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Abstract 
Characterizations of linear and bilinear Lebesgue norm inequalities involving two-

dimensional Hardy integral operators are obtained.  
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1. Introduction 

Let Ϻ be the set of all Lebesgue measurable functions f on ℝ+
2 ≔ (0, ∞)2, and let  Ϻ+ ⊂  Ϻ  be 

the subset of all nonnegative f. If 𝑣 ∈ Ϻ+ and 0 < 𝑝 ≤ ∞ we define the weighted Lebesgue space 

𝐿𝑣
𝑝

(ℝ2) = {𝑓 ∈ Ϻ: ‖𝑓‖p,v ≔ (∫|𝑓(𝑥)|𝑝𝑣(𝑥)𝑑𝑥)

1

p

< ∞} ,      0 < 𝑝 < ∞, 

𝐿𝑣
∞(ℝ2) = {𝑓 ∈ Ϻ: ‖𝑓‖∞,𝑣 ≔ ess sup𝑥∈ℝ2𝑣(𝑥)|𝑓(𝑥)| < ∞}, 𝑝 = ∞. 

 

Let 𝑛 ∈ ℕ, 0 < 𝑞 ≤ ∞ and 1 ≤ 𝑝𝑖 ≤ ∞, 𝑤, 𝑣𝑖 ∈ Ϻ+ for all 𝑖 = 1, … 𝑛.  Define the two-dimensional 

rectangular Hardy operator  

𝐼2𝑓(𝑥, 𝑦) ≔ ∫ ∫ 𝑓(𝑠, 𝑡)𝑑𝑠𝑑𝑡
𝑦

0

𝑥

0

, (𝑥, 𝑦) ∈ ℝ+
2 , (1) 

and consider the following multilinear inequality 

‖(𝐼2𝑓1) · … · (𝐼2𝑓𝑛)‖𝑞,𝑤 ≤ 𝐶‖𝑓1‖𝑝1,𝑣1
… ‖𝑓𝑛‖𝑝𝑛,𝑣𝑛

,  𝑓𝑖 ∈ Ϻ+,  (2) 

where a constant C>0 is independent of 𝑓𝑖, 𝑖 = 1, … , 𝑛, and is supposed to be the least possible. 

 

The general problem is to characterize this inequality (2) by establishing a two-sided estimate 

𝛼 𝐹(𝑣1, … 𝑣𝑛, 𝑤; 𝑝1, … 𝑝𝑛, 𝑞) ≤ 𝐶 ≤  𝛽 𝐹(𝑣1, … 𝑣𝑛, 𝑤; 𝑝1, … 𝑝𝑛, 𝑞) 

with some irrelevant constants 𝛼 and β by a functional 𝐹(𝑣1, … 𝑣𝑛, 𝑤; 𝑝1, … 𝑝𝑛 , 𝑞) of an explicit form 

depending on given weights 𝑣1, … , 𝑣𝑛,𝑤 and fixed parameters 𝑝1, … , 𝑝𝑛, 𝑞 only.   

 

An operator in the left-hand side of the inequality (2) is n-fold product of two-dimensional Hardy 

operators (1), it is acting on the product of n Lebesgue spaces. Multi(sub)linear maximal operators, 

which are related to (1), appeared in connection with multilinear Calderón-Zygmund theory. They 

were used for the study of multilinear singular integral operators of Calderón-Zygmund type and for 

building a theory of weights adapted to the multilinear setting [6, 3, 1]. Linear and multi-linear 
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inequalities with Hardy operators also play an important role in analysis and its applications [5]. The 

main purpose of this work is to survey the most recent characterizations of (2) by the authors in linear 

and bilinear cases. Starting in Section 2 from (quasi)linear case n = 1, we give the results for bilinear 

inequalities in Section 3. These findings can be similarly extended to any multilinear case. 

We use signs := and =: for determining new quantities. For positive functionals F and G we write 

𝐹 ≪  𝐺 if 𝐹 ≤ 𝛼 𝐺 with some constant 𝛼 > 0  depending, possibly, on irrelevant parameters only. 

Relations of the type 𝐹 ≈ 𝐺  mean F ≪ G ≪ 𝐹  or  𝐹 = 𝛼𝐺.  

