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Abstract  
In present paper, crack problem in rectangle is considered. Solution of the problem is defined 

as R


-generalized one in special weighted Sobolev set. For calculation of approximate 

solution, the scheme of the weighted finite element method (FEM) is constructed. 

Comparison of our method with the classic FEM on model problem is performed. We 

confirmed experimentally theoretical estimate ( )O h  of the rate of convergence for 

constructed method in the norm of the weighted Sobolev space and in weighted energy norm.  

 

Keywords  1 

Crack problem, R


-generalized solution, angle singularity, weighted FEM  

1. Introduction 

Two-dimensional Lame equations are usually used as a mathematical model for the crack problem. 

This problem is one of so-called problems with singularity which arises from presence of reentrant 

angle of 360
  (crack) on the boundary. In this case, stresses in the around crack tip become 

unbounded, and displacements belong to 3/2

2
( )W

−
 , when the Dirichlet or Neumann conditions are 

applied on both sides of crack, and 5/4

2
( )W

−
  in case of conditions of different types,   is an 

arbitrary small real number. As a result, classic FEM for this problem has convergence rate of only 
1/2

( )O h  and 1/4
( )O h  respectively in the norm of the space 1

2
( )W   as well as in energy norm. 

In papers [1-5] for elliptic problems with singularity caused by degeneration of input data it was 

suggested to define the solution as R


-generalized one in weighted Sobolev spaces or sets, properties 

of R


-generalized solution and questions about its existence and uniqueness were deeply studied as 

well as properties of weighted Sobolev spaces and sets. For calculation of approximate solution for 

such problems, new numerical methods on the base of notion of R


-generalized solution were created 

and investigated [6-8]. In the sequel, idea of R
 -generalized solution was spread to other singular 

boundary value problems in electrodynamics, hydrodynamics, theory of elasticity. New numerical 

methods for these problems built on the notion of R
 -generalized solution showed high accuracy and 

convergence rate of approximate solution to the exact one competing with known inflexible and more 

complicated specialized single-purpose methods [9-13]. 

For determination of approximate solution to the crack problem with high accuracy and 

convergence rate ( )O h  in the norm of the weighted Sobolev space and in weighted energy norm, in 

[14] it was suggested to define solution as R


-generalized one; on this base, the scheme of the 

weighted FEM was developed and detailed numerical investigation of the model problem was 

performed.  

 
VI International Conference Information Technologies and High-Performance Computing (ITHPC-2021),  

September 14–16, 2021, Khabarovsk, Russia 

EMAIL: vark0102@mail.ru (Viktor A. Rukavishnikov); msandrew84@gmail.com (Andrew O. Mosolapov)  
ORCID: 0000-0002-3702-1126 (Viktor A. Rukavishnikov); 0000-0003-0206-6938 (Andrew O. Mosolapov) 

 
©️  2021 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  

 



143 
 

In present work we state the crack problem, introduce the notion R


-generalized solution, briefly 

describe the weighted FEM and bring some numerical results for model problem concerning 

experimental confirmation of the theoretical estimates of the convergence rate and absolute error in 

the mesh nodes. 

2. Problem statement. R


-generalized solution 

In two-dimensional domain   with boundary   and crack 
c

    we consider boundary value 

problem of elasticity stated in displacements 
1 2

( , )u u=u  (crack problem): 

 (2 ( ( )) ( div )) x − +  =  div u u f    (1) 

 .x=   u q       (2) 

Let '  be a closure of  -neighborhood of the point (0, 0)  in  : 2 2

1 2
' { : 1}x x x  =  +  . 

In '  we define weight function ( )x  as a distance to the point (0, 0) , and we extend ( )x  to the 

rest of   as a constant  . Using weight function ( )x , we introduce weighted spaces 
2,

( )L

 , 

1

2,
( )W


  and sets 1

2,
( , )W


 , 

0
1

2,
( , )W


 , 1/ 2

2,
( , )W


  (see [14]). Vector analogues for these spaces 

and sets we designate with bold letters. 

