
47

Some Approaches to Managing Computing Resources of a
Hybrid High-Performance Cluster in a Cloud Environment

Konstantin Volovicha, Vadim Kondrasheva , Mikhail Posypkina and Sergey Denisova

a Federal research center "Computer Science and Control" of the Russian Academy of Sciences, Vavilova st.

44-2, Moscow, 119333, Russia

Abstract
The article proposes approaches for providing scientists and research teams with computing

resources of hybrid HPC clusters as cloud services. A technique for migrating user software

to an HPC cluster environment with GPU is proposed. Solutions for adaptation of programs

in high-level languages to computing facilities of a hybrid computing cluster are considered.

Algorithms for providing tasks with computing resources in a multitasking environment are

proposed, as well as methods for creating an adapted task execution environment using

container technology.

Keywords 1
Cluster, virtualization, workload manager, distributed computing, parallel computing,

graphics accelerator, HPC

1. Introduction

Currently, there is a tendency to provide computing resources for solving fundamental and applied

problems in the form of cloud services [1-4].

In accordance with the classical approach to cloud computing, such services can be provided as

software - SaaS, platform - PaaS or infrastructure - IaaS. In [5,6], a variant of providing scientific

research as a service, RaaS, is also proposed.

It is advisable to apply the cloud approach to high-performance computing services for research

teams in various areas of applied and fundamental sciences. This will make it possible to centralize

resources and ensure the workload of computing systems with computational jobs with greater

efficiency than with the exclusive provision of computing resources to each research team, and will

also provide greater flexibility in the operation of the computing cluster.

However, when providing high-performance computing services, it is necessary to take into

account the specifics of the organization of the computing process and the architecture of a high-

performance cluster.

Modern computing systems designed to solve scientific problems are built, as a rule, on the basis

of hybrid architectures, including both general-purpose central processors and specialized

accelerators. So, as of November 2020, seven out of ten first supercomputers from the Top 500 rating

have a hybrid architecture [7], which can include central processing units (CPUs) of various

architectures (for example, Intel x86_64, IBM Power), as well as computing accelerators (GPU) of

various architectures (e.g. Nvidia Tesla, Matrix coprocessor).

To use the computing capabilities on such clusters in the concept of cloud computing, it is

necessary to apply certain methods of organizing the computational process that provide the sharing

of graphics accelerator resources between the clients of the computing cluster.

VI International Conference Information Technologies and High-Performance Computing (ITHPC-2021),

September 14–16, 2021, Khabarovsk, Russia

EMAIL: kvolovich@frccsc.ru (A. 1); vkondrashev@frccsc.ru (A. 2); sdenisov@frccsc.ru (A. 3)
ORCID: - (A. 1); 0000-0002-1224-1392 (A. 2); - (A. 3)

©️ 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

48

Any research team that plans to use a hybrid computing cluster to solve their problems has

software designed to solve its scientific issues as a rule. In the general case, such software may not be

compatible with the architecture and software environment of the hybrid computing cluster. The

issues of classification of application software for compatibility and mobility are considered in [8].

This article proposes systemic approaches to the problems of adapting the program code of

scientific teams to the environment of a hybrid high-performance cluster, creating an individual task

execution environment using virtualization technology based on software containers, as well as

developing an algorithm for managing the resources of a computing cluster [9-11].

2. Program code adaptation to the hybrid high-performance cluster
architecture

If the software available to scientific teams for solving fundamental and applied scientific

problems cannot be carried out on a hybrid high-performance cluster, it needs specific preparation. To

adapt the software available to the research team for solving an applied or fundamental problem, it is

necessary to create several tools that allow loading, processing, testing, and debugging, and, finally,

executing the program code to solve a scientific problem. The final stage of this process is to assess

the improvement or degradation of performance when solving this problem compared to previously

used computing systems.

The initial stage of adaptation of the program code for execution on a hybrid high-performance

cluster is the classification of the program code according to the degree of mobility [8]. This

classification can be performed either directly by the user or using automation tools. In particular, a

neural network trained on a pre-labeled dataset can be used as such a tool. User classification, at first

glance, is more than sufficient for deciding which class the adaptable task belongs to. At the same

time, it is necessary to consider the hidden nuances that may not be available to the user at the time of

work. To view such hidden information, it is proposed to use artificial intelligence components - a

neural network that is preliminarily trained on a starting set of labeled initial data and further

continues its training in the process of the system operation. Thus, at the initial (start-up) stage, the

neural network training on the starting data array and adjusts its state based on information obtained

in users' jobs on adapting their scientific tasks for execution on a hybrid high-performance cluster.

