021 for the individual papers by the papers’ authors. Copyright © 2021 
for the volume as a collection by its editors. This volume and its papers are published 
under the Creative Commons License Attribution 4.0 International (CC BY 4.0).
Published in the Proceedings of the 2nd Workshop on Search, Exploration, and Anal- 
ysis in Heterogeneous Datastores, co-located with VLDB 2021 (August 16-20, 2021, 
Copenhagen, Denmark) on CEUR-WS.org.



and improve the model itself. The challenge is to overcome the
manual management of the data: we need to automatically interpret
the experiment, i.e., to distinguish the actual subject data of the
experiment among all the data columns, simulate it with the right
solver, and pair the experimental data with the simulated data
correctly based on the content of the experiment metadata.

We propose an iterative approach to understand and store exper-
imental data with humans-in-the-loop, focusing on three aspects
that are critical in building scientific models: interpreting the scien-
tific data, assessing the coverage of the experiments in a specific
domain, and clean and improve the scientific repository. To this
purpose, we propose a rule-based interpretation of each experiment,
that enable to automatically validate and clean the data using a sim-
ilarity index. Furthermore, it is important to quantify the database
coverage within the experimental domain space. The experimental
database coverage of a domain impacts the ability to assess the va-
lidity of numerical simulation models developed for a domain and,
if used as a training set for machine learning models, it can have a
heavy impact on the quality of the resulting model [9]. We define a
general index to quantify the coverage and the experiment’s density
distribution by combining categorical attributes of the database
schema and multidimensional matrices.

The paper is structured as follows. In Section 2, we discuss related
work and open problems. A general approach to integrate different
data sources with semantic heterogeneity problems is introduced
in Section 3. Section 4.1 presents a rule-based approach to interpret
the semantic of experimental data automatically and a methodology
to quantify the coverage of an experimental database is presented in
Section 4.2. An automatic analysis of a numerical simulation model
using experimental data that facilitates data cleaning procedures is
discussed in Section 4.3. A final discussion is debaded in Section 5.

2 RELATEDWORK
In recent years there has been growing attention to the sharing
and reuse of data [24]. Several projects have been developed, such
as EOSC (European Open Science Cloud), focused on reusing, in-
tegrating, and sharing data and services within the scientific com-
munity. An example is Clowder [16], a framework that facilitates
the development of a data management system, offering features
for visualization, annotating, and management. Although Crowder
has shown that the framework can be used in different domains,
each domain has its own characteristics and requires specific im-
plementations that are difficult to generalize. Homer is an example
of a system for managing experimental biological data [1]. The
heterogeneity of the collected data, represented and managed over
time, defines what can be discovered and directly affects the quality
and quantity of research results. For this reason, there is a need to
integrate and manage complex and heterogeneous scientific data
in a system capable of extracting value from them. The integration
of experimental data from different sources is not an easy task:
correct use of metadata can provide the necessary knowledge for
preservation, access, and reuse of scientific data [10] and therefore
allows immediate support for the development of immediate appli-
cations and long-term maintainability and accessibility of data. In
this context, there is the need of a data management system that
offer services for integrating heterogeneous source of information

for the case study of combustion kinetics, removing the semantic
ambiguity of the data and provide services to analyze data and im-
prove the predictive model. In particular, this system has to analyze
together multiple experimental data that compose a trend rather
than stand-alone information.

Combustion kinetics has been the subject of study for many
decades. For this reason, many experimental data regarding differ-
ent fuels in several environmental conditions have been collected
over the years. The evolution of the combustion study process has
led to increasingly precise measurements, enriching the experi-
mental data with outline details that are decisive for a complete
understanding of the phenomenon. Over the last few decades, data
collection has been more methodical and massive, which has al-
lowed for the development of predictive numerical models. A nu-
merical model can simulate complex domains without the necessity
to carry out expensive experiments in terms of time and price. In
particular, in the case of combustion kinetics, we can predict the
behavior of reactors and fuels in different conditions to improve
their efficiency and reduce pollutants.

Even today, both the models and the experimental data are
mainly affected by two problems that make these data sources of
heterogeneous information. The first problem regards uncertainty;
the latter concerns the ambiguity of the information contained
therein. Uncertainty can be related to the experimental imprecision
or the error made by the model representing the domain. These two
types of uncertainty are thus defined as the aleatoric one, which
is related to the noise present in the data, and the epistemic one
associated to what the model does not represent precisely [6].