2. Two-dimensional Hardy inequality 

Weighted Hardy inequality 

‖𝐼2𝑓‖𝑞,𝑤 ≤ 𝐶‖𝑓‖𝑝,𝑣 ,  𝑓 ∈ Ϻ+, (3) 

with two-dimensional rectangular operator (1) was studied in [4, 8, 11, 12, 24]. In particular, the 

following criterion for the inequality (3) to hold was obtained by E. Sawyer in [12]. 

 

Theorem [12, Theorem 1A]. Let 1 < 𝑝 ≤ 𝑞 < ∞. Denote 𝑝′ ≔ 𝑝/(𝑝 − 1) and let (𝐼2
∗𝑓)(𝑥, 𝑦) ≔

∫ ∫ 𝑓(𝑠, 𝑡)𝑑𝑠𝑑𝑡
∞

𝑦

∞

𝑥
  be the adjoint to 𝐼2 operator. The inequality (3) holds if and only if  

 

Moreover, it holds for the least possible constant C>0 in (3) that 𝐶 ≈ 𝐴1 + 𝐴2 + 𝐴3 with equivalence 

constants depending of p and q only. 

 

The one-dimensional analog of the condition (4) is the boundedness of the Muckenhoupt constant [9]. 

Characteristics (5) and (6) are two-dimensional generalizations of the Tomaselli functional [23, 

definition (11)] in its direct and dual forms. In one-dimensional case all the conditions (4)-(6) are 

equivalent to each other (see e.g. [2]), that is 𝐴1 ≈ 𝐴2 ≈ 𝐴3 with equivalence constants depending of 

p and q. In two-dimensional case this generally is not true. Moreover, as it was shown in [12, § 4] for 

p=q=2 that no two of conditions (4)-(6) guarantee (3). But, it was discovered in the recent work [22] 

by the authors that the E. Sawyer’s theorem is actual for p=q only, while for p<q the inequality (3) is 

characterized by only one Muckenhoupt functional 𝐴 ≔ 𝐴1 of the form (4). 

 

Theorem [22, Theorem 2]. Let 1 < 𝑝 < 𝑞 < ∞. Denote 𝛾 ≔ 𝛾(𝑝, 𝑞) ≔
𝑝2(𝑞−1)

𝑞−𝑝
, 𝛾′ ≔ 𝛾(𝑞′, 𝑝′) and 

ℂ𝛾,𝛾′ ≔ 33𝑞 [
24𝑞

3𝑞
max{𝛾, 2𝑞(𝑞′)𝑞/𝑝′} (

2𝑝−1

2𝑝−1 − 1
)

𝑞/𝑝

+ 31/𝑝+1/𝑞′(𝛾′)1/𝑝′]. 

The inequality (3) holds if and only if 𝐴 < ∞. Besides, 𝐴 ≤ 𝐶 ≤ ℂ𝛾,𝛾′ 𝐴. 

 

The results of [12, Theorems 1A] and [22, Theorem 2] are valid for any type of weights v and w.  

 

It was established in [24] that if one of the two weights v or w is factorizable, that is if 

𝑣(𝑥1, 𝑥2) = 𝑣1(𝑥1)𝑣2(𝑥2) (7) 

or 

𝑤(𝑥1, 𝑥2) = 𝑤1(𝑥1)𝑤2(𝑥2), (8) 

𝐴1 ≔ sup(𝑠,𝑡)∈ℝ+
2 [𝐼2

∗𝑤(𝑠, 𝑡)]1/𝑞[𝐼2𝑣1−𝑝′(𝑠, 𝑡)]1/𝑝′ < ∞, (4) 

𝐴2 ≔ sup(𝑠,𝑡)∈ℝ+
2 (∫ ∫ (𝐼2𝑣1−𝑝′)𝑞𝑤

𝑡

0

𝑠

0

)

1/𝑞

[𝐼2𝑣1−𝑝′(𝑠, 𝑡)]−1/𝑝 < ∞, (5) 

𝐴3 ≔ sup(𝑠,𝑡)∈ℝ+
2 (∫ ∫ (𝐼2

∗𝑤)𝑝′𝑣1−𝑝′
∞

𝑡

∞

𝑠

)

1/𝑝′

[𝐼2
∗𝑤(𝑠, 𝑡)]−1/𝑞′ < ∞. (6) 
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then it is possible to characterize (3) by only one functional for 1 < 𝑝 ≤ 𝑞 < ∞. This result was 

extended to all p,q>1 and generalized to all the types of boundedness constants in [11]. 

