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Abstract  
We studied a square lattice of spins in frame of Heisenberg model with direct exchange and 

Dzyaloshinskii-Moriya interaction. For the analysis of data obtained during the Monte Carlo 

simulation, a convolutional neural network was used for the recognition of different phases of 

the spin system, which was dependent on simulation parameters such as DMI and external 

magnetic field (Hz). Based on these data, the phase diagram (Hz,D) was plotted. The various 

states of the systems under observation were visualized, and the boundaries between the 

different phases were defined as spirals, skyrmions and others. We proposed the controlling 

method for movement of skyrmions using by Monte Carlo simulation. 
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1. Introduction 

Spintronics or magnetic electronics is continually evolving, and new promising materials for new 

storage and processing data devices are emerging. Skyrmions are attractive candidates for information 

carriers in a new type of non-mechanical magnetic medium - a racetrack memory - because they are 

only a few nanometers in size, very stable, and can be driven by pulses of spin-polarized currents. At 

a fundamental level, skyrmions are model systems for topologically protected spin structures and can 

be regarded as an analogue of topologically protected states, emphasizing the role of topology in the 

formation of complex states of condensed matter [1]. The creation, detection and control of individual 

skyrmions have become especially relevant topics in connection with the possible implementation of 

physical devices based on skyrmions in spintronics. For the development of control methods for 

magnetic skyrmions in a magnetic nanostrip, it is necessary to conduct a detailed analysis of the 

simulation parameters and the correlations between them in order to select the optimal parameters for 

further studies of magnetic skyrmions. 

In our paper, the conditions for the nucleation and stable existence of magnetic skyrmions in two-

dimensional magnetic films were considered in the frame of the classical Heisenberg model. For 

computer simulation, we used the Metropolis algorithm. For the analysis of the data obtained during 

the Monte Carlo simulation, a convolutional neural network (CNN) was used for the recognition of 

different phases of the spin system, depending on simulation parameters such as Dzyaloshinskii-

Moriya interaction and the external magnetic field (Hz). Based on these data, the phase diagram 

(Hz,D) was plotted. Also, we proposed the controlling method for the movement of skyrmions. 
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2. Model and algorithms 

2.1. Mathematical model 

In 1960 Dzyaloshinskii presented a model to describe weak ferromagnetism [2]. Based on 

symmetries he introduced an asymmetrical term which later on was clarified by Moriya [3]. The 

Dzyaloshinskii-Moriya (DMI) interaction is a microscopic characteristic of interacting spins that 

occurs in a system that lacks inversion symmetry and has a strong spin-orbit coupling. The 

Heisenberg model is one of the models used in statistical physics to model ferromagnetism. It is used 

in the study of critical points and phase transitions of different magnetic systems. We used the lattice 

Hamiltonian, consisting of Heisenberg exchange (HJ) and DMI interaction (HD) terms for the 

microscopic description of a chiral helimagnet [4-6], see formulas (1-3). 

𝐻 = (𝐻𝐽 + 𝐻𝑧 + 𝐻𝐴) + 𝐻𝐷,     (1) 

 𝐻𝐽 = −𝐽 ∑𝑟 𝑆𝑟 ⋅ (𝑆𝑟+𝑥 + 𝑆𝑟+�̂�)  − 𝐻𝑧 ∑𝑟 𝑆𝑟  −  𝐻𝐴 ∑𝑟 |𝑆⃗⃗⃗⃗ 𝑟|2,  (2) 

 𝐻𝐷 = −𝐷 ∑𝑟 𝑆𝑟 × 𝑆𝑟+�̂� ⋅ 𝑥 + 𝑆𝑟 × 𝑆𝑟+�̂� ⋅ �̂�,   (3) 

where 𝑆𝑟 is the atomic spin, 𝐽 is the value of ferromagnetic short-range exchange interaction, 𝐷 is the 

value of DMI, Hz – an external magnetic field and a magnetic anisotropy coefficient is HA. 

2.2. Metropolis algorithm 

The Metropolis algorithm is used to determine the global minimum. The main idea is to uniformly 

sample the state space with a given distribution probability. At each iteration of the sample, the 

configuration of the system changes due to a change in the orientation of a randomly selected spin. 

The configuration is accepted and becomes the initial one for the next step if the new energy value is 

greater than the previous one (𝐸1 > 𝐸2); otherwise, it is accepted with the probability: 

𝑃(𝐸𝑖 → 𝐸𝑗) = 𝑚𝑖𝑛 (
𝑃(𝐸𝑖)

𝑃(𝐸𝑗)
, 1)        (4) 

Due to this, the algorithm avoids getting stuck in local minima. Convergence is achieved after 

passing a given number of Monte Carlo steps until the moment when the standard deviation reaches a 

specified minimum, depending on the problem being solved [7-10]. C++ and Rust programming 

languages were used for software development, providing possibilities for the independent calculation 

of the properties of the spin systems. We used dimensionless quantities in J units for the simulation. 

