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Abstract 
This paper simulates an analogue self-learning pulse neural network based on memristive 

elements, taking into account their stochastic properties. A variable-resistor model of a thin-

film memristor based on an exponential model for dopant drift is used as a memristor model. 

Stochastic properties are accounted for by a term in the memristor equation of state, which 

presents an additive (Gaussian) noise. Memristor switch from low-resistance to high-

resistance state in this case occurs differently from cycle to cycle, corresponding to the 

experimental data. The mathematical model previously developed by the authors is used; it 

describes the analogue implementation of a pulse self-learning neural network with 

memristive elements as synaptic weights and a learning mechanism based on the STDP 

method. The operation of a network consisting of five neurons with 320 synapses for 

recognition of various black and white images is simulated. As a result of the simulation, the 

network was successfully learnt to recognize the given patterns 
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1. Introduction 

Artificial neural networks play a great role in modern life [1]. With their development, it became 

possible to study actual and practically significant tasks that often cannot be solved by classical 

approaches. The recognition task belongs to such tasks. The scope of recognition applications is very 

extensive: text recognition (including handwriting), machine vision, speech or fingerprints 

recognition, etc. Neural networks are actively used in such areas as: economics, medicine and 

healthcare, avionics, the Internet, robotics, security, etc.  

One of the factors restraining the neural network development is the high computational 

complexity of the corresponding neural network algorithms: a network training time can be measured 

in weeks and months. Currently, to speed up their work, research is being conducted on creating 

special processors [2] based on the principles of the human brain activity. These processors are often 

a hardware implementation of pulse neural networks. 

In conjunction with the development of specialized computing devices, the use of other 

computational principles seems promising, namely analogue computations instead of digital ones, 

since they are performed in orders of magnitude faster. Relatively new electrical elements - 

memristors [3]-[5] - are actively used in the field of analogue computing. A memristor is a resistor, 

which conductivity depends on the total electric charge flowing through it. In the absence of current, 

 
VI International Conference Information Technologies and High-Performance Computing (ITHPC-2021), 

September14–16, 2021, Khabarovsk, Russia 

EMAIL: morozov@infway.ru (A. 1); kristal83@mail.ru (A. 2);reviznikov@mai.ru (A. 3)  
ORCID: 0000-0003-0364-8665 (A. 1); 0000-0002-0059-0712 (A. 2); 0000-0003-0998-7975 (A. 3) 

 
©️  2021 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  

 



85 
 

it keeps its conductivity, which allows it to be used as an elementary memory cell, and it is possible to 

dynamically change its resistance in the presence of current. This is a certain similarity of the 

memristors’ properties with the properties of biological synapses, allowing them to be used to create 

analogue neural networks [6]. 

Basically, the memristive effect occurs in various oxides due to the movement of ions (oxygen 

vacancies) and the formation/destruction of conducting filaments. The ion movement is random and, 

as a consequence, memristors have certain stochastic properties. A detailed experimental and 

theoretical study of this effect was carried out in [7]-[9].  

Mathematical models of memristors are traditionally formulated as dynamic systems with respect 

to the parameter of memristor state, which characterizes the level of element’s conductivity [10]-[12]. 

To account for random effects, a stochastic differential equation with additive noise for the state 

variable can be used instead of the deterministic one [13]. 

In this work we simulate a two-layer full-connected network with one layer of memristor elements 

(synapses) [14]; the network consists of five neurons with 320 synapses. This number of neurons is 

due to the number of images recognized (5 pieces); the number of synapses is determined by the total 

number of pixels: 5x8x8 = 320. There is used the network architecture, in which each memristor 

corresponds to a transistor (1T1R crossbar architecture). Due to this architecture, it is possible to train 

the network at the hardware level using the STDP (Spike Timing Dependent Plasticity) method [15]-

[18]. According to this method, the change of neuron synaptic weights depends on the time difference 

between input and output pulses. 

The main purpose of this scientific work is to simulate the functioning of the self-learning pulse 

neural network with the hardware implementation based on memristive elements, taking into account 

their stochastic properties in learning the recognition of five images. 

In the second section, a model of a variable-resistor thin-film memristor, based on an exponential 

model of dopant drift, is presented. The third section provides a mathematical model of the neural 

network. Next, the neural network operation is simulated and, finally, the main results of the work are 

formulated. 

