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Abstract  
Variational inequalities corresponding to nonlinear contact problems in mechanics often arise 

in engineering practice. To solve them, duality methods are widely used. As a rule, they are 

based on the classical methods of constructing Lagrange functionals with linear dependence in 

dual variables. This approach is typical for determining the saddle point – the displacement 

vector and normal stress in the contact area. The linear dependence in the dual variables does 

not allow to prove the theoretical convergence to the saddle point of the well-known iterative 

methods. It is possible to justify the convergence only in the primal variable under the 

condition that the shift in the dual variable is sufficiently small.  
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1. Introduction 

The contact problem for an elastic body with a rigid support is represented in the form of a 

variational inequality or an equivalent constrained minimization problem of a convex energy functional. 

Using the classical duality scheme, this problem can be reduced to the problem of finding a saddle point 

for the Lagrange functional [1-2]. Saddle point search methods for classical Lagrange functionals have 

been deeply and in detail investigated in many works [3-5], but as a rule, they guarantee convergence 

only in a primal variable. The question of convergence in a dual variable remains open. To overcome 

this drawback, a modified duality scheme is considered in the paper, on the basis of which a saddle 

point search method is constructed, which guarantees convergence in the dual variable as well. 

2. Two-dimensional contact problem of elasticity  

Let Ω ⊂ 𝑅2 be a bounded domain with Lipschitz boundary Γ. 

 
Figure 1: Elastic body with the contact zone 
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We assume that on part of the boundary  ΓD the body is rigidly fixed, on part Γ𝑁 the surface forces 

are given. The contact zone of an elastic body with a rigid foundation will be denoted by Γ𝐾. 

For the displacement vector 𝑣 = (𝑣1, 𝑣2), define the strain tensor 𝜀 = {𝜀𝑖𝑗}𝑖,𝑗=1
2

 

𝜀𝑖𝑗(𝑣) =
1

2
(
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗

𝜕𝑥𝑖
) , 𝑖, 𝑗 = 1,2,  

and the stress tensor 𝜎 = {𝜎𝑖𝑗}𝑖,𝑗=1
2

 

𝜎𝑖𝑗(𝑣) = 𝑐𝑖𝑗𝑘𝑚𝜀𝑘𝑚(𝑣),  

where 𝐶 = {𝑐𝑖𝑗𝑘𝑚} is a given elasticity tensor with the usual properties of positive definiteness and 

symmetry 𝑐𝑖𝑗𝑘𝑚 = 𝑐𝑗𝑖𝑘𝑚 = 𝑐𝑘𝑚𝑖𝑗, 𝑖, 𝑗, 𝑘,𝑚=1,2; 𝑐𝑖𝑗𝑘𝑚𝛼𝑖𝑗𝛼𝑘𝑚 ≥ 𝑐0𝛼𝑖𝑗𝛼𝑖𝑗, 𝑐0 > 0 – const. 

Summation over repeated indices is assumed. 

Let us specify vector-functions of the body and surface forces 𝑓 = (𝑓1, 𝑓2) and 𝑝 = (𝑝1, 𝑝2), 
respectively. The boundary value problem is formulated as follows 

−𝑑𝑖𝑣 𝜎(𝑢) = 𝑓  in  Ω, (1) 

𝑢 = 0  on  Γ𝐷 , (2) 

σ(𝑢)𝑛 = 𝑝  on  Γ𝑁 , (3) 

𝑢𝜈 ≤ 0, 𝜎𝜈(𝑢) ≤ 0,     𝜎𝜈(𝑢)𝑢𝜈 = 0  on  Γ𝐾 , (4) 

𝜎𝜏 = 0  𝑜𝑛  Γ𝐾 , (5) 

where 𝑛 = (𝑛1, 𝑛2) is the unit outward normal vector to Γ𝑁, 𝜈 = (𝜈1, 𝜈2) is the unit outward normal 

vector to Γ𝐾, 𝜎𝜈(𝑢) = 𝜎𝑖𝑗(𝑢)𝜈𝑖𝜈𝑗, 𝜎𝜏(𝑢) = 𝜎(𝑢)𝜈 − 𝜎𝜈(𝑢) ∙ 𝜈, where 𝜎𝜈(𝑢) and 𝜎𝜏(𝑢) are normal and 

tangential components of the surface traction on Γ𝐾, respectively. 