 

Theorem [11, Theorems 2.1, 2.2]. Let 1 < 𝑝 ≤ 𝑞 < ∞ and the weight v satisfy the condition (7). 

Denote 𝑉𝑖(𝑥𝑖) ≔ ∫ 𝑣𝑖
1−𝑝′𝑥𝑖

0
, 𝑖 = 1,2. Then the inequality (3) holds for all 𝑓 ≥ 0 if and only if  

or if and only if 

 

Besides, it holds for the least possible constant C>0 in (3) that 𝐶 ≈ 𝐴𝑀 ≈ 𝐴𝑇 with equivalence 

constants depending of p and q only. 

 

Theorem [11, Theorems 2.4, 2.5]. Let 1 < 𝑝 ≤ 𝑞 < ∞ and the weight w satisfy the condition (8). 

Denote 𝑊𝑖(𝑥𝑖) ≔ ∫ 𝑤𝑖
∞

𝑥𝑖
, 𝑖 = 1,2. Then the inequality (3) holds for all 𝑓 ≥ 0 if and only if  

or if and only if 

 

Besides, 𝐶 ≈ 𝐴𝑀
∗ ≈ 𝐴𝑇

∗  with equivalence constants depending of p and q only. 

 

We complete the section by assertions similar to the last two above, but devoted to the case 1 < 𝑞 <
𝑝 < ∞. To state them we put 1/r=1/q-1/p and define two-dimensional analogs of Maz’ya-Rosin [7, § 

1.3.2] and Persson-Stepanov [10, Theorem 3] functionals in their direct and dual forms: 

 

Theorem [11, Theorems 3.1, 3.2]. Let 1 < 𝑞 < 𝑝 < ∞ . Suppose that the weight v in (3) satisfies the 

condition (7) and 𝑉1(∞) = 𝑉2(∞) = ∞.  Then the inequality (3) is valid for all  
 𝑓 ∈ Ϻ+ if and only if  𝐵𝑀𝑅 < ∞, or if and only if 𝐵𝑃𝑆 < ∞. Moreover,  𝐶 ≈ 𝐵𝑀𝑅 ≈ 𝐵𝑃𝑆. 

 

Theorem [11, Theorems 3.3, 3.4]. Let 1 < 𝑞 < 𝑝 < ∞ . Assume that the weight function w in (3) 

satisfies the condition (8) and 𝑊1(0) = 𝑊2(0) = ∞.  Then the inequality (3) is valid for all  
 𝑓 ∈ Ϻ+ if and only if  𝐵𝑀𝑅

∗ < ∞, or if and only if 𝐵𝑃𝑆
∗ < ∞. Moreover,  𝐶 ≈ 𝐵𝑀𝑅

∗ ≈ 𝐵𝑃𝑆
∗ . 

 

𝐴𝑀 ≔ sup(𝑠,𝑡)∈ℝ+
2 [𝐼2

∗𝑤(𝑠, 𝑡)]1/𝑞[𝑉1(𝑠)𝑉2(𝑡)]1/𝑝′ < ∞, 

𝐴𝑇 ≔ sup(𝑠,𝑡)∈ℝ+
2 (∫ ∫ [𝑉1𝑉2]𝑞 𝑤

𝑡

0

𝑠

0

)

1/𝑞

[𝑉1(𝑠)𝑉2(𝑡)]−1/𝑝 < ∞. 

𝐴𝑀
∗ ≔ sup(𝑠,𝑡)∈ℝ+

2 [𝐼2𝑣1−𝑝′(𝑠, 𝑡)]1/𝑝′[𝑊1(𝑠)𝑊2(𝑡)]1/𝑞 < ∞, 

𝐴𝑇
∗ ≔ sup(𝑠,𝑡)∈ℝ+

2 (∫ ∫ [𝑊1𝑊2]𝑝′ 𝑣1−𝑝′
∞

𝑡

∞

𝑠

)

1/𝑝′

[𝑊1(𝑠)𝑊2(𝑡)]−1/𝑞′ < ∞. 