2. Mathematical model of a memristor 

An approach based on representation of a memristor as a dynamic system with a generalized state 

variable is widely used for simulating the memristor’s operation [10-12]. Variation of the state 

variable determines the dynamics of the element's switching between different modes. Stochastic 

effects can be accounted for by introducing a stochastic additive term into the dynamic system in the 

form of additive white (Gaussian) noise [13]. The equation specifying the change in the state variable 

of the memristor can be written in the following generalized form: 

( )dx F x dt dW= + , 

Where F  - rate of change of the state variable;   - coefficient characterizing noise intensity; W  - 

Wiener process. 

Concretization of the functional dependence ( )F x  and relation of the state variable with physical 

parameters gives a memristor model. In the present paper, a variable-resistor thin-film memristor 

model based on the exponential model for a doping impurity drift is used [19]: 
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where  

 0,1x  — state variable;  

on
R , 

off
R  — minimum and maximum memristor resistance;  

I , V , R  — actual memristor’s current, voltage, and resistance values;  

p
V , 

n
V  — values of voltages at which state switching occurs;  

v
  —doping mobility coefficient;  

D  —semiconductor film thickness;  
  — coefficient characterizing the noise intensity;  

W  — Wiener process. 

To obtain an approximate realization of the stochastic process ( )x t  we use the Runge-Kutt method 

of order 1.5. We determine an approximate solution using the grid 
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1 1k k k

t t t
+ +

 = − , ( ) ( )1 1k k k
W W t W t

+ +
 = − . Let (0,1)N  is a normally distributed random variable 

with zero mathematical expectation and unit variance. Then the random value 
1k

W
+

  is calculated as 

1 1 1k k k
W z t
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where 
1k

z
+

 is chosen from (0,1)N . 

Note that we can use other methods of integrating stochastic ODEs, such as the Milstein method of 

first order, which for this problem would be equivalent to the Euler-Maruyama method. In this case, 

the solution on the ( 1)k + -th time layer will be defined as 

( )1 1 1k k k k k
x x F x t W

+ + +
= +  +  . 

In this work, the memristor’s operation was simulated the following parameter values: 205
on

R =  

Ohm, 2128
off

R =  Ohm, 
10

6 10
v


−

=  , 0.65
p

V =  V, 0.87
n

V = −  V, 621D =  nm, (0) 0x = , ( )V t  - see at 

Fig.1a. Such choice of parameters and voltage form is due to obtaining of memristor characteristics 

similar to the experimental characteristics for titanium oxide, given in [20]. The current vs. time 

dependence is shown in Fig. 1b, Fig. 1c shows resistance vs. time dependence, and Fig. 1d shows 

state change vs. time dependence. Fig. 2 shows the experimental volt-ampere characteristic and the 

model characteristic. 

 

 
Figure 1: Voltage (a), current (b), resistance (c) and state (d) vs. time dependences  
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Figure 2: Comparison of the model's volt-ampere characteristic with experimental data for titanium 
oxide 

 

The presence of noise in the memristor model causes all parameters to take on the stochastic 

properties. On the diagram with the volt-ampere characteristic, we can distinguish trajectories that 

correspond to different switching cycles of the memristor. Here we observe the good correspondence 

in the right part of the diagrams and satisfactory correspondence in their left parts. 

3. Mathematical model of a neuromorphic network 

We consider a two-layer fully connected self-learning analogue network with one layer of 

memristor elements (synapses); it consists of 64 inputs and 5 neurons (Fig. 3). 

According to the STDP method, the learning mechanism is implemented through feedback (
te

V ). At 

the moment of neuron activation, two pulses of opposite sign arrive via the feedback channel with 

delays. If there is activity at the synapse and a positive feedback pulse arrives, then the resistance 

value of the corresponding memristor decreases, and if a negative feedback pulse arrives, the 

memristor resistance increases. 

The neuron model is a parallel RC circuit. As soon as the value of the potential across the capacitor 

exceeds a certain threshold, its potential is reset, and signals  
te

V   and  
out

V  are generated. In addition, at 

the moment of neuron activation, the potential of other neurons decreases in proportion to the 

coefficient  .   