The boundary value problem (1)-(5) belongs to the class of problems with a free boundary since the 

adhesion region (𝑢𝜈 = 0) on Γ𝐾 is not known in advance and is found simultaneously with the desired 

solution of the problem. Condition (4) means non-penetration of an elastic body into a rigid foundation. 

The problem (1)-(5) has a variational formulation. Let 𝑓 ∈ [𝐿2(Ω)]
2. Define the set of admissible 

displacements 

𝐾 = {𝑣 ∈ [𝐻Γ𝐷
1 (Ω)]

2
: 𝑣𝜈 ≤ 0  on Γ𝐾},  

where 𝐻Γ𝐷
1 (Ω) = {𝑣 ∈ 𝐻1(Ω): 𝑣 = 0 on Γ𝐷}. 

The problem (1)-(5) corresponds to the variational inequality [6] 

𝑎(𝑢, 𝑣 − 𝑢) ≥ ∫𝑓 ⋅ (𝑣 − 𝑢) 𝑑Ω
Ω

+∫ 𝑝 ⋅ (𝑣 − 𝑢) 𝑑Γ
Γ𝑁

   ∀ 𝑣 ∈ 𝐾, (6) 

here 𝑎(𝑢, 𝑣) = ∫ 𝜎𝑖𝑗(𝑣)𝜀𝑖𝑗(𝑣) 𝑑ΩΩ
= ∫ 𝑐𝑖𝑗𝑘𝑚𝜀𝑘𝑚(𝑣)𝜀𝑖𝑗(𝑣) 𝑑ΩΩ

. 

Variational inequality (6) is equivalent to the minimization problem 

{
𝐽(𝑣) →  min,
𝑣 ∈ 𝐾,

 (7) 

where 𝐽(𝑣) =
1

2
𝑎(𝑢, 𝑣) − ∫ 𝑓 ⋅ 𝑣 𝑑Ω

Ω
− ∫ 𝑝 ⋅ 𝑣 𝑑Γ

Γ𝑁
. 

It is known that the solution 𝑢 ∈ 𝐾 to the problem (7) exists and is unique, and it satisfies the 

equilibrium equation (1) and boundary conditions (2)-(5) in the generalized sense [6]. 

Let us formulate the dual problem for the problem (7) using the classical duality scheme. For this, 

we define the Lagrange functional 

𝐿(𝑣, 𝑙) = 𝐽(𝑣) + ∫ 𝑙 𝑣𝜈  𝑑Γ
Γ𝐾

   ∀ (𝑣, 𝑘) ∈ [𝐻Γ𝐷
1 (Ω)]

2
× 𝐿2(Γ𝐾) (8) 

and the corresponding dual functional 

𝜑(𝑙) = inf
𝑣∈[𝐻Γ𝐷

1 (Ω)]
2
𝐿(𝑣, 𝑙). 

(9) 

Problem  

{
𝜑(𝑙) →  sup,

𝑙 ∈ 𝐿2
+(Γ𝑘),

  

where 𝐿2
+(Γ𝑘) = {𝑙 ∈ 𝐿2(Γ𝐾): 𝑙 ≥ 0 on Γ𝐾}, is called dual to the problem (7). 
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A pair (𝑣∗, 𝑙∗) ∈ [𝐻Γ𝐷
1 (Ω)]

2
× 𝐿2

+(Γ𝐾) is called a saddle point of the Lagrange functional 𝐿(𝑣, 𝑙) if 

the following two-sided inequality takes place 

𝐿(𝑣∗, 𝑙) ≤ 𝐿(𝑣∗, 𝑙∗) ≤ 𝐿(𝑣, 𝑙∗)    ∀(𝑣, 𝑙) ∈ [𝐻Γ𝐷
1 (Ω)]

2
× 𝐿2

+(Γ𝐾)  

In this case, 𝑣∗ is the desired solution 𝑢 to the problem (7), and 𝑙∗ is the solution of the dual problem (9) 

and coincides on Γ𝐾 with the normal stress 𝜎𝜈(𝑢). 

