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Abstract  
We consider efficient algorithms for thermodynamical characteristics calculation of 2D Ising 

model. We discuss optimization algorithms for temperature in order to improve effectiveness 

of replica exchange. We implement and test algorithm on a two-dimensional square Ising 

lattice. 

 
Keywords 1   
Parallel tempering, Ising model, Monte-Carlo 

1. Introduction 

Considering the growth of data volumes, there is a need for new research in the field of magnetic 

data carriers. The researchers use the Monte Carlo method to simulate various spin structures. 

However, this method has a drawback: in the phase transition region, the simulation process slows 

down. 

To combat this effect, replica exchange is used, which allows simulating several systems with 

different temperatures in parallel, and also exchanges configurations between neighboring systems. 

For the best efficiency parameters, it is proposed to distribute the temperatures of the systems non-

linearly. However, it is not known which of the distributions will give the best result. Therefore, an 

urgent task is to study ways to optimize the replica-exchange Monte Carlo method. 

An optimized set of temperature values increases the efficiency of the algorithm by making more 

frequent replica visits to the temperature extremum. 

However, for efficient operation, careful tuning of parameters is required to ensure optimal 

execution time [1]. 

In simulations with parallel tempering, the replica exchange rate strongly depends on the simulated 

statistical ensemble, that is, on the selected temperature points {𝑇1, 𝑇2, . . . , 𝑇𝑀}. 

2. 2D Ising model 

Consider the Ising model on a flat square lattice. The probability of any configuration of the 

investigated models is described by the Gibbs distribution [2]. It is well known that knowing of the 

statistical sum for a system of interacting spins allows one to strictly calculate all possible mean 

physical quantities fully describing the state of the system at given parameters. Currently, the studies 

of the phenomenon of magnetic transformations (transitions) mainly use numerical methods 
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(canonical and multicanonical MC) [3]. The Hamiltonian of the Ising spin system in the external 

magnetic has the form (1).  

𝐻 = − ∑ 𝐽𝑖𝑗𝑆𝑖𝑆𝑗

〈𝑖,𝑗〉

 −  ℎ ∑ 𝑠𝑖

𝑖

, (1) 

where 𝑆𝑖𝑆𝑗 are spins of the system, 𝑖, 𝑗 denotes summarizing over the lattice with size 𝑁, ℎ - external 

magnetic field. 

2.1. Replica exchange Monte-Carlo 

The Monte Carlo method with Markov chains is used as the main component of this research 

project.  

The probability of any possible configuration is determined by the Gibbs distribution: 

𝑃 =
1

𝑍(𝛽)
exp (−𝛽𝐸′(𝑥)) 

(2) 

In this model, each spin interacts only with its nearest four neighbors through a direct 

ferromagnetic exchange interaction randomly distributed in the lattice nodes, provided that  

∑ 𝐽𝑖 = 0𝑧=4
𝑖=1  

Let us recall that the acceptance probability 𝑃𝑓𝑙𝑖𝑝 of the Metropolis-Hastings algorithm is 

determined by the formula: 

𝑃𝑓𝑙𝑖𝑝 = min{1, 𝑒−𝛽∆𝐻} ;  𝛽 =
1

𝑘𝐵𝑇
 

(3) 

At low temperatures 𝛽 - a very large positive number. If we propose a spin flip with a positive 

energy difference, i.e. 𝛥𝐻 > 0, we have: 

𝛽∆𝐻 ≫ 0 ⇒ 𝑒−𝛽∆𝐻 ≈ 0 ⇒ 𝑃𝑓𝑙𝑖𝑝 ≈ 0 (4) 

Most likely, it will go through a sequence of spin flips with a negative energy difference, forcing 

the system back to the energy minimum. 

Therefore, it is not possible to create states according to the Boltzmann distribution, resulting in 

biased sampling [4]. 

Replica exchange serves to improve the convergence of the Metropolis-Hastings algorithm in the 

problem at hand. A number of systems initialized with different temperatures of the Metropolis-

Hastings algorithm exchange configurations during a loop performing value sampling [5]. 

This is done to allow configurations at high temperatures to move to systems with low 

temperatures when the simulation process continues, and to save low temperatures from falling into 

unwanted stable states with a minimum of energy. 

The algorithm presented on Figure 1. 
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Figure 1: Replica exchange Monte-Carlo algorithm 

3. Optimization 

Hukushima [6] proposed a method, which is simpler than the feedback method, for determining 

replica temperature values. The scheme starts with an initial arbitrary temperature distribution, 

captures the extreme temperatures, and iteratively corrects the intermediate temperatures so that the 

probability of replica exchange for all neighboring temperatures is the same. Since this scheme is 

based on estimating the energy in each replica as a function of its inverse temperature, we call this 

method the “energy” method [7,8,9]. This method belongs to the category of approaches that strive 

for a uniform rate of exchange between replicas. 

Let 𝛽𝑖 and 𝐸𝑖 refer to the inverse temperature and average energy of replica 𝑖 respectively. The 

goal of the energy method is to adjust 𝛽𝑖 so that the replica exchange probabilities of neighboring 

temperatures are equal. 

ℙ(𝐸𝑖−1, 𝛽𝑖−1 ↔ 𝐸𝑖 , 𝛽𝑖) = ℙ(𝐸𝑖, 𝛽𝑖 ↔ 𝐸𝑖+1, 𝛽𝑖+1). (

7) 

More precisely, the replicas are divided into two groups: odd and even. Fixing the inverse 

temperatures of one group, the inverse temperatures of the other group are then corrected one by one 

[10]. The detailed procedure is outlined in Figure 2. 
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Figure 2: Optimized replica exchange Monte-Carlo algorithm 

4. Results 

The speeds of the conventional and optimized algorithm were compared on systems with sizes 

L=100, L=1600, L=4900, L=10000 particles.  

The results are shown in Figure 3. 

Also, to evaluate the performance of the algorithm, heat capacity plots (Figure 4) were plotted for 

systems with different sizes. 

  
Figure 3: Conventional and optimized algorithm speed comparison 
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Figure 4: Heat capacity comparison of 2 methods 

5. Conclusion 

In this paper, optimization algorithm was considered for replica exchange Monte-Carlo method. 

We considered “energy” method of optimization. A program was also written to compare optimized 

and regular algorithms within the framework of the conditions we are interested in. On the basis of the 

obtained results, it can be concluded that choosing optimized temperature set leads to advantage in 

execution speed on larger lattices. It will help in further studies of ferromagnetic and 

antiferromagnetic spin models. 
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