Similarly, ambiguities can be encountered both in the model and
in the experimental data. An example regards the chemical names.
Many different fields deal with chemical compounds whose names
are not uniquely defined, and for this reason, diverse nomenclatures
of the same compound can be found both in different models and ex-
perimental data. This obstacle involves a not immediate integration
of experimental data from different sources and direct comparison
of different models [14]. Another characteristic of this domain is
that it is hard to automatically understand the experiment subjects
among the various information contained in the data.

Regarding the uncertainty in the data and the model, techniques
have been developed to separate the two types of uncertainty [21],
but it is not easy to estimate them if a ground truth is not available.
In combustion kinetics, it has been conventionally chosen to assume
arbitrary uncertainty values, if missing, in the case of specific types
of experiments and apparatuses [17].

Different formats have been proposed to represent the combus-
tion kinetics experimental data to remove the ambiguity from the
experimental data. These formats contain mandatory or optional
fields that limit the freedom of each researcher in defining their
fields, thus moving towards a standardization of representation.
There are mainly two representation formats, ReSpecTh [25] and
ChemKED [26], in combustion kinetics.

The diversity of a dataset is a critical aspect in many practi-
cal applications, but it is often overlooked [7]. As a result, bias
predictors can easily be obtained, which can also have severe reper-
cussions in everyday life [2]. The coverage of a database allows
us to understand how diverse a dataset is. Recent proposals allow
quantifying the coverage of a database using recognition patterns
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concerning categorical attributes [2], which can also be found on
different tables [15]. These approaches are based on the definition
of patterns and thresholds. There is, therefore, a need to accurately
and precisely define both the patterns and thresholds.

Data is critical for the development of machine learning-based
models. For this reason, data management has an increasingly cen-
tral role in these activities as the results of the models are strictly
dependent on the dataset [18]. In more recent times, the focus has
shifted towards the correct integration and quality of the data, and
for this reason, the reverse operation is carried out: the models are
used iteratively to evaluate and improve the quality of the data [20].
This data cleaning procedure can improve the starting dataset, pay-
ing attention to maintain the convergence of the machine learning
model [13]. Other techniques of data cleaning rely on the defini-
tion of rules, on which, based on the result of the evaluation of a
condition, a specific operation is performed [5].

3 SCIEXPEM
In many experimental disciplines, data is collected from different
sources such as repositories, literature, or private communication
between research laboratories. This entails having to manage var-
ious problems related to the heterogeneity of the data [11]. Fur-
thermore, as in combustion kinetics, there is no uniquely accepted
representation standard to convey this information. All this implies,
even for the most recent data, different accuracy, completeness, and
other data quality dimensions of the repository [23].

Experimental data are precious both for their rarity and for their
cost in collecting them. For this reason, it is essential to accept all
the experiments and then carry out a series of automatic checks to
preserve the repository’s quality. For example, a possible control
is on the consistency between the unit of measurement and the
measured property. Another quality dimension to guarantee is com-
pleteness: Since the data comes from different sources, times, and
formats, it is essential to ensure that all the primary information
of an experiment, in terms of metadata, is complete. Regarding the
semantic accuracy of the experimental data, it is important that the
values of the properties are within a range of reasonableness. How-
ever, while in the literature there has been an extensive attention to
developing techniques for managing and ensuring data quality and
consistency (see for an extensive survey [3]), there are still many
open problems in understanding the quality of data in their context
of use. In particular, in this paper we focus on using experimental
data in simulation model development in general, in a context in
which the experimental error can be notoriously significant, but
it is not (or cannot) easily be quantified. In this context, the prob-
lem is the ability of identifying possible errors in the data and/or
in the models, in a joint validation effort based on a data-driven
approach. Finally, a crucial aspect for all data-driven applications
is automation. Otherwise, in the case of predictive model develop-
ment, manually managing the simulations and validations of the
experiments is a wasteful and error-prone task. The problem is to be
able to provide a generic framework in order to be able to manage
experiments easily and in a domain-independent way, associating
them with information needed for data-driven techniques, such as
simulations and predictions.

To tackle these problems, we define the process illustrated in
Figure 2, that follows the entire life cycle of experimental data to
guarantee a certain level of the data quality, according to different
quality dimensions, and at the same time, provide information to
improve the predictive model.