3. Modified Lagrange functional  

As already noted, the solution of the contact problem of the theory of elasticity is closely related to 

the search for the saddle point of the classical Lagrange functional. The well-known saddle point search 

algorithms for classical Lagrange functionals do not guarantee convergence in dual variables. This 

situation occurs, for example, in the well-known Uzawa method [3-4]. To overcome this serious 

drawback, let us consider a modified duality scheme that allows one to construct algorithms for finding 

saddle points that provide convergence in both primal and dual variables. 

Consider the modified Lagrange functional [7-8] 

𝑀(𝑣, 𝑙) = 𝐽(𝑣) +
1

2𝑟
∫ (((𝑙 + 𝑟𝑣𝜈)

+)2 − 𝑙2)𝑑Γ
Γ𝐾

   ∀ (𝑣, 𝑘) ∈ [𝐻Γ𝐷
1 (Ω)]

2
× 𝐿2(Γ𝐾). (10) 

Here (𝑙 + 𝑟𝑣𝜈)
+ = 𝑚𝑎𝑥{0; 𝑙 + 𝑟𝑣𝜈}, 𝑟 > 0 is arbitrary positive constant. 

For the modified functional 𝑀(𝑣, 𝑙), we define a saddle point as follows. 

Definition. A pair (𝑣∗, 𝑙∗) ∈ [𝐻Γ𝐷
1 (Ω)]

2
× 𝐿2(Γ𝐾) is called a saddle point of the modified Lagrange 

functional 𝑀(𝑣, 𝑙) if the following two-sided inequality takes place 

𝑀(𝑣∗, 𝑙) ≤ 𝑀(𝑣∗, 𝑙∗) ≤ 𝑀(𝑣, 𝑙∗)    ∀(𝑣, 𝑙) ∈ [𝐻Γ𝐷
1 (Ω)]

2
× 𝐿2(Γ𝐾). (11) 

The definition of the saddle point for the modified Lagrange functional 𝑀(𝑣, 𝑙) differs from the 

definition of the saddle point for the classical one in that in the two-sided inequality (11) the domain of 

variation of the dual variable 𝑙 coincides with the entire functional space 𝐿2(Γ𝐾), in contrast to the 

corresponding inequality for the classical analogue, whereas the domain variation of the dual variable 𝑙 
is taken by 𝐿2

+(Γ𝐾). Despite this, the sets of saddle points for 𝐿(𝑣, 𝑙) and 𝑀(𝑣, 𝑙) coincide. This 

important property of the modified Lagrange functionals is provided by the nonlinear dependence of the 

𝑀(𝑣, 𝑙) on the dual variable in formula (10). 

Introduce the dual functional 

𝑀(𝑙) = inf
𝑣∈[𝐻Γ𝐷

1 (Ω)]
2
𝑀(𝑣, 𝑙) 

 

and the corresponding dual problem 

{
𝑀(𝑙) →  sup,

𝑙 ∈ 𝐿2(Γ𝐾).
 (12) 

The following statement holds [7, 8]. 

Theorem. The dual functional 𝑀(𝑙) is Gateaux differentiable in 𝐿2(Γ𝐾) and its derivative ∇𝑀(𝑙) 
satisfies the Lipschitz condition with the constant 1/𝑟, that is  

‖∇𝑀(𝑙1) − ∇𝑀(𝑙2) ‖𝐿2(Γ𝐾)
≤
1

𝑟
‖𝑙1 − 𝑙2 ‖𝐿2(Γ𝐾)  ∀ 𝑙1, 𝑙2 ∈ 𝐿2(Γ𝑘).  

