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Abstract  
The boundary value problem of the pipeline statics with a branch is formulated. On 

intersection line, conjugation conditions are set in the assumption that branch is small 

compared to a large pipe. The original three-dimensional boundary value problem is 

projected onto the symmetry plane of mechanical systems and is represented in Cartesian 

coordinate system. A reduced two-dimensional mathematical model of intersecting elastic 

cylindrical shells is obtained. Boundary conditions are set on all the edges of the plane 

domain. Numerical analysis is performed, which shows that the replacement of initial 

conjugation conditions with conditions of bushing coupling type introduces an error in the 

solution of boundary value problem that is small in comparison with the error of shell theory. 
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1. Introduction 

Intersecting cylindrical shells are widely used in modern pipeline systems. A detailed analysis of 

studies of shell structures containing intersections can be found in [1]. In contrast to curved pipelines 

[2, 3], in pipelines with insets, a stress concentration occurs at the shells junction, as shown in [4]. 

Special weighted finite element methods exist for calculating problems in domains with singularity  

[5, 6, 7, 8]. Obtaining a numerical solution by this method will make it possible to predict the stress-

strain state of complex pipeline systems, which is an actual engineering problem [9]. 

The aim of this paper is to formulate the boundary value problem of membrane cylindrical shells 

having a complex intersection of the profile, and to reduce the original problem into a two-

dimensional form in Cartesian coordinates. 

The following tasks were solved: 

• construction of a mathematical model of thin elastic cylindrical shells intersecting at right 

angles;  

• projection of the original problem onto the symmetry plane of the mechanical system; 

• setting boundary conditions; 

• justification on a numerical example of the permissibility of replacing the coupling conditions 

with bushing connections. 

2. Problem statement for thin elastic cylindrical shells intersecting at right 
angles 
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We consider, based on the membrane theory, two cylindrical shells intersecting at right angles, for 

which the ratio of thickness to radius is satisfied <1 20 . We write the equilibrium equations [10] for 

these shells in displacements: 
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where the values of the radii of curvature and the Lame coefficients are taken into account
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R A r= =  for the entered cylindrical coordinates 

( )1
, ,x    and ( )2

, ,z    for the large and small cylinders. Notation:   – Poisson ratio, E  – modulus 

of elasticity, H , h  – thickness of large and small cylinders; 
(1) (1) (1)

, ,u v w  and 
(2) (2) (2)

, ,u v w  – 

components of the displacement vector, where the index (1) denotes belonging to a large cylinder, and 

index (2) denotes belonging to a small cylinder, p  – uniform internal pressure. 

Boundary conditions at the ends of the large and small cylinders: 
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We complete the problem statement for thin elastic cylindrical shells intersecting at right angles in 

displacements by conjugation conditions: 
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 (3) 

It is assumed that the relation is satisfied 1 5r R  , so the intersection line can be approximated by a 

circle. The first three kinematic conditions are obtained based on [11], the fourth (force) condition is 

equality of shear forces (1) (2)
.S S= −  

3. Reduced two-dimensional mathematical model 

The original boundary value problem (1)–(3) is transformed in order to reduce the number of 

required functions in the system (1). To do this, we express from the third and sixth equations of 

displacement 
(1)

w  and 
( 2 )

w . We perform the substitution of these displacements in the first, second, 
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fourth and fifth equations of the system (1), in boundary conditions and conjugation conditions. Thus, 

we obtain an alternative formulation of the original problem. 

We transform the alternative problem into a Cartesian coordinate system to obtain a single 

displacement vector for the entire domain. To do this, we use expression of Cartesian coordinates 

through of cylindrical coordinates and formulas for replacing independent variables [12] for large and 

small pipes, respectively. By performing such a transformation with equations, boundary conditions, 

and conjugation conditions, we obtain a three-dimensional boundary value problem of pipeline 

equilibrium in Cartesian coordinates. 

We project resulting three-dimensional problem on the symmetry plane xOz , using equation of 

large 2 2 2
y z R+ =  and small 2 2 2

y x r+ =  cylinders, taking into account 0y  , and replacing 

independent variables: 
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The result of the performed transformations will be two-dimensional equations: 
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Note that equations (5) are projected on the symmetry plane of the large cylinder, and equations (6) 

on the symmetry plane of the small cylinder. 

Then we transform the boundary conditions and the conjugation conditions in the same way. When 

moving to the two-dimensional formulation, we will need additional boundary conditions on the 

sections 2, 3, 5, 6, 8, see Figure 1. From the expression of the peripheral force in a large N pR

=  and 

small N pr

=  pipe, we get one of the necessary conditions. Since the nature of the distribution of 

displacement 
y

v  and the application of load is symmetric with respect to the plane xOz , we equate 

0
y

v =  it on the boundaries under consideration. 
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Figure 1: The middle surface projection of the cylinders on the symmetry plane 
 

We divide the two rectangular domains of Figure 1 along the line AB. We will consider this line as 

the border between two rectangles. We will set boundary conditions on it by transforming the 

conjugation conditions. After substituting formulas (4), given that on the line AB z R= , the first 

conjugation condition is satisfied identically, and the left part of the second condition and the right 

part of the third condition is also zero. Thus, we get one boundary condition each for the small and 

large cylinders. The right and left parts of the fourth condition are equal to zero, since, based on the 

Vekua bushing connections [13, 14], the tangential stresses at the boundary become zero, and the 

fourth condition is a force condition. 

Thus, in a rectangular domain, the following boundary conditions are obtained for a large cylinder: 
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for a small cylinder: 
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4. Numerical example  

We illustrate by a numerical example the permissibility of replacing the conjugation conditions 

with bushing connections. In the application package FreeCAD, two models of cylinders intersecting 
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at right angles are constructed with the following parameters: 37.5R mm= , 8.5r mm= , 5H mm= , 

3h mm= , 100L mm= , 72l mm= , steel S335JO, 0.3 = , 5
2.1 10E MPa=  , 3

7800 kg m = , 

  510 MPa = , 10p MPa= . The first model is built as a single system. The second model consists 

of two parts: a large cylinder with a hole and a small cylinder inserted into the large cylinder as a 

bushing. The results of numerical calculation for both models are presented in  

Figure 2 in the form of the Mises stress distribution over mesh nodes and histograms. It can be 

seen that nature of this distribution is identical in both cases. The maximum stress value for the first 

model is 275.87 MPa. For the second model, this value is 268.35 MPa. The relative error of maximum 

stresses is 2.7%, which is less than simplifications that form the basis of the shell theory. 

 

 

 
(a)       (b) 

 

 
 (c)       (d) 

 
Figure 2: The stress distribution on the nodes of the mesh: (a) – for one-piece model of T-shaped 
pipe intersection, (b) – for the bushing model; histogram of the stress distribution over mesh nodes: 
(c) – for one-piece model of T-shaped pipe intersection, (d) – for the bushing model 

5. Conclusion 

The boundary value problem in displacements for two normally intersecting cylinders is 

formulated. A constructive algorithm for projecting the original three-dimensional problem onto the 
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symmetry plane of a mechanical system is created. A reduced mathematical model in Cartesian 

coordinates is constructed. The scope of the model is limited by the ratio of the radii of the median 

surface of the shells 1 5r R  . The final boundary value problem is divided into two problems: in the 

rectangular projection of large cylinder (5), (7) and in the rectangular projection of small cylinder (6), 

(8). In this case, conjugation conditions are finally eliminated from problem formulation. A numerical 

example is justified the permissibility of replacing the conjugation conditions with bushing coupling.  
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