The software has been verified for the Heisenberg model [11,12]. 

2.3. Convolutional neural network for states classification 

We used configurations of spin systems obtained at different simulation parameters for the training 

and subsequent classification of them in a neural network. To date, the most accurate analysis results 

are demonstrated by neural networks based on convolutional architecture. We used the TensorFlow 

library to create a convolutional neural network [13] and to classify our spin systems to different 

phases [14]. 

In our research, we have reduced the problem of determining the phases of spin systems to the 

problem of image classification - in fact, to the main problem area in which neural networks are used. 

For recognising images, CNN accepts them in the RGB format as a three-dimensional matrix. In our 

case, the convolutional neural network received as input a three-dimensional array representing the 

components of a three-dimensional spin in the frame of the Heisenberg model. 



208 
 

Following this, the convolutional neural network learned, using the training dataset, to highlight 

the features inherent in one or another spin configuration. Our CNN consists of next layers (main 

ones), see Figure 1: 

1. Input layer 

Input data (configurations of spins), each of the neurons (spins) of which is assigned an initial 

random weight. The components of a three-dimensional vector were fed to the network input (i.e., the 

components of Heisenberg spin). The dataset was prepared using Monte Carlo simulation data for 

training the neural network in state recognition. 

Figure 1: The architecture of the convolutional neural network 
 

2. Convolutional layer with 3×3 filter 

When neurons are connected to only a few neurons in the next layer, the layer is said to be 

convolutional. The convolutional layer acts as a filter that discards the least informative parts of the 

input data. Each layer has filters (i.e., matrices with weight values). When the filter moves along the 

matrix of the previous layer, each filter element is multiplied by the value of the neuron, and the 

values are summed up and written to the feature map. 

3. Pooling layer for reducing the dimensions of the data 

4. Fully connected layer 

Fully connected layers are used for classification. All layers before the fully connected layer are 

used to highlight various features that are fed to the input of the classifier. This layer can also be used 

as the final (output) CNN layer, the result of which is the probability of the input configuration of 

spins belonging to a certain class. 

3. Results and discussions  

We studied different phases that appeared depending on the magnitude of the Dzyaloshinskii-

Moriya interaction D and the external magnetic field Hz at fixed temperature T, see Figure 2. The 

convolutional neural network was used to analyze the data obtained from the Monte Carlo simulations 

for the recognition of the different phases of the spin system, dependent on the simulation parameters. 

In a magnetic film, with an increase of the magnetic field strength and DMI, various phases were 

observed for the flat Heisenberg spin systems: Spiral (Sp), Spiral-skyrmion (SpSk) Skyrmion (Sk), 

Skyrmion-ferromagnetic (SkF) and Ferromagnetic (FM) phases, see Figure 3. In Skyrmion phase, due 

to the alignment of the stripes against the magnetic field, stable skyrmions are formed in the system. 
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In these skyrmions, the spins of the nucleus are directed against the magnetic field. In this study, 

skyrmions of the Bloch type were formed. 

 

 
Figure 2:  (𝐻𝑧, 𝐷) phase diagram for the square lattice. 

 

 
Figure 3: a) Stripe configuration, b) Mixed state, c) Skyrmion’s lattice. 
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We could also “push” the skyrmion from one side of the sample to another using the increasing of 

a magnetic anisotropy.  This is a rather precise method, see Figure 4. In frame of this numerical 

experiment, we have an anisotropy gradient from 0.9 on the left side of the sample to 0.1 on the other 

side. We have an incline plane of anisotropy gradient. And we increase the value of anisotropy step 

by step for pushing the skyrmion. In the physical experiment, it is possible to control the anisotropy 

applying the voltage to the sample. 

 

 
Figure 4: Movement of the skyrmion. 

4. Conclusion 

In the frame of the classical two-dimensional Heisenberg model, a spin system with direct short-

range exchange was modelled, and a study of its competition with the Dzyaloshinskii-Moriya 

interaction was carried out. Due to the direct exchange interaction, the neighboring spins of the 

system are collinearly aligned and, in turn, the Dzyaloshinskii-Moriya interaction contributes to the 

deviation of the spins from parallel orientation. As a result, competition results between collinear and 

noncollinear alignments of spins, which leads to the transition of the system of spins from a 

ferromagnetic to a spiral ground state. In the presence of an external magnetic field, stable topological 

structures - magnetic skyrmions - are generated in such systems. 

In this paper, we proposed a method for manipulation of the position of a skyrmion using by a 

control of anisotropy gradient. 

We performed MC simulation and the convolutional neural network was used for the recognition of 

the different phases of the spin systems, depending on the simulation parameters. For the visualisation 

and analysis of research data, the phase diagram (Hz,D) was plotted. 

The data obtained in the numerical experiments will be used in our further studies to determine the 

model parameters of the system for the formation of a stable skyrmion state, both in the form of 

individual skyrmions and skyrmion lattices and for the development of methods for controlling 

skyrmions in magnetic stripes. 
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