Figure 1 shows a scenario for functioning of a neural network for classifying program code and

adjusting its state based on data obtained during the work of users to adapt the program code.

Note that a dataset for the primary training of a neural network can be built both on the basis of

real examples of program code and on the basis of artificially generated (synthetic) examples. The

markup of such examples for the primary training of the neural network should in any case be

performed by a human.

The dataset for primary training should include examples for all high-level programming

languages (HLL) used to develop application code in a hybrid high-performance cluster (for example,

Python, TensorFlow). However, the architecture of the classification unit can be different.

It is possible to train a universal neural network on a complete set of primary training data,

including examples in various programming languages (network "NN U" in Figure 1).

Another variant for constructing a classification block assumes the presence of a group of neural

networks, each of which classifies the program code for one programming language. In Figure 1

shows neural networks "NN 1" - "NN 3" for each high-level language.

From the point of view of universality and the construction of a fully automatic module for

classifying the program code, the first variant is preferable, since it does not require preliminary

sorting of the program code based on the language used. In addition, this approach allows for the

classification of program texts developed using several programming languages, which is a common

practice when creating large projects. The disadvantages of this option are the duration of training and

high requirements for the resources expended.

49

Classification
Training

dataset

HHL 1

HHL 2

HHL 3

NN 1

NN 2

NN 3

NN U

Migration

Automatic

Automation

Code for

adaptation

Feedback

A
d

d
 t

ra
in

in
g

e
x
a

m
p

le

Figure 1: Functioning of a neural network

The variant with dividing the classification block into analysis components of one selected

programming language seems to be more expedient for building layouts and testing technology due to

less demanding computational resources.

In addition to the starting set of source program texts for training the neural network, in the

process of work, texts are used that have passed the classification and further steps to adapt the

program code to the conditions of execution in high-performance cluster. The input data for such

secondary learning is the program text itself (in Fig. 1 - the code for adaptation), as well as data on

further steps for adaptation (feedback), while the program text is added to the original set of training

examples as an additional marked-up component.

The business process for adapting the existing program code and its subsequent execution on a

hybrid high-performance cluster includes the following stages [8]:

1. classification of applications;

2. preparation of the executable code;

3. creating tasks for calculators;

4. organization and maintenance of the queue of tasks;

5. preparation of the computing environment;

6. execution of the calculation;

7. provision of calculation results.

The adaptation of the program code is carried out at stages 1 and 2. During the execution of these

stages, both the preparation of the executable code itself and the preparation of a description of the

necessary computing environment for the execution of this code should be performed. The

environment itself according to this description is formed at stage 5 and will be discussed below.

To adapt the compiled program code, the following sequence of actions should be performed

depending on the classification results performed at the first stage.

For architecture independent applications, you need to define:

• a list of modules and software components, runtime environments to support the application

language (for example, Python, TensorFlow);

• a list of system libraries required to support the software components of the application

software and environment;

• a list of required device drivers and software components (for example, GPU and CUDA

drivers).

Since applications do not depend on the computing platform, the actions for their adaptation are

reduced to determining the lists of the specified components and forming on their basis the necessary

execution environment using virtualization mechanisms (see below).

For applications that are mobile within the computing architecture, it is necessary:

• to compile the source code into the target architecture code;

• to link the target code with system and application software libraries;

50

• to determine the composition of the necessary software modules and system libraries for the

formation of the execution environment of the adapted code.

Note that for both types of applications, one of the results of the adaptation process is the

description of the composition of the runtime environment in the form of a set of libraries, program

modules and drivers. This description is used to create a runtime for a custom application in a cloud

infrastructure.

For architecture-dependent applications, adaptation to the hybrid computing cluster is determined

by an individual approach and comes down to replacing the architecture-dependent code with its

functional analogue within the target architecture. In fact, such work is a new development of the

program code or its components and cannot be considered an adaptation. Therefore, the issues of

adapting such applications to operating conditions on a hybrid high-performance computing system

are beyond the scope of this article.

The list preparation of the required software libraries and components can be performed both

automatically and in an automated mode with human participation.

Automatic mode is preferable to use for adaptation of tasks using common software, for which

there is a description of the dependencies of program modules and libraries. In this case, runtime tools

(for example, high-level language interpreters) have the ability to build a tree of required components

and automatically generate a complete list of dependencies.

In the case of automated (with human participation) compilation and linking of applications, when

there is no exact description of the composition of software modules and dependencies, the actions for

the selection of the necessary software libraries are carried out by the developer during the interactive

process of building, linking and debugging.