𝐵𝑀𝑅 ≔ (∫[𝐼2
∗𝑤(𝑠, 𝑡)]𝑟/𝑞[𝑉1(𝑠)𝑉2(𝑡)]𝑟/𝑞′𝑣1

1−𝑝′

(𝑠) 𝑣2
1−𝑝′

(𝑡) 𝑑𝑠 𝑑𝑡)
1/𝑟

, 

𝐵𝑃𝑆 ≔ (∫ (∫ ∫ [𝑉1𝑉2]𝑞 𝑤
𝑡

0

𝑠

0

)

𝑟/𝑞

[𝑉1(𝑠)𝑉2(𝑡)]−𝑟/𝑞 𝑣1
1−𝑝′

(𝑠) 𝑣2
1−𝑝′

(𝑡) 𝑑𝑠 𝑑𝑡)

1/𝑟

, 

𝐵𝑀𝑅
∗ ≔ (∫[𝐼2𝑣1−𝑝′(𝑠, 𝑡)]𝑟/𝑝′[𝑊1(𝑠)𝑊2(𝑡)]𝑟/𝑝𝑤1(𝑠) 𝑤2(𝑡) 𝑑𝑠 𝑑𝑡)

1/𝑟

, 

𝐵𝑃𝑆
∗ ≔ (∫ (∫ ∫ [𝑊1𝑊2]𝑝′ 𝑣1−𝑝′

∞

𝑡

∞

𝑠

)

𝑟/𝑝′

[𝑊1(𝑠)𝑊2(𝑡)]−𝑟/𝑝′ 𝑤1(𝑠) 𝑤2(𝑡) 𝑑𝑠 𝑑𝑡)

1/𝑟

. 



164 
 

3. Bilinear two-dimensional Hardy inequality 

In this section we demonstrate some of the new characteristics from [20] obtained for the 

inequality 

‖(𝐼2𝑓)(𝐼2𝑔)‖𝑞,𝑤 ≤ 𝐶‖𝑓‖𝑝,𝑣‖𝑔‖𝑠,𝑢,  𝑓, 𝑔 ∈ Ϻ+.  (9) 

These results are based on statements for the linear two-dimensional Hardy inequality from 

Section 2. 

Distinguish the following zones for the relations between integration parameters 1 < 𝑝, 𝑠, 𝑞 < ∞: 

(I) 1 < max{𝑝, 𝑠} ≤ 𝑞 < ∞, 
(II) 1 < min{𝑝, 𝑠} ≤ 𝑞 < max{𝑝, 𝑠} < ∞, 

(III) 1 < 𝑞 < min{𝑝, 𝑠}. 
The required characteristics for (I), (II) and (III) are given in the assertions below. 

 

Theorem [20, Theorem 4]. Let 𝑝, 𝑠, 𝑞 ∈ (𝐼) . Assume that the weight v in (9) is of product type, that is 

v satisfies the condition (7).  Then the best constant C in the inequality (9) is estimated as 

where 𝑉𝑖(𝑥𝑖) ≔ ∫ 𝑣𝑖
1−𝑝′

,
𝑥𝑖

0
 𝑖 = 1,2,  as before and 

 

 

Remark [20, Remark 3]. If the weight u in (9) is also of product type, that is if 

𝑢(𝑥1, 𝑥2) = 𝑢1(𝑥1)𝑢(𝑥2), (11) 

then the expression for the functional 𝐷𝐼 in (10) simplifies as follows: 

where 𝑉𝑖(𝑥𝑖) ≔ ∫ 𝑣𝑖
1−𝑝′𝑥𝑖

0
 and 𝑈𝑖(𝑥𝑖) ≔ ∫ 𝑢𝑖

1−𝑠′𝑥𝑖

0
, 𝑖 = 1,2. 

 

Theorem [20, Theorem 5]. Let 𝑝, 𝑠, 𝑞 ∈ (𝐼𝐼) . Assume that the weights v and u in (9) are of product 

type, that is v and u satisfy the conditions (7) and (11), respectively.  Then 𝐶 ≈ 𝐷𝐼𝐼, where for 1 <
𝑝 ≤ 𝑞 < 𝑠 < ∞, under the condition 𝑈𝑖(∞) = ∞, 𝑖 = 1,2, 
 

 

and for 1 < 𝑠 ≤ 𝑞 < 𝑝 < ∞, under the condition 𝑉𝑖(∞) = ∞, 𝑖 = 1,2, 

 

where 1/r:=1/q-1/p and 1/t=1/q-1/s. 