This human-in-the-loop process is implemented within SciEx-
peM (Scientific Experiments and Models), a framework that offers
different services related to the management and analysis of ex-
perimental and simulated data to speed up the predictive model
development process in combustion kinetics [19, 22]. We associate
to activities in the process additional metadata to assess the val-
idation state of the experimental data, status, that denotes if an
experiment is new in the database or if it is invalid or verified.

SciExpeM uses the process for different applications: first of all,
the user enters the experimental data in the system using, for exam-
ple, an interactive form. The experiment is added to the database
and SciExpeM checks for syntax or detectable semantic errors. Ini-
tially the new data are tagged as new and they can be set to invalid
in any of the following phases if flaws in the data are detected. In a
second moment (activity Check experiment in the Figure 2), an ex-
pert has to verify each new experiment, checking for undetectable
semantic errors and fill the incomplete experiment metadata. Once
an experiment is verified, the status field change accordingly, and
SciExpeM couples the experiment to an interpreter. Experimen-
tal data and results of simulators are records of information that
we need to distinguish and pair automatically. To this purpose we
propose to associate to experimental data to the concept of an in-
terpreter for the data. This entity, in particular, can recognize the
properties that are under investigation in an experiment from the
others that are just auxiliary information, such as environmental
conditions. For example, in Figure 1, the pressure is neither the
dependent nor the independent variable (or property) under inves-
tigation, unlike temperature and concentration. Moreover, based on
the experiment details, the interpreter knows which solver needs to
be used to simulate it and correctly pair the experimental data with
the corresponding simulated ones. Finally, when the system can
manage an experiment independently with its simulations, a loop
starts. The simulated data are compared with the experimental data
using a similarity index that provides information to improve both
the model and the repository quality. This comparison is possible
because we leverage a bidirectional relationship: we use the model
to validate the data and use the data to validate the model. First,
using the experimental data to validate the model helps understand-
ing which aspects or portions of the domain that an experiment
represents still need to be improved. Second, we use the model to
understand if the semantics of the experimental data is reliable: a
model that differs strongly from the experimental data is synony-
mous with an error in the model or incorrect experimental data. The
human-in-the-loop approach allows assessing these discrepancies
and taking the appropriate actions.

4 EXPERIMENTS MANAGEMENT
Representing, collecting, and integrating heterogeneous data in a
database are only the initial steps to extract value. In Section 4.1,
we present our approach to interpreting the semantics of the data
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Figure 2: A simplified schema of the experimental data process.

correctly, and then in Section 4.2 we measure the coverage of a data-
base in a given domain, while in Section 4.3 we focus on improving
the repository quality.

4.1 Rule-based Automatic Interpretation
Experiments are records of measured properties and other metadata
that characterize them. Besides, among the measurements, it is not
rare to find additional measured properties that specify, for example,
the environmental conditions of the measures, but without being
the subject of the scientific observation. This peculiarity generates
ambiguity since a property could be the subject in an experiment
but not in another. In practice, to manage scientific data, there is
the need to distinguish automatically which, among the measured
properties, is the dependent and the independent variable. In this
context, we need to teach the data management system the ability
to recognize the role of each property in each experiment, keeping
in mind that what makes a property a subject of an experiment is a
particular combination of metadata values of the experiment itself.

For this reason, it is necessary to define a flexible methodology
to distinguish the subject properties from the auxiliary ones. In
other words, we need to find an approach to transfer the domain
knowledge into the SciExpeM to interpret the semantics of an
experiment correctly and treat all the database entries with equal
semantics in the same way.

Manual management of this complex database is not feasible
because an experiment could contain dozens ofmeasured properties,
and, for example, we should tag each of them correctly if they are
the subject of the experiment or not. Moreover, this procedure
should be repeated hundreds of times, once for each experiment,
making it hard to analyze a large amount of data. Accordingly, we
propose a methodology automatically extracting useful information
from a database model in which semantic heterogeneity is present.