In both cases, an executable code is created in the target language of the executing system, as well

as a description of the full composition of the environment (program modules and libraries). During

the execution of a custom application, based on this description, virtualization tools create an

individual application execution environment.

3. Adaptation of the program code to the architecture of a hybrid high-
performance cluster

The preferred mode of operation of a hybrid computing cluster in a multi-user mode is parallel

execution of user scientific tasks. The practicality of using this mode is explained by the fact that the

cluster has heterogeneous computing resources available for user applications. However, as a rule, the

applications themselves use only one type of resource with maximum efficiency, while others are

weakly loaded or generally idle. Such a picture is observed when using central processors and

computing accelerators to solve scientific problems. As a rule, algorithms of applied tasks are

designed for parallel computing only on a CPU or GPU, and the simultaneous full load on both types

of processors is not achieved. Therefore, it makes sense to organize the computational process to

ensure the parallel execution of user tasks, which leads to the utilization of all the resources of the

hybrid cluster.

As shown above, for each user application, a complete list of program modules and runtime

libraries is created. It should be noted that the composition of the modules required for the functioning

of various user applications may be incompatible with each other, which makes it impossible for

several user applications to function within one runtime environment.

The simultaneous formation and execution of a group of such environments within a single

computing cluster can be carried out using virtualization tools. In this case, for each application, its

own computing environment is formed, within which the isolation of software modules and libraries

is provided.

If we consider various approaches to virtualization, then it can be noted that the least resource-

intensive technology is the technology of containers, which allows you to create an environment for

an application process according to a description file.

In fact, the container can be created dynamically when the job is loaded for execution. The basis

for the container description file is the description of the set of software modules obtained during the

adaptation of the application.

51

Based on the description, the structure of the runtime environment is formed, which includes

sequentially: the base OS, specialized device drivers, interface libraries of software components for

parallel computing, integrated development and execution environments, specialized software

packages for applied scientific research. Figure 2 shows an example of containers that include various

software stacks designed to run different applications.

OS 1 libraries

CUDA driver

CUDA libraries

Python modules

TensorFlow

framework

Application

OS 2 libraries

Open MPI libraries

MathLab

framework

Application

Container 1 Container 2

Figure 2: Examples of containers for running custom applications

In a hybrid compute cluster, multiple instances of each container type can run in parallel, utilizing

resources more fully. It should be noted that for the parallel execution of several instances of the same

task within the framework of a scientific calculation, the task code must be adapted to the conditions

of parallel processing. For example, use the MPI interface or other mechanisms to implement parallel

computing.

4. Algorithms for resource management of a hybrid high-performance
cluster

To ensure the parallel execution of various applications using virtualization based on container

technology, the cluster should have a computational task management system that implements the

task queues and service policies, taking into account the computational resources used.

The presence of such computing resources as graphics accelerators in the cluster imposes

additional requirements on the operation of the task management system in comparison with the

classical architecture on the CPU. The graphics accelerator is exclusively allocated to a task for a

certain time slot, and switching between tasks using the GPU is a long process and reduces the

performance of the cluster.

Another feature of the operation of the hybrid cluster is that tasks that perform real calculations

and short test jobs necessary for debugging and testing the code, but also requiring GPU resources,

must be simultaneously executed on its resources. Such tasks require a higher priority for execution,

since they function almost interactively with the users of the cluster.

Based on the listed conditions, an algorithm for managing the resources of the hybrid complex is

proposed (Figure 3). The key point in this procedure is to evaluate the estimated execution time. The

initial estimate can be based on the estimated time of program execution declared by the user,

however, in addition to such an estimate, it is useful to use statistical data on the launch time of the

container of a particular task in real and test debugging runs.

In the case of launching several instances of container, each of them is exclusively allocated a

different GPU in order to avoid switching between different instances of a container of the same type.

The use of such an algorithm for determining the availability of resources in combination with

policies for servicing queues with different priorities will ensure the most complete utilization of both

CPU and GPU. It also provides an acceptable response time to the launch of short test and debugging

tasks. Simultaneously with this, jobs are performed that perform real calculations.

52

Loading task

in queue

Assessment of the required

resources

Upload to compute

nodes

Estimating the time to

release resources

Waiting for

resources to be

released

Crowding out

the current task

Enough Not enough

Below the threshold Above the threshold

Released in the

specified time

Not released in the

specified time

Figure 3: Algorithm for managing the resources of the hybrid cluster

5. Conclusions

The article discusses the issues of adapting software intended for scientific calculations to

functioning in a hybrid high-performance computing cluster, as well as creating a virtual environment

for executing tasks and managing the resources of this cluster.