Now we introduce bilinear and linear forms, respectively: 
2 2

( ) 2 ( ) : ( ) div div( ) ,a dx
 

    


 = +u v u v u v  

2
( ) .l dx






= v f v  

We assume that for some real 0   the following inclusions are valid: 

 
2,

( , ),L


 f  
1/2

2,
( , ).


 q W      (3) 

Vector-function 1

,1 ,2 2,
( , ) ( , )u u

   
=  u W  is called R


-generalized solution to the problem 

(1), (2), if almost everywhere on   boundary conditions (2) are met, and for any vector-function 

1 2
(v , v )=v  from 

0
1

2,
( , )


W  the following integral identity is valid:  

( , ) ( )a l


=u v v
 

where    is fixed. 

Existence and uniqueness of R


-generalized solution to the problem (1), (2) is stated in [15]. 

Remark. In contrast to definition of weak solution, in the case of R


-generalized one bilinear and 

linear forms contains weight function in some non-negative power as a factor. This function subdues 

singularity of the solution and provide integrals convergence. This allows us to construct numerical 

method on meshes without refining toward singularity point with convergence rate ( )O h  of 

approximate solution to the exact one in the norm of weighted Sobolev space and in the weighted 

energy norm. 

3. Weighted finite element method 

Scheme of the weighted FEM is constructed in [14]. Here we briefly describe this scheme. 

Assume that   is a rectangle with a crack, ( 0.7,0.3) [ 1,1] \ [0,0.3] {0} = −  −  , [0,0.3] {0}
c

 =  . 

In   we introduce quasiuniform mesh coordinated with crack and designate mesh parameter as h . 

Mesh nodes are 
i

P , 1,...,i N= . For each of them we introduce weighted basis function of the form 
*

( ) ( )
i i

x x


  = , 1,...,i N= , where 
*

R   is a power of weight function, ( )
i

x  is standard linear 

basis function of the FEM.  
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We designate 
h

V  linear span of all basis functions, and 
0

h
V  is a linear span of only internal nodes 

i
P , 1,...,i n= .  

We say that the function 
,1 ,2

( , )
h h h

u u
  
=u , 

,

h h

i
u V

 , 1,2i =  is an approximate R


-generalized 

solution to the problem (1), (2), if h


u  satisfy boundary conditions (2), and the integral identity 

( , ) ( )
h h h

a l


=u v v  

holds for any vector-function 
1 2

(v , v )
h h h
=v , 

0

v
h h

i
V , 1,2i = . 

Components of approximate R


-generalized solution we expand in basis with unknown 

coefficients 
i

d , 1,..., 2i n= : 

,1 2 1

1

,
n

h

i i

i

u d



−

=

=  
,2 2

1

.
n

h

i i

i

u d



=

=  

Coefficients 
i

d , 1,..., 2i n= , we will find from the system of linear equations 

( , ( , 0)) ( ,0),

( , (0, )) (0, ), 1,..., .

h

i i

h

i i

a l

a l i n





 

 

 =


= =

u

u
 

Remark. In contrast to the classic FEM, in the weighted FEM basis functions contain weight 

function in some power as a factor. This addition factor allows approximate solution to mimic 

behavior of exact solution in the neighborhood of singularity point. As a result, we are able to affect 

the accuracy of approximate solution. Selecting appropriate parameter 
*

 , as well as   and  , we 

can gain theoretical convergence rate ( )O h  for approximate R


-generalized solution to the exact one 

and get absolute error in mesh nodes in 10–100 times less than in the case of approximate generalized 

solution. 

4. Numerical analysis of the model problem 

In this section, we describe numerical experiment for model problem using the weighted FEM 

presented in section 3. We compare derived approximate R


-generalized solution and generalized one 

with respect to convergence rate established in different weighted and non-weighted norms, 

respectively, and absolute error in mesh nodes. 