We propose a dynamic interpretation of a database model based
on rules, similar to what is done for data cleaning or to ensure con-
sistency and accuracy in a database [5]. In Figure 3 we can see the
class schema of the database schema that we use to implement the
automatic interpretation of scientific experiments. Given a model
Experiment (Exp.), E, that is an abstract representation of a model
affected by ambiguity, we have to assign, for each entry 𝑒 ∈ E, an
Interpreter entry of the model I. This model can save additional
meta-information that could be useful for other tasks. For example,
in this schema, the interpreter knows which precise solver we need
to use to simulate an experiment. Each interpreter knows how to
distinguish the primary data from the secondary information and
correctly map them. This is possible because the interpreter has
multiple references𝑀 = {𝑚1, ...,𝑚𝑛} to a mapping modelM that

knows, for example, the correct relation of dependent-independent
variable, or more in general, can separate the useful information
from the secondary one, and if necessary, pair them. In order to
associate an interpreter to an entry of the model E, we have to
associate a set of rules, 𝑅 = {𝑟1, ..., 𝑟𝑘 }, to an interpreter. These
rules 𝑟 are entries of another table in the database, rule, R, where
each element specifies a name of the model 𝑁 , the attribute’s name
𝐴 and value 𝑉 . A rule 𝑟 ∈ R is fulfilled by an entry 𝑒 ∈ E if 𝐴 is
an attribute for 𝑒 and the corresponding value of the attribute is
equal to 𝑉 . The model name 𝑁 is an optional field that, if defined,
specifies that the rule is not directly on an attribute of the model
𝑒 , but it is related to an attribute of another model 𝑁 that has a
reference to the entry 𝑒 . If an entry 𝑒 fulfill all the rules 𝑟 associated
to an interpreter 𝑖 ∈ I, we can associate the interpreter 𝑖 to the
entry 𝑒 .

4.2 Database Coverage
The Model Validation procedure systematically measures how good
the predictions of a model are, compared to the corresponding
experimental data. To consider the result of this procedure reliable,
the experimental database, if possible, should cover as much as
possible the domain with equal granularity. Database coverage can
help in this task, providing an immediate procedure to measure the
diversity and completeness of representation of the database.

We leverage categorical attributes and a multidimensional ma-
trix to represent the domain and to define a coverage index. This
approach overcomes the limitations of using patterns and thresh-
olds that are sensible and directly affect the measurements based
on the way they are defined. We create a detailed and generic repre-
sentation of the database coverage that can be used to assess which
part of the domain is poorly covered by data and consequently can
be used to start the process of Design of Experiments.

We measure the coverage C of dataset D that regards the model
M with 𝑛 attributes, 𝐴 = 𝐴1, ..., 𝐴𝑛 in three steps.

First, it is necessary to identify a subset of the model fields (or
attributes) {𝐴1, ..., 𝐴𝑠 } = 𝐴 ⊆ 𝐴, and transform them into categor-
ical attributes. A categorical attribute of the model is a field that
can only take a value from a restricted number of options. In this
way, any attribute 𝐴𝑖 ∈ 𝐴 can only have 𝑑𝐴𝑖

different ordered
categorical values (or possible options). If the attribute 𝐴𝑖 ∈ 𝐴 is
a continuous numeric field, we take the minimum (min) and the
maximum (max) value that can be taken by 𝐴𝑖 in the domain, and
we fix 𝑡 equidistant ticks from the range [𝑚𝑖𝑛,𝑚𝑎𝑥] and associate
the value of the attribute to the closest tick. Instead, if the possible
values of an attribute are not continuous but with high cardinal-
ity, we can identify a subset of the possible values leveraging a
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METADATA (META)

NAME VALUE EXP ID

RULE

MODEL NAME VALUE INTER. ID
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INTER. ID SOLVER

DATA 

EXP ID DATA NAME VALUE

EXPERIMENT (EXP.)

EXP ID INTER. ID

DATA NAME

Figure 3: The class model used to represent the domain knowledge and interpret correctly the semantic of the experiments.

hierarchy among them or using bucketization: similar values are
associated with the same bucket [2]. Given an entry 𝑟 of the model
M regarding an attribute 𝐴𝑖 ∈ 𝐴, it has a corresponding value of
𝑣𝐴𝑖 ,𝑟 = (𝑣1,𝑖 , ..., 𝑣𝑑𝐴𝑖

,𝑖 ) for the attribute 𝐴𝑖 where 𝑣𝑖, 𝑗 = 1 if 𝑟 has
the corresponding categorical value for the attribute 𝐴𝑖 otherwise
is 0. In this way, it is possible to register an array field of the model
where an entry can assumed multiple categorical values for the
same attribute. We use the notation 𝑣𝐴𝑖 ,𝑟 [𝑘] to denote the 𝑘-th
value of the attribute 𝐴𝑖 with 𝑘 ∈ [1, 𝑑𝐴𝑖