It is proposed to use scripts for the automated adaptation of the program code, including

classifications of the program code by the degree of mobility using a pretrained neural network. On

the basis of the classification carried out, scenarios of automatic and automated adaptation of the

program code to the operating conditions on a high-performance computing cluster are proposed.

Approaches have been developed to create an individually configured execution environment for

applied tasks using a computing virtualization mechanism based on container technology. Containers

are created dynamically at the time of loading tasks for computation according to the descriptions

obtained at the adaptation stage.

Methods and an algorithm for managing the resources of a computing cluster, including graphics

accelerators, in the conditions of simultaneous parallel execution of applied scientific tasks of various

types, as well as testing and debugging tasks, are proposed.

The approaches and algorithm considered in the article can be used as a basis for building a high-

performance hybrid computing cluster, which provides research teams as a cloud service with tools

for adapting the program code to the conditions of this cluster, an individual virtual execution

environment and computing resources for scientific calculations.

6. Acknowledgements

The research is partially supported by the Russian Foundation for Basic Research (projects 18-29-

03091, 18-29-03100).

Experiments on the management of individual virtual environments in hybrid HPC cluster were

carried out using the infrastructure of the Shared Research Facilities «High Performance Computing

and Big Data» (CKP «Informatics») of FRC CSC RAS (Moscow) [12].

53

7. References

[1] Ding F., Mey D., Wienke S., Zhang R, Li L. A Study on Today’s Cloud Environments for HPC

Applications // Cloud Computing and Services Science: Third International Conference,

CLOSER 2013 (Aachen, Germany, May 8–10, 2013). – Berlin: Springer, 2014. P. 114–127.

[2] Volkov S., Sukhoroslov O. Simplifying the Use of Clouds for Scientific Computing with

Everest. Procedia Computer Science, 2017. Vol. 119. P. 112–120.

[3] Wu W., Zhang H., Li Zh., Mao Ya. Creating a Cloud-based Life Science Gateway // e-Science

and the Archaeological Frontier: 2011 Seventh International Conference on eScience. –

Piscataway, USA: IEEE, 2011. P. 55–61.

[4] Frenkel S., Khankin D., Kutsyy A. Predicting and Choosing Alternatives of Route Updates per

QoS VNF in SDN // Proceedings of 16th IEEE International Symposium on Network Computing

and Applications (NCA 2017). – Piscataway, USA: IEEE, 2017. P. 423–428.

[5] K. I. Volovich, A. A. Zatsarinnyy, V. A. Kondrashev, A. P. Shabanov. Scientific research as a

cloud service. Systems and Means of Informatics, 2017. Vol. 27. Issue 1. p. 73–84.

[6] Zatsarinny A.A., Gorshenin A.K., Kondrashev V.A., Volovich K.I., Denisov S.A. Toward high

performance solutions as services of research digital platform. // 13th International Symposium

on Intelligent Systems, INTELS 2018; St. Petersburg; Russian Federation; 22 October

2018 through 24 October 2018 // Procedia Computer Science. Volume 150 (2019). p. 622-627.

[7] Top 500. The List. November 2020. https://top500.org/lists/top500/2020/11/.

[8] Zatsarinny A.A., Gorshenin A.K., Kondrashev V.A., Volovich K.I., Denisov S.A. Toward high

performance solutions as services of research digital platform. // Procedia Computer Science.

Volume 150 (2019). p. 622-627.

[9] Zatsarinnyy A. A., Stepanov P. V., Gorshenin A. K., Volovich K. I., Kondrashev V. A.

Management of scientific services as the basis of the national digital platform "Science and

Education". Strategic priorities, 2017. Vol. 2 (14). P. 103-113.

[10] Zatsarinny A.A., Kondrashev V.A., Sorokin A.A. Approaches to the organization of the

computing process of a hybrid high-performance computing cluster in the digital platform

environment // CEUR Workshop Proceedings. Volume 2426 (2019). p. 12-16

[11] Zatsarinny A.A., Kondrashev V.A., Suchkov A.P. The system of scientific services as an actual

component of scientific research // Systems and means of informatics. 2019. Vol. 29, Issue 1, p.

25-40

[12] Volovich K.I., Denisov S.A. and Malkovsky S.I. Formation of an Individual Modeling

Environment in a Hybrid High-Performance Computing System // Russian Microelectronics,

Volume 49, Issue 8, December 2020, P. 580-583

https://www.scopus.com/sourceid/21100218356?origin=recordpage