4.1. Model problem 

We consider model problem (1), (2) in domain   described in section 3 with following 

components of exact solution: 

2

1

2

2

cos 1 sin ,
2 22

sin 1 sin ,
2 22

I

I

K
u r

K
u r

  

  

  

  

    
= − +    

+    

    
= − +    

+    

 

where   is a polar angle, pole is located in the origin (0, 0) , and polar axis coincide with positive 

direction of the Ox  axis. Lame parameters are  = 576.923  and 384.615 = , stress intensity factor 

1.611
I

K = . 

4.2. Numerical experiment. Optimal parameters 

Numerical experiment was carried out on meshes described in section 3 with mesh parameter 

0.062h = , 0.031 , 0.0155 , 0.0077 , 0.0038 , 0.0019 . Calculations were performed on each mesh 

with different values of parameters 
*

 ,  ,  . Among them, the optimal parameters providing the 
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best accuracy of approximate R


-generalized in relative norm of the weighted Sobolev space and 

weighted energy norm solution were found. More detailed description of this process can be found in 

[14]. We also calculated approximate generalized solution using our weighted FEM with 0, =  
*

0, =  ( ) 1x   for comparison with approximate R


-generalized one. 

4.3. Convergence rate investigation  

In this section, we briefly describe results concerning convergence rate of approximate R


-

generalized solution founded on each mesh with appropriate optimal parameters and comparison with 

convergence rate of approximate generalized solution. For approximate R


-generalized solution, 

convergence was calculated in relative norm 


  of the weighted Sobolev space and in relative 

weighted energy norm E


 . For approximate generalized solution, convergence was calculated in 

relative norm   of the Sobolev space and in relative energy norm E
 . These results are visually 

presented on figure 1a and 1b respectively. As we can see, appropriate parameters 
*

 , as well as   

and   allowed approximate R


-generalized solution to gain theoretical convergence rate ( )O h , 

whereas approximate generalized solution converges with only 1/2
( )O h  speed. 

     
Figure 1: Convergence rates for approximate R


-generalized solution (1a, red rhombic line 

represents 


 , red circled line represents E


 ) and for approximate generalized solution (1b, blue 

squared line represents  , blue crossed line represents E
 ). Solid black lines represent convergence 

rate ( )O h . 

4.4. Absolute error investigation  

For approximate R


-generalized solution and approximate generalized solution absolute error in 

mesh nodes was also investigated. Here in Table 1 we present percentage of mesh nodes, where 

absolute errors of first component of R


-generalized and generalized solutions do not exceed limit 

value 
7

10
−

. 

 

Table 1 

Percent of mesh nodes where absolute errors of first component of R


 -generalized (
1

n
 ) and 

generalized (
1

n ) solutions do not exceed limit value 7
10

−  

h 0.062 0.031 0.0155 0.0077 0.0038 0.0019 

1
n
 , % 4.2 10.4 13.1 46.1 73.6 96.9 

1
n , % 4.2 9.5 20.4 38.6 60.4 81.3 

a) b) 
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4.5. Conclusions 

Numerical analysis of the model problem allowed us to conclude the following: 

1. Introducing of R


-generalized solution allowed us to subdue the influence of singularity 

caused by the crack to the accuracy of approximate solution.  

2. For parameters 
*

 ,   and   there are optimal values producing an approximate R


-

generalized solution with best convergence rate and minimal absolute error. 

3. Approximate R


-generalized solution with optimal parameters 
*

 ,   and   converges to the 

exact one with the rate ( )O h  in norm of the weighted Sobolev space and weighted energy norm, 

whereas approximate solution converges only with the rate 1/2
( )O h . 

4. In majority of mesh nodes, approximate R


-generalized solution has absolute error in 10-100 

times less than approximate generalized solution. 

5. Obtained results demonstrate advantages of weighted FEM over classic FEM which required 

meshes with refining towards singularity point for achieving the same convergence rate. In 

comparison with known specialized numerical methods for crack problem, weighted FEM is much 

simpler and do not produce ill-conditioned systems of linear algebraic equations. 
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