It can be shown that ∇𝑀(𝑙) = max{𝑢𝜈, −𝑙/𝑟}   ∀ 𝑙 ∈ 𝐿2(Γ𝑘), where 

𝑢 = arg min
𝑣∈[𝐻Γ𝐷

1 (Ω)]
2
{𝐽(𝑣) +

1

2𝑟
∫ (((𝑙 + 𝑟𝑣𝜈)

+)2 − 𝑙2)𝑑Γ
Γ𝐾

} .  

To solve the dual problem (12), taking into account the above theorem, we can consider the gradient 

method  

𝑙𝑘+1 = 𝑙𝑘 + 𝑟 ∇𝑀(𝑙𝑘), 𝑘 = 1,2, …  

with any initial 𝑙0 ∈ 𝐿2(Γ𝐾). 
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Since ∇𝑀(𝑙𝑘) = max{𝑢𝜈
𝑘+1, −𝑙𝑘/𝑟}, the gradient method is transformed into the following Uzawa 

algorithm 

(𝑖) 𝑢𝑘+1=arg min
𝑣∈[𝐻Γ𝐷

1 (Ω)]
2
{𝐽(𝑣) +

1

2𝑟
∫ (((𝑙𝑘 + 𝑟𝑣𝜈)

+
)
2
− (𝑙𝑘)

2
)𝑑Γ

Γ𝐾

} ,

(𝑖𝑖) 𝑙𝑘+1 = (𝑙𝑘 + 𝑟 𝑢𝜈
𝑘+1)

+
.

 (13) 

Under the condition of solvability of the dual problem (12), it is possible to prove the weak 

convergence of the sequence {𝑙𝑘} generated by the Uzawa algorithm to the solution 𝑙∗ of the dual 

problem. In this case, the sequence {𝑢𝑘} converges to the desired solution 𝑢∗ with respect to the 

minimized functional, that is lim
𝑘→∞

𝐽(𝑢𝑘) = 𝐽(𝑢∗) [7]. It can be proved, if the sequence {𝑢𝑘} belongs to 

[𝐻2(Ω)]2 and is bounded, then the sequence  {(𝑢𝑘, 𝑙𝑘)} converges to (𝑢∗, 𝑙∗) at the norm of 

[𝐻Γ𝐷
1 (Ω)]

2
× 𝐿2(Γ𝐾) and, at the same time, 𝑙∗ = −𝜎𝜈(𝑢

∗). 

4. Numerical solution of the contact problem of elasticity 

Research on the numerical analysis of variational inequalities is carried out, as a rule, on the basis of 

the finite element method [2, 3]. 

Let Ω ⊂ 𝑅2 be a bounded polygonal domain. Let us carry out a finite element approximation of 

problem (7) using piecewise bilinear basis functions [9]. By standard transformations, problem (7) is 

transformed into a finite-dimensional quadratic programming problem  

{
 

 
𝒥(𝑥) =

1

2
< 𝐴𝑥, 𝑥 > −∑(𝑓𝑗1𝑥𝑗1 + 𝑓𝑗2𝑥𝑗2) −

𝑗∈𝒩

∑(𝑝𝑗1𝑥𝑗1 + 𝑝𝑗2𝑥𝑗2) → min

𝑗∈ℳ

,

𝑙(𝑥 ⋅ 𝜈)𝑗 ≡ 𝑥𝑗1𝜈1 + 𝑥𝑗2𝜈2 ≤ 0    𝑗 ∈ 𝒫.

 (14) 

where 𝒩 is the set of indices of quadrilateral mesh nodes, |𝒩| is the cardinality of the set 𝒩, ℳ is the 

set of indices of mesh nodes on Γ𝑁, 𝒫 is the set of mesh nodes indices on Γ𝐾, 𝐴 = (𝑎𝑖𝑗), 𝑖, 𝑗 =

1,… ,2|𝒩| is the stiffness matrix, (𝑓𝑗1, 𝑓𝑗2), (𝑝𝑗1, 𝑝𝑗2) are the coordinates of the expansion of the 

vectors of volume and surface forces in the finite element basis of each node 𝑗, respectively. 