 
Figure 3: Schematic neural network implementation consisting of five neurons 
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The mathematical model is set in accordance with [14]. The main difference of the model 

presented below is the presence of a term dW  on the right-hand side of the state equations for 

memristors, which correspond to synapses. As a result, the entire model of the neuromorphic network 

becomes stochastic 
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where 
i

g
V  is the actual voltage value at the i-th input of the neural network; 

j

te
V  - the actual voltage 

value in the feedback of the j-th neuron; 
j

out
V - the actual voltage value at the output of the j-th neuron; 

j
  - time elapsed since the last activation of the j-th neuron; 

j

int
V  - voltage across the capacitor of the j-

th neuron; 
int

R , 
int

C  - the value of resistance and capacitance of neurons; te
V

+
,  te

V
−
,  

0

te
V  - the amplitude 

values of the feedback pulses and the default voltage value; out
V

+
 - the output pulse amplitude; 

th
V  - the 

neuron activation voltage level; 
,i j

R   - the memristor’s resistance value of the i-th synapse of the j-th 

neuron; 
,i j

x  - the memristor’s state of the i-th synapse of the j-th neuron; 
r

  - the feedback signal 

duration after neuron activation; 
s

  - the duration of one pulse in the feedback signal, 2
s r

  ; 
out

  - 

the duration of one pulse at the network output; α - suppression coefficient; 
ij

  
- the Kronecker 

symbol; ( )x  - delta function; ( )x - Heaviside function;   - coefficient characterizing the noise 

intensity; 
,i j

W - Wiener process corresponding to the i-th memristor of the j-th neuron. 

4. Simulation of the neuromorphic network operation. Results 

The recognition problem for five patterns is considered (Fig. 4) [21]. The process of training the 

network is as follows: for each epoch (equal to 2
r

  seconds), the input signals vector ( )
g

V t  

corresponds either to one of the recognized patterns or is set randomly (the elements of the vector 
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have a discrete distribution: 
i

g
V  = 0 V with a probability of 0.73 and 

i

g
V  = 2 V with a probability of 

0.27). Over time, the network adapts to pattern recognition. The Distribution of patterns among 

neurons occurs in the course of training. 

 

 
Figure 4: Recognized images 

 

The parameters of the mathematical model of the neural network are adjusted depending on the 

memristor model. For the used model, which corresponds to a memristor based on titanium oxide 

(TiO2), we have the following parameter values: 200
int

R =  Ohms, 45
int

C =  μF, 0.7
te

V
+
=  V,  0.9

te
V

−
= −  

V, 
0

10
te

V =  mV,  2
out

V
+
=  V, 9

th
V =   mV, 3

r
 =  ms, 50

s
 =  μs,  1.5

out
 =  ms. 

Fig. 5 shows the process of synaptic weight adaptation to recognized patterns. The shade of grey 

corresponds to the state variable value of the corresponding memristor: the darker, the greater the 

conductivity; the lighter, the less. At the initial moment of time, all weights are initialized with 

random values, and gradually change during the network operation. From about the 1200th era, 

patterns began to be seen, the recognition of which was trained by the network: the information was 

memorized by the neural network. The duration of one epoch is 1.5 ms. 

 
Figure 5: Change in synaptic weights in the process of training a neuromorphic network 

The correspondence of the network weights to the patterns indicates that the network has successfully 

trained to recognize the given images. Due to the stochastic component in the memristor model, 

patterns can be distributed among neurons in different ways and the adaptation of weights can occur 

at different rates. 

5. Conclusion 

The work is devoted to simulating the operation of an analogue self-learning pulse neural network 

built on the basis of memristive elements in the image recognition mode. The simulation is carried out 

taking into account the stochastic properties of memristors. A variable-resistor thin-film memristor 



90 
 

model based on an exponential dopant drift model, in which there is a term responsible for additive 

(Gaussian) noise, is considered. The ampere-voltage characteristics of the model are compared with 

experimental data on titanium oxide. The simulating of the operation for the network consisting of 

five neurons with 320 synapses, designed to recognize five different black-and-white images of 8 by 8 

pixels, is performed. As a result the network has successfully trained to recognize the given patterns. 
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