 

𝐶 ≈ 𝐷𝐼 ≔ sup(𝑥,𝑦)∈ℝ+
2 (𝐷1(𝑥, 𝑦) + 𝐷2(𝑥, 𝑦) + 𝐷3(𝑥, 𝑦))[𝑉1(𝑥)𝑉2(𝑦)]1/𝑝′, (10) 

𝐷1(𝑥, 𝑦) ≔ sup(𝜚,𝜏)∈ℝ+
2 [𝐼2

∗(𝑤𝜒(𝑥,∞)×(𝑦,∞))(𝜚, 𝜏)]
1/𝑞

[𝐼2𝑢1−𝑠′(𝜚, 𝜏)]1/𝑠′, 

𝐷2(𝑥, 𝑦) ≔ sup(𝜚,𝜏)∈ℝ+
2 (∫ ∫ (𝐼2𝑢1−𝑠′)𝑞𝑤𝜒(𝑥,∞)×(𝑦,∞)

𝜏

0

𝜚

0

)

1/𝑞

[𝐼2𝑢1−𝑠′(𝜚, 𝜏)]−1/𝑠, 

𝐷3(𝑥, 𝑦) ≔ sup(𝜚,𝜏)∈ℝ+
2 (∫ ∫ (𝐼2

∗(𝑤𝜒(𝑥,∞)×(𝑦,∞)))
𝑠′

𝑢1−𝑠′
∞

𝜏

∞

𝜚

)

1/𝑠′

[𝐼2
∗(𝑤𝜒(𝑥,∞)×(𝑦,∞))(𝜚, 𝜏)]

−1/𝑞′
. 

𝐷𝐼 ≔ sup(𝑥,𝑦)∈ℝ+
2 [𝐼2

∗𝑤(𝑥, 𝑦)]1/𝑞[𝑉1(𝑥)𝑉2(𝑦)]1/𝑝′[𝑈1(𝑥)𝑈2(𝑦)]1/𝑝′ < ∞, 

𝐷𝐼𝐼 ≔ sup(𝑥,𝑦)∈ℝ+
2 (∫ ∫ [𝐼2

∗𝑤]𝑡/𝑞[𝑈1𝑈2]𝑡/𝑞′
∞

𝑦

∞

𝑥

𝑢1
1−𝑠′𝑢2

1−𝑠′)

1/𝑡

[𝑉1(𝑥)𝑉2(𝑦)]1/𝑝′, 

𝐷𝐼𝐼 ≔ sup(𝑥,𝑦)∈ℝ+
2 (∫ ∫ [𝐼2

∗𝑤]𝑟/𝑞[𝑉1𝑉2]𝑟/𝑞′
∞

𝑦

∞

𝑥

𝑣1
1−𝑝′

𝑣2
1−𝑝′

)

1/𝑟

[𝑈1(𝑥)𝑈2(𝑦)]1/𝑠′, 



165 
 

Theorem [20, Theorem 6]. Let 𝑝, 𝑠, 𝑞 ∈ (𝐼𝐼𝐼) . Assume that all the weights in (9) are of product type, 

that is v,u and w satisfy the conditions (7), (11) and (8), respectively.  Then, under the conditions 

𝑉𝑖(∞) = ∞, 𝑖 = 1,2, and 𝑈𝑖(∞) = ∞, 𝑖 = 1,2, it holds 𝐶 ≈ ∑ 𝐷4
𝑖=1 𝐼𝐼

(𝑖), where for  1/𝑞 ≤ 1/𝑝 + 1/𝑠   

 

and for 1/𝑞 > 1/𝑝 + 1/𝑠 with  1/𝜅 ≔ 1/𝑞 − 1/𝑝 − 1/𝑠 

 

where 1/r:=1/q-1/p, 1/t:=1/q-1/s,  𝑉𝑖(𝑥𝑖) ≔ ∫ 𝑣𝑖
1−𝑝′𝑥𝑖

0
, 𝑈𝑖(𝑥𝑖) ≔ ∫ 𝑢𝑖

1−𝑠′𝑥𝑖

0
, 𝑊𝑖(𝑥𝑖) ≔ ∫ 𝑤𝑖, 𝑖 = 1,2.