] for the entry 𝑟 .
Second, we define a multidimensional space that reflects our

database’s coverage among the 𝐴𝑠 set of attributes with cardinality
|𝐴𝑠 | = 𝑠 . Each characteristic 𝐴𝑖 ∈ 𝐴 defines a dimension of the
space of size 𝑑𝐴𝑖

. We then create a matrix, called coverage matrix
CM , with dimension 𝑑CM = 𝑑𝐴1 × ... × 𝑑𝐴𝑠

to represent this space.
Finally, after initializing all the matrix cells to 0, for every entry

𝑟 in the model M, for every possible combination of categorical
values of the attributes, we update the coverage matrix using Equa-
tion (1) only if it holds the condition in Equation (2) for 𝑟 when
𝑖𝑚 ≠ 0 with𝑚 ∈ [1, 𝑠].

CM [𝑖1, ..., 𝑖𝑠 ] += 1 (1)

𝑣𝐴1,𝑟 [𝑖1] == ... == 𝑣𝐴𝑠 ,𝑟 [𝑖𝑠 ] == 1 (2)
The final result is a density matrix that represents the coverage

of our database regarding some given categorical attributes. Imme-
diately, we can define a database coverage index: after examining
all the entries 𝑟 present in the dataset D, we can count the number
of cells with value bigger than a given threshold 𝑇 , and normalize
this value on the total number of cells (Equation (3)).

C =

∑
𝑖∈[1,𝑑𝐴1 ],...,𝑘∈[1,𝑑𝐴𝑠 ] 1, 𝑖 𝑓 𝐶M [𝑖, ..., 𝑘] ≥ 𝑇

𝑑CM
∈ [0, 1] (3)

4.3 Data cleaning
Data-driven applications are sensitive to data quality, but in do-
mains where the experimental data are rare and affected by non-
negligible uncertainty, it is hard to define and measure the quality
level of an experiment based on which accept or reject the insertion
in the repository. As discussed in Section 3, the process that we have
identified tries to mitigate three different data quality dimensions:
consistency, completeness, and accuracy. The domain-specific auto-
matic checks, for example, ensure consistency, examining that the
unit of measurement of a property is valid. Instead, in the verifica-
tion step, the scientist completes the empty mandatory metadata
of the experiment. The accuracy of experimental data affected by
uncertainty is hard to quantify, but the combination of a human-
in-the-loop, the predictive model, and a similarity index can help
in this task. The predictive model has its own uncertainty, for this

METADATA (META)

NAME VALUE EXP ID

Reactor PFR 1

Exp. Type IDT 1

Reactor RCM 2

IDT Type d/dt OH 2

RULE

MODEL NAME VALUE INTER. ID

META Reactor PFR 50

META Exp. Type IDT 50

META Reactor RCM 60

META IDT Type d/dt OH 60

MAPPING

INTER. ID TYPE DATA NAME

50 X-Axis pressure

50 Y-Axis temperature

60 Y-Axis IDT

60 X-Axis temperature

INTERPRETER (INTER.)

INTER. ID
...

50 ...

60 ...

DATA 

EXP ID DATA NAME VALUE

1 temperature [1, 2, 3]

1 pressure [10, 20, 30]

2 temperature [4, 5, 6]

2 IDT [11, 22, 33]

EXPERIMENT (EXP.)

EXP ID INTER. ID

1 50

2 60

Figure 4: An example of the rule-based interpretation.

reason, if we use a similarity index that quantifies the difference
between the predicted data to the experimental data, we can au-
tomatically identify an experiment that has a behavior somewhat
different from the other similar experiments. It will then be the sci-
entist who establishes what happened case by case, invalidating the
experiment, if necessary, through the metadata of the state. Once
an iteration of the simulation-analysis-cleaning loop is terminated,
the cycle can start over, and the attention is moved over another
experiment. Section 5 presents examples on data cleaning, database
coverage and semantic interpretation.

5 DISCUSSION
The backbone of automation in a scientific datamanagement system
is the ability to understand the semantic of an experiment. In our
case study means distinguishing the x-axis from the y-axes and
correctly pairing the experimental properties with the simulated
data. In Figure 4 there is an example of the Interpreter assignment to
two experiments based on rules. Interpreter with ID 50 is assigned
to experiment with ID 1. In fact, all the rules specified by this
interpreter are fulfilled by the experiment. Then, thanks to the
interpreter, we are able to recognize the x-axis and the y-axis of
the experimental data.