Under the natural condition that 𝑚𝑒𝑎𝑠 Γ𝐷 > 0, the matrix 𝐴 is symmetric and positive definite. The 

function to be minimized in problem (14) corresponds to a finite-dimensional approximation of the 

functional 𝐽(𝑣) in problem (7). To solve the problem (7), we use the Uzawa algorithm with a modified 

Lagrange functional in a finite-dimensional version. Let us apply one of the quadrature formulas for the 

finite-dimensional approximation of the expression  
1

2𝑟
∫ (((𝑙 + 𝑟𝑣𝜈)

+)2 − 𝑙2)𝑑Γ
Γ𝐾

.  

As a result, we obtain a continuously differentiable piecewise-quadratic function in the variables 𝑥𝑗1, 

𝑥𝑗2, 𝑗 ∈ 𝒫, of the form 

1

2𝑟
∑(((𝑙𝑗 + 𝑟(𝑥 ⋅ 𝜈)𝑗)

+
)
2
− (𝑙𝑗)

2
)

𝑗∈𝒫

ℎ𝑗,  

where 𝑙𝑗, ℎ𝑗 are known quantities. 

Let us set an arbitrary 𝑙0 ∈ 𝑅|𝒫|, where |𝒫| is the cardinality of the set  𝒫. Uzawa algorithm (13) in 

the finite-dimensional case has the form  

(𝑖)′ 𝑥𝑘+1=arg min
𝑥∈𝑅2|𝒩|

{𝒥(𝑥) +
1

2𝑟
∑(((𝑙𝑗

𝑘 + 𝑟(𝑥 ⋅ 𝜈)𝑗)
+
)
2
− (𝑙𝑗

𝑘)
2
)

𝑗∈𝒫

ℎ𝑗} ,

(𝑖𝑖)′′ 𝑙𝑗
𝑘+1 = (𝑙𝑗

𝑘 + 𝑟(𝑥 ⋅ 𝜈)𝑗)
+
,   𝑗 ∈ 𝒫.

 (15) 

Let us consider the step (𝑖)′. It is the problem of minimizing a continuously differentiable piecewise 

quadratic function. A feature of the function to be minimized is that its Hessian has discontinuities on 
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some linear manifolds and, at the same time, the gradient of the function is continuous. To minimize 

function (16) we apply a natural generalization of Newton’s method [10], [12] 

𝒥(𝑥) +
1

2𝑟
∑(((𝑙𝑗

𝑘 + 𝑟(𝑥 ⋅ 𝜈)𝑗)
+
)
2
− (𝑙𝑗

𝑘)
2
)

𝑗∈𝒫

ℎ𝑗 (16) 

under a fixed 𝑙𝑘. 

Let us assume that at some step 𝑚 the monotony of generalized Newton method is broken, i.e. 

𝒥(𝑥𝑚−1) +
1

2𝑟
∑(((𝑙𝑗

𝑘 + 𝑟(𝑥𝑚−1 ⋅ 𝜈)𝑗)
+
)
2
− (𝑙𝑗

𝑘)
2
)

𝑗∈𝒫

< 

< 𝒥(𝑥𝑚) +
1

2𝑟
∑(((𝑙𝑗

𝑘 + 𝑟(𝑥𝑚 ⋅ 𝜈)𝑗)
+
)
2
− (𝑙𝑗

𝑘)
2
)

𝑗∈𝒫

. 
 

