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Abstract  
The problem of preliminary data processing on P, S arrivals of seismic waves has been 

formulated.  Data preprocessing was carried out for further classification using machine 

learning models. A comparative analysis of the following neural networks has been carried 

out: GPD, EQTransformer, and PhaseNet. Demonstrated the automation process for machine 

learning methods of seismic waves detection.  
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1. Introduction 

Current day earthquake detection and analysis require the necessity of staff involvement, trained in 

visual detection of different seismic waves in a continuous stream of data from local seismic 

networks.  

Local earthquakes generate different types of seismic waves, which travel away from the source. 

The fastest among these are P-waves and S-waves (primary and secondary). Accurate detection of P 

and S waves is used in earthquake source location by computing source parameters: coordinates, 

hypocenter depth, and origin time. 

The continuous growth of seismic networks causes an increase in trained human staff demand. 

Threshold methods [1] are very popular as an incomplete approach to seismic events detection 

automation. However, these methods have proven ineffective in low-magnitude earthquake detection, 

especially in noisy environments. 

The machine learning approach has shown an ability to achieve detection accuracy compared to 

(or even surpassing) which of trained staff [2].  

Preprocessing of seismic data is a first and critical step in full automation of classification of 

seismic wave arrival times. The present paper demonstrates seismic data preprocessing for subsequent 

use in machine learning methods of earthquake detection and describes the method employed to 

automate machine learning methods of seismic waves detection. 

2. Data description 

For neural-networks training and evaluation purposes, we used a dataset of hand-picked local 

earthquake data from the Sakhalin island seismic network. Dataset consists of 3045 P-arrivals, 3737 

S-arrivals, and 3045 noise fragments collected from 2014 to 2021. 

Each seismic record is a 3-component (North, East, and vertical components) 4 seconds slice of 

ground movement information with a sampling rate of 100 Hz. Continuous seismic data streams are 

usually stored as day-length entries with gaps for station offline times. Data gathered from stations 
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with sampling rates different from 100 Hz were resampled to 100 Hz using the Fourie method. 

Accelerometer data were integrated by time to convert it to seismograms. 

Seismic events were filtered by a minimal magnitude of 1 and maximum distance to an earthquake 

source of 300 km. The data first were detrended and high-pass filtered above 2 Hz and then 

normalized by the absolute maximum amplitude on any of the three components. Figure 1 illustrates 

preprocessing on an actual earthquake from 01.04.2021. 

 

а) 

 

 
b) 

 

 
Figure 1: Seismic data before (а) and after (б) detrend and filtering  

 

Also, we used a larger dataset of southern California seismic network records [2], composed of 

4 773 750 3-component records with an equal number of  P-wave arrivals, S-wave arrivals, and noise 

patches. Data preprocessing is similar to formerly described methods used on the Sakhalin data. 

We used day-long continuous data from 3-component seismographs to evaluate the program 

integration of machine learning methods. 
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3. Models 

The integration is designed for classification neural networks and supports output classes number, 

labels, and positive characteristic (seismic event vs. noise) customization.  

In this study, following models was evaluated: GPD [2], EQTransformer [3], and PhaseNet [4].  

GPD input is a 3-component 4 seconds long record (with a sampling rate of 100 Hz), in other 

words, an array of data with a shape 400x3. Model output is a set of three probabilities corresponding 

to the likelihood of each respective class: P-wave, S-wave, and noise. EQTransformer and PhaseNet 

input is a 3-component record of 60 and 90 seconds length, respectively. 

For PhaseNet and EQTransformer evaluation, we reconstructed datasets to meet new input data 

shape requirements. New datasets composed of the same P and S waves arrivals and employed the 

same preprocessing methods as described in section 2. Data description. 

All models were trained on southern California data and evaluated on 20% of Sakhalin data (table 

1, pre-trained), followed by fine-tuning on 80% of Sakhalin data with evaluation on 20% of Sakhalin 

data (table 1, fine-tuned). GPD displayed the best results and thus was chosen as a target model for 

the automation process of seismic events detection. 