SciExpeM has a database of about 500 experiments, which, as
described in Section 4.2, have been categorized based on two meta-
data as suggested by domain experts: temperature and pressure.
Specifically, the temperature is tokenized from a min of 500 K to a
max of 2000 K in steps of 25 degrees. Instead, the pressure goes from
0 to 40 bar with step 10. The coverage index using as threshold 1 is
0.88. Instead, if 3 and 5 are the thresholds, the coverage index is 0.55
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Figure 5: An heatmap representing the density of the cover-
age matrix.

and 0.32, respectively. Figure 5 shows the density of the coverage
matrix CM , which is used to calculate these indices.

Through the interpreter, SciExpeM can simulate an experiment
with different models and compare the results.

With model validation, given a domain-specific similarity mea-
sure, we measure the predictive performance of a model against
a set of experimental data. The analyses of the similarity scores
after the model validation provide essential information for the
model improvement and can also be used to improve the quality of
the repository itself. In fact, we can also use the predictive model
capabilities to perform data cleaning. A rule-based approach for
data cleaning is already implemented, and it is focused on syntax
or semantic rules on attributes of the database model, but it is not
powerful enough to understand if the measurements contained
inside the experimental data are reliable.

We combine the use of the predictive model with some automatic
statistical investigation tools to detect outliers [12]. For this task, we
leverage the categorization of experiments described in Section 3:
it is reasonable to think that the prediction performance of a model
over a set of data belonging to the same category, i.e., the same
portion of the domain, is similar. A significant deviation from the
average of the similarity index of a simulation is a bell for a possible
outlier. As we said in Section 3, each entry of the database has
metadata that specify its status. If an entry is a possible outlier,
we automatically tag it with a specific label, in the status that
alerts the human-in-the-loop that a further inspection is required.
This procedure verifies if the model is wrong, providing clues for
the model improvement or for assessing the unreliability of the
experimental data. In the latter case, the entry status is changed to a
specific value, invalid, that implies to exclude it to further analysis,
but the experiment must still be there to exclude re-entering it in
the repository in the future.

In our case study, we use Curve Matching [4], a similarity index
of two curves: one is the experimental data, the other one is pre-
dicted data by the model. In Figure 6, it is possible to observe one
iteration of the continuous loop of analysis-improvement of the
model in which both the model and the experimental database can
be improved. In this specific case, an unreliable experiment is iden-
tified (Figure 6a) and then excluded from the following iterations
(Figure 6b) after a deeper analysis of the scientist. In Figure 6b the

(a) Before an iteration of the analysis-improvement loop. In
red a possible outlier. In this case the data was evaluated by
an expert as unreliable.

(b) After excluding the unreliable data from the database, we
re-analyze the same set of data, highlighting other possible
sources of information/errors.

Figure 6: Heatmap visualization of the outlier detection in-
side the human-in-the-loop process. On the y-axis different
models, on the x-axis different experiments. The heatmap
value depicts the Curve Matching score.

heatmap color is rescaled accordingly, to depict that the attention
will be on different experiments in the next iteration.

6 CONCLUDING REMARKS
In this work, we have presented the problems and proposed solu-
tions for managing a complex database that represents an experi-
mental domain. As in many cases, creating a scientific repository is
not the final goal, but it is preliminary to extract value from the data.
For this purpose, we have created a human-in-the-loop process in
which the users have different tasks. First, to solve the heterogeneity
of the data, using general metadata as additional model attributes
and with the help of the users, we can categorize and distinguish
which portion of the domain is precisely represented by the experi-
ments. Second, using a rule-based procedure, we can automatically
understand the semantic of experimental data. This information is
essential for the following automatic analyses. Finally, as in many
validation scenarios, the reliability of the prediction accuracy de-
pends on the coverage of the test set. For this purpose, we develop
a general coverage index, that given a set of model attributes that
define the domain space, quantifies the domain coverage of the
database. Besides, we can combine this information with a statisti-
cal investigation. Given a similarity measure and human support,
we can establish if an experiment outlier is a source of information
for the predictive model improvement or unreliable experimental
data, thus improving the overall database quality.
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