Let �̃� ⊂ 𝒫 and be such that (𝑙𝑗
𝑘 + 𝑟(𝑥𝑚−1 ⋅ 𝜈)𝑗)

+
= 𝑙𝑗

𝑘 + 𝑟(𝑥𝑚−1 ⋅ 𝜈)𝑗 for all 𝑗 ∈ �̃�. Consider the 

convex quadratic function 

𝒥(𝑥) +
1

2𝑟
∑((𝑙𝑗

𝑘 + 𝑟(𝑥 ⋅ 𝜈)𝑗)
2
− (𝑙𝑗

𝑘)
2
)

𝑗∈�̃�

. (17) 

Its Hessian and gradient will be denoted as 𝐴𝑚−1 and 𝐴𝑚−1𝑥 − 𝐵𝑚−1, respectively, where 𝐵𝑚−1 is 

some vector. Taking into account that according to Newton’s method 

𝑥𝑚 = 𝑥𝑚−1 − 𝐴𝑚−1
−1 (𝐴𝑚−1𝑥

𝑚−1 − 𝐵𝑚−1),  

then 

−〈(𝐴𝑚−1𝑥
𝑚−1 − 𝐵𝑚−1), 𝑥

𝑚 − 𝑥𝑚−1〉 = 〈𝐴𝑚−1(𝑥
𝑚 − 𝑥𝑚−1), 𝑥𝑚 − 𝑥𝑚−1〉 > 0  

or 

〈𝐴𝑚−1𝑥
𝑚−1 − 𝐵𝑚−1, 𝑥

𝑚 − 𝑥𝑚−1〉 < 0.  

Thus, in the vicinity of the point 𝑥𝑚−1, the minimized function (16) decreases locally in the direction  

𝑥𝑚 − 𝑥𝑚−1. The point 𝑥𝑚 is the minimum point of the quadratic function (17), but is not the desired 

minimum point of the convex function (16). Using the well-known rule of Armijo [11] we find a 

number 𝛼𝑚 > 0 such that the value of the minimized function (17) at the element 𝑥𝑚−1 +
𝛼𝑚(𝑥

𝑚 − 𝑥𝑚−1) will be less that at the element 𝑥𝑚−1. Next, we take 𝑥𝑚−1 + 𝛼𝑚(𝑥
𝑚 − 𝑥𝑚−1) as a 

new �̃�𝑚 and return to the usual Newtonian method. We ensured monotonicity in the process of 

minimizing the piecewise quadratic continuously differentiable function (16). This ensures the 

convergence in the minimized function of the generalized Newton’s methods, and from strong 

convexity, the convergence in the arguments 𝑥 in a finite number of steps (due to the finiteness of the 

set 𝒫). The criterion that the minimum point of function (16) is found is the repeatability of the set �̃� at 

two successive steps of the generalized Newton method. The use of the generalized Newton method at 

step (𝑖)′ of the Uzawa algorithm with a modified Lagrange function significantly accelerates the search 

for a solution to the problem (14). As a rule, the monotonicity of the minimization process at the (𝑖)′ 
step is achieved automatically after the first or second application of the Armijo rule. 

Overall, the Uzawa algorithm (15) rapidly converges to a saddle point due to the fast stabilization of 

the sequence {𝑙𝑘}. 
Note that, within the framework of solving the linear programming problem, several authors 

previously investigated similar algorithms for minimizing piecewise quadratic functions [12]. 

5. Numerical experiments 

We shall consider the following model example: the body Ω = (0, 3)  ×  (0, 1) (in m) is made of an 

elastic isotropic, homogeneous material characterized by Young’s modulus E = 21.19x104 MPa and 

Poisson’s ratio μ = 0.277. It is fixed along Γ𝐷 = {0} × (0, 1)  and linearly distributed surface tractions 

of density 𝑝 = (𝑝1, 𝑝2) are applied of Γ𝑁 = Γ𝑁1 ∪ Γ𝑁2, where Γ𝑁1 = {3} × (0, 1) and Γ𝑁2 = (0, 3) × {1}. 