∞

𝑥𝑖
 

For some other types of bilinear inequalities with Hardy type operators one can consult [13-19, 

21].  
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𝐷𝐼𝐼(1) ≔ sup(𝑥,𝑦)∈ℝ+
2 (∫ ∫ [𝑊1𝑊2]

𝑡
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𝑟

𝑞[𝑉1𝑉2]
𝑟

𝑞′
∞

𝑦

∞

𝑥

𝑑𝑉1 𝑑𝑉2)

1/𝑡

[𝑈1(𝑥)𝑈2(𝑦)]1/𝑠′, 

𝐷𝐼𝐼(3) ≔ sup(𝑥,𝑦)∈ℝ+
2 (∫ [𝑊1]

𝑡

𝑞[𝑈1]
𝑡

𝑞′ 
𝑑𝑈1

∞

𝑥

)

1/𝑡

(∫ [𝑊2]
𝑟

𝑞[𝑉2]
𝑟

𝑞′𝑑𝑉2

∞

𝑦

)

1/𝑟

[𝑉1(𝑥)]1/𝑝′[𝑈2(𝑦)]1/𝑠′, 

𝐷𝐼𝐼(4) ≔ sup(𝑥,𝑦)∈ℝ+
2 (∫ [𝑊1]

𝑟

𝑞[𝑉1]
𝑟

𝑞′𝑑𝑉1

∞

𝑥

)

1/𝑟

(∫ [𝑊2]
𝑡

𝑞[𝑈2]
𝑡

𝑞′𝑑𝑈2

∞

𝑦

)

1/𝑡

[𝑈1(𝑥)]
1

𝑠′[𝑉2(𝑦)]
1

𝑝′; 

𝐷𝐼𝐼(1) ≔ (∫ ∫ (∫ ∫ [𝑊1𝑊2]
𝑡

𝑞[𝑈1𝑈2]
𝑡

𝑞′
∞

𝑦

∞

𝑥

𝑑𝑈1 𝑑𝑈2)

𝜅/𝑡

[𝑉1(𝑥)𝑉2(𝑦)]𝜅/𝑡′ 𝑑𝑉1(𝑥) 𝑑𝑉2(𝑦)
∞

0

∞

0

)

1/𝜅

, 

𝐷𝐼𝐼(2) ≔ (∫ ∫ (∫ ∫ [𝑊1𝑊2]
𝑟

𝑞[𝑉1𝑉2]
𝑟

𝑞′
∞

𝑦

∞

𝑥

𝑑𝑉1 𝑑𝑉2)

𝜅/𝑟

[𝑈1(𝑥)𝑈2(𝑦)]𝜅/𝑟′
∞

0

∞

0

𝑑𝑈1(𝑥) 𝑑𝑈2(𝑦))

1/𝜅

, 

[𝐷𝐼𝐼(3)]𝜅 ≔ ∫ ∫ (∫ [𝑊1]
𝑡

𝑞[𝑈1]
𝑡

𝑞′ 
∞

𝑥

𝑑𝑈1)

𝜅/𝑡

(∫ [𝑊2]
𝑟

𝑞[𝑉2]
𝑟

𝑞′
∞

𝑦

𝑑𝑉2)

𝜅/𝑠

[𝑉1(𝑥)]𝜅/𝑡′
∞

0

∞

0

 

× [𝑈2(𝑦)]𝜅/𝑠′[𝑊2(𝑦)]
𝑟

𝑞[𝑉2(𝑦)]
𝑟

𝑞′𝑑𝑉1(𝑥) 𝑑𝑉2(𝑦), 

[𝐷𝐼𝐼(4)]𝜅 ≔ ∫ ∫ (∫ [𝑊1]
𝑟

𝑞[𝑉1]
𝑟

𝑞′ 
𝑑𝑉1

∞

𝑥

)

𝜅/𝑠

(∫ [𝑊2]
𝑡

𝑞[𝑈2]
𝑡

𝑞′
∞

𝑦

𝑑𝑈2)

𝜅/𝑡

[𝑈1(𝑥)]𝜅/𝑠′
∞

0

∞

0

 

× [𝑉2(𝑦)]𝜅/𝑡′[𝑊1(𝑥)]
𝑟

𝑞[𝑉1(𝑥)]
𝑟
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