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Abstract  
In this paper, we examine how the design of data-collection systems can lead to imbalanced 
data. Specifically, we scrutinize how training affects the imbalance of data in a data 
crowdsourcing experiment. We randomly assigned contributors to explicitly trained, implicitly 
trained, and untrained (control) groups and asked them to report artificial insect sightings in a 
simulated crowdsourcing task. We posit that training contributors can lead them to selectively 
pay attention to and report specific aspects of observations while ignoring others. In the 
experiment, explicitly trained contributors reported less balanced data than untrained and 
implicitly trained contributors did. We then explored the effect of training-induced imbalance 
on an unsupervised classification task and found that the purity of classes formed was lower 
for explicitly trained contributors than for the other two types of contributors. We conclude by 
discussing the implications of artificial imbalance for the usefulness and insightfulness of 
crowdsourced data.  
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1. Introduction 

Data crowdsourcing is one effective way that organizations can access information about a 
phenomenon of interest from willing human contributors. This method has been widely used to collect 
data across diverse domains, ranging from monitoring invasive species of mosquitoes that transmit 
diseases, such as dengue fever and the Zika virus (The Invasive Mosquito Project, 2017), providing 
guidance for consumer purchase decisions [1], and keeping track of outpatient health of seniors [2]. In 
data-crowdsourcing projects, information is collected from an undefined sample population, which is a 
source of concern for data consumers – organizations and individuals who gather input via 
crowdsourcing platforms – who wish to have the best data possible. Research has therefore sought to 
guide the design of data-crowdsourcing systems to ensure high-quality data is collected.  

However, scholarship on data quality has centered chiefly on the representational quality of data – 
its capacity to adequately represent observed real-world phenomena. The consideration for what 
constitutes high-quality data (data fit for specific use) is limited, usually focusing on accuracy (the 
extent to which the information correctly represents observed real-world phenomena) and completeness 
(the extent to which it contains all the attributes of a phenomenon of interest) [3]. But data is 
increasingly repurposed to answer questions not anticipated when it was collected. There is, therefore, 
a need to better understand how to improve the quality and quantity of insights that data can provide 
[3], [4]. This makes understanding other intrinsic properties of data that can affect the usefulness of 
crowdsourced data – the quality of information derivable from an analyzed dataset – a critical success 
factor for data consumers.  
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One intrinsic property of crowdsourced data that can affect its usefulness is class imbalance (also 
called data imbalance) [5]–[7]. A balanced dataset is one in which the attributes needed to classify all 
instances of classes reported in the dataset are sufficiently proportional to allow classification 
algorithms to differentiate these instances into recognizable classes. When data is balanced, the 
instances that make up different classes in the dataset are evenly or equitably represented. The 
classification of the data is not skewed towards some instances to the detriment of others. Data 
imbalance is a pervasive problem usually originating from the world from which data is collected. The 
attributes of entities are not uniformly distributed in nature; some occur more frequently than others. 
For example, a dataset of fraud markers in financial transactions will show an imbalance because 
fraudulent transactions are much rarer than legitimate transactions. Likewise, markers in intrusion-
detection datasets and in cancer-detection data will be imbalanced for the same reason – rareness of the 
target attribute or class.  

Imbalance in data is a persistent problem in analytics [8]–[11], negatively affecting the accuracy of 
models in terms of regression [12], [13], classification (supervised classification) [14], clustering 
(unsupervised classification) [11], and artificial neural networks [15]. In many cases, the rarely 
occurring instances are deemed important, and their sparse occurrence implies algorithms may 
misclassify them into more prevalent classes. This is because machine-learning algorithms identify 
members of classes using models made from the broadest set of similar attributes of instances found in 
data. That is, they show a "maximum-generality bias" [16, p. 201], assuming the data has enough 
attributes of the relevant states of a phenomenon of interest. The use of the most commonly occurring 
attributes to form classes constrains the ability of classification algorithms to form classes from rarely 
occurring attributes. Instances that would have formed a minority class get subsumed into a majority 
class [9], [16].  

Imbalance is assumed to be solely caused by the inherent nature of the observed phenomenon and 
mainly addressed after data has been collected using algorithmic and data-level strategies [15], [17] 
(referred to here as after-the-fact measures). But imbalance may also be caused "artificially" [9, p. 1]. 
The design choices that data consumers make about data crowdsourcing projects can bias contributors 
to provide more or less balanced data. These decisions include how the crowdsourcing system is 
designed, the task(s) assigned to the sample population, who is recruited, and what motivates 
contributors [18].  

Preventing imbalance, when possible, would benefit data consumers who must trust the 
effectiveness of after-the-fact measures when they do not have sufficient domain knowledge to know 
what classes are expected in their datasets. Without domain knowledge, or when data consumers do not 
know what insights may lie in a dataset, the potential for discoveries may be lost or significantly reduced 
as minority classes get subsumed [21]. Moreover, after-the-fact strategies introduce new problems that 
degrade a machine-learning model's performance, such as random over-sampling, which increases the 
likelihood of over-fitting as several exact replications of the minority class are added to the initial 
dataset [19], [20]. The resulting learning process takes more time as the dataset becomes larger. 
Algorithmic approaches may not accurately detect all the minority classes and their instances [10]. 
Increasing our understanding of how to prevent or mitigate artificial imbalance can improve the 
usefulness of crowdsourced data when machine learning is applied to them.  