We consider the following traction forces: 𝑝1(x) = 0, 𝑝2(x) = 1 MPa on Γ𝑁1, 𝑝1(x) = 0, 𝑝2(x) =

−2 3⁄ (3 − x1) MPa on Γ𝑁2, parameter 𝑟 = 108.  
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The body is discretized into 𝑁𝑥 × 𝑁𝑦 4-node quadrilateral finite elements, where 𝑁𝑥(= 3𝑁𝑦) is 

varied to generate problem instances with different sizes. The number of degrees of freedom of 

displacements is 𝑛𝑝 = 2(𝑁𝑥 + 1)(𝑁𝑦 + 1) and the number of contact candidate nodes is 𝑛𝑑 = 𝑁𝑥 + 1. 

We assume the small deformation and solve the finite-dimensional optimization problem using the 

generalized Newton method (GNM). Finding an inverse matrix is a very computationally expensive 

operation. Therefore, rather than computing the inverse of the generalized Hessian matrix, one may 

save time and increase numerical stability by solving the system of linear equations. For this purpose, 

we use the conjugate gradient method implemented in the SciPy [13] and CuPy [14] packages and 

compare the computation time. In all numerical experiments considered below, we choose the following 

condition:  

max(‖𝐺(𝑥𝑚)‖2,
‖𝑥𝑚 − 𝑥𝑚−1‖2

‖𝑥𝑚‖2
) < 10−10 

 

as a stopping criterion for the generalized Newton method. Uzawa algorithm terminates if  

‖𝑙𝑘 − 𝑙𝑘−1‖
2

‖𝑙𝑘‖2
< 10−8. 

 

All experiments are implemented in Python, using the scikit-fem library [15] for performing finite 

element assembly and CuPy library for GPU-accelerated computing. Computation was carried out on 

IBM Power Systems S822LC 8335-GTB server, which is based on two 10-core IBM POWER8 

processors with a maximum operating frequency of 4.023 GHz and two NVIDIA Tesla P100 GPU 

accelerators.  

Table 1 shows how the total number of Uzawa method iterations and the number of generalized 

Newton method iterations depend on 𝑛𝑝 и 𝑛𝑑. The number of GNM iterations on the first step of the 

Uzawa method is represented by the first integer in the respective column. The second integer 

represents the number of iterations in subsequent steps of the Uzawa method. We can see that the 

number of iterations slightly increases with the increasing number of primal and dual variables. 

Calculations show that the use of CuPy library can speed up the execution time for problems of large 

size up to 12.6 times. 

 

Table 1 
Computational results 

𝑁𝑥 × 𝑁𝑦 𝑛𝑝 𝑛𝑑 GNM it Uzawa it Time CPU, s Time GPU, s M(u∗, l∗) 

60x20 2562 61 7/2 6 1.89 5.06 -6.700472e-05 
120x40 9922 121 8/2 7 7.70 8.76 -6.711822e-05 
240x80 

480x160 
39042 

154882 
241 
481 

9/2 
10/2 

8 
11 

56.35 
480.60 

17.24 
38.06 

-6.714898e-05 
-6.715744e-05 

 
Figure 2 shows normal and tangential displacements of the body on the contact zone for 𝑛𝑑 = 481.  

 

 
Figure 2: Normal and tangential contact displacements  
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The value of the dual variable (normal contact stress) is depicted in Figure 3. We see that the 

penetration of the elastic body into a rigid foundation does not occur and at the points where the body is 

in contact, the dual variable is positive. The resulting domain deformation in Lagrange coordinates 

x+1000u(x) with an amplification factor 1000 and Von Mises stresses are presented in Figure 4. 

 

 
Figure 3: Normal contact stress  

 

 
Figure 4: Distribution of the von Mises stresses 

6. Conclusion 

In the paper, the numerical algorithm of solving the contact problem was proposed. The algorithm 

based on the modified Lagrange functionals and Uzawa method.  The algorithm was implemented by 

using the finite element method. The numerical experiments illustrating the fast convergence of the 

algorithm by primal and dual variables were presented. This circumstance can be explained by the good 

differential properties of the modified dual functional, which makes it possible to implement the 

gradient method for solving the dual problem. After a discretization, we used the generalized Newton 

method with Armijo line search to solve the minimization problem of piecewise quadratic functional. 
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