 
Table 1 
Models evaluation results on the local seismic events data 

Model Accuracy, 
 pretrained 

Accuracy, 
 fine-tuned 

F1 score, 
pretrained 

F1 score, 
Fine-tuned 

   P S N P S N 

GPD 0.87 0.94 0.89 0.87 0.86 0.94 0.95 0.93 
EQTransformer 0.51 0.81 0.34 0.20 0.34 0.86 0.89 0.34 

PhaseNet 0.61 0.49 0.69 0.66 0.66 0.60 0.61 0.50 

4. Automation of seismic waves detection 

Program integration is designed to work with seismogram databases generated by SEISAN [5] 

software. 

SEISAN software is a software package for analyzing earthquakes. The system provides the means 

to maintain the database containing the configuration of the seismic station network, earthquake 

records, data stream archives from the seismic station network. 

 

SEISAN database includes the following directories: 
• REA – earthquake readings and full epicenter solutions in a database 

• WOR – the users work directory 

• DAT – default and parameter files, system configuration files 

• WAV – digital waveform data files  

• archives – database of continuous seismic data from stations split into day-long files 

 

The product of the automation development is a program that analyzes SEISAN database files and 

searches for earthquakes on the data stream from specified stations. The program analyzes the 

network configuration, including information on active stations from the DAT directory, and searches 

daily archives of the continuous stream from seismic stations. 

Currently, the automation is not used in real-time, rather daily analysis of the new seismic data 

from the specified monitoring stations is performed. The workflow of the earthquake detection 

automation is displayed in figure 2. 
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Figure 2: Earthquake detection automation workflow 

 
The automation employs the following workflow: program scans SEISAN database structure and 

then picks correct seismogram archive for analysis. Next, preliminary data processing is performed: 
detrend and high-pass filtering above 2 Hz. The seismic data stream is then split by a sliding window 
with a length of 4 seconds and a step of 0.1 seconds; each window is normalized and used as an input 
for the target neural network prediction. 

Class predictions were then restored to input data frequency (from 10 Hz to 100 Hz) using linear 
interpolation, resulting in three probability curves: P-wave curve, S-wave curve, and noise probability 
curve. Probability curves example displayed in figure 3,b alongside with raw input data (figure 3,a).  

  
Figure 3: Probability curves example for an earthquake prediction (N, E, Z – input components; P, S – 
seismic waves probability, N – noise probability) 
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Positive wave arrivals predictions are marked as red “stars” on P and S probability curves. 

For each positive class (P and S waves), probability curve peaks are found with the minimal 

allowed distance between adjacent peaks in 10 seconds and the threshold probability value is 0.95.  

Then, the mean value in a 1-second span (a quarter of the window length) around the peak position 

is calculated for every class probability curve. Finally, the values are compared, and if the mean value 

belonging to the peak is highest, then the peak position is assumed as a positive prediction. 

Positives are then outputted in a text file in order of occurrence with corresponding information 

about positives time, probability, type (P-arrival, S-arrival), and seismic station. 

In addition, the program supports data and predictions visualization in the form of graphs, 

including scores visualization (figure 3), preprocessed data plotting, and raw data plotting (figure 3). 

Also, launch options for performance evaluation of entire automation and only neural network 

computation times were implemented to provide means for future models comparative analysis. 

5. Conclusion 

The development of the present study yielded the application for the automation of seismic waves 

detection using machine learning methods. 

Also, during the automation evaluation, new classification neural network training flaws were 

revealed, which may lead to further studies and improvements. 

Extensive effort was put into data gathering and processing for model training and evaluation, 

which may be used for future projects and new classification neural networks. Also, a program 

package was developed for data (P and S waves and noise records) gathering from SEISAN 

databases. The package also includes the ability to filter out events by magnitude, source depth and 

distance, and seismic monitoring station properties (such as the number of components, instrument 

types). 
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