In this paper, we consider a design decision that can affect the imbalance of data in crowdsourcing 
projects – the decision to recruit knowledgeable contributors. Data consumers prefer to recruit 
knowledgeable contributors, but when these are scarce, they train novices to become more proficient in 
a crowdsourcing task. We investigate the effect of this design choice on the balance of contributed data. 
Through training, we induce the acquisition of task knowledge in contributors in a simulated 
crowdsourcing experiment and compare the level of imbalance in the data they provided. The study 
provides evidence that trained contributors report more imbalanced data than untrained contributors. 

2. Knowledge and Data Contribution 

Training contributors is a common design decision that data consumers make to improve the quality 
of crowdsourced data. However, this decision may affect the balance of data contributors' reports. 
Consider that humans are overloaded with sensory information every second. In a reporting task, such 



as identifying an entity, we learn about objects by paying selective attention to the relevant features that 
aid in identification. Consequently, irrelevant features (those not helpful for determining class 
membership) are safely ignored. Selective attention is the cognitive process of attending to one or more 
sensory stimuli while ignoring others considered irrelevant to a task [21]. Although selective attention 
leads to efficient learning, especially when making connections between instances with few similar 
features, it comes with costs. The direct cost of selective attention is a learned inattention to features 
that are not relevant to a particular data-reporting task [22]–[24]. These features, however, may be 
critical for classification in another context, so a failure to capture them precludes the possibility of 
using these features in a different context [25].  

Learning leads trained contributors to focus on relevant diagnostic features (i.e., for a specific task 
such as species identification), making them less likely to attend to non-diagnostic attributes than 
novices. We consider two forms of learning from the literature [23]: supervised learning – engendered 
by some form of explicit training (e.g., by a teacher) with sufficient feedback to improve the classifier's 
skill – and unsupervised learning – without explicit training (self-taught). Unsupervised or implicit 
learning may involve less rule-based processing and, consequently, more attentiveness to attributes, 
while supervised learning or explicit learning leads to a sharper focus on the acquisition of rules. 
Trained contributors will tend to selectively attend to only attributes they have been exposed to and 
learned to prioritize in training. Trained contributors will selectively attend to the few attributes they 
have learned, leading to disproportionate distribution of attributes in a dataset. Implicitly trained 
contributors may form different inclusion rules involving different attributes of the entity. The attributes 
they attend to and report will be influenced by the salience of features more so than the attributes 
reported by explicitly trained contributors. Meanwhile, explicitly trained contributors have a uniform 
set of attributes that they have been taught. They will focus mainly on those attributes or entities they 
have learned about and report attributes and entities that deviate from their existing knowledge to a 
lesser extent. As a result, explicitly trained contributors will report the most imbalanced data. 
Additionally, untrained contributors will attend to more attributes and consistently report these 
attributes about the entities they observe. We, therefore, predict that data from untrained crowds would 
be more balanced than data from trained crowds.  
 
Proposition 1: Untrained contributors will report more balanced data than implicitly or explicitly 
trained contributors.  
 
The consequence of imbalanced data is reduced ability to infer additional classes from data. We, 
therefore, predict that the design decision to train will negatively affect the usefulness of crowdsourced 
data, most significantly for the explicitly trained group and, to the least extent, the untrained group. 
 
Proposition 2: Data from untrained contributors will be more accurately classified using 
classification-based machine learning algorithms than data from trained contributors.  
  

3. Research Method 

To test these propositions, we designed an experiment to simulate a data crowdsourcing task. These 
types of projects often seek knowledgeable contributors [26] and sometimes provide training to ensure 
they can provide the type and quality of data needed by scientists [27]–[29]. In addition, many data 
crowdsourcing projects are interested in discoveries [33]. Data crowdsourcing is, therefore, a proper 
context to test the impact of training on data imbalance. Following the example of [31], we designed an 
experiment with two classes of artificial insects: tyrans and nontyrans. We used artificial creatures as 
primary entities of interest to limit the effect of contributor prior knowledge on the study. We defined 
tyran as a class (species) of artificial insects whose members meet a classification rule consisting of 
five requirements: (1) short tail, (2) light blue bodies, (3) two or three buttons on their light blue bodies, 
(4) blue wings, and (5) either one or two rings on each blue wing. Similar artificial stimuli that do not 
satisfy this classification rule (i.e., they meet some, but not all, of the conditions) are nontyrans. Figure 
1 shows a sample tyran and a sample nontyran used in the experiment. 



Figure 1: Sample Tyran and Nontyran Images 
 
The experiment consisted of twenty images, each presented on a separate slide. Sixteen slides (the 

test images) showed a mixture of tyrans and nontyrans. Four images containing unrelated items were 
placed intermittently within the sequence of test images to check whether participants paid attention to 
the task. These items were differently shaped/colored stimuli that were not insects (e.g., a triangle), and 
each participant was expected to report these stimuli correctly. The slides were presented in a 
nonrandomized order to all three groups, with images 5, 10, 15, and 20 showing items not related to the 
actual task. Each image had one primary entity and 13 of the 16 slides also included secondary entities. 
Secondary entities presented in the images are everyday objects, such as birds, insects, and fences. We 
displayed images of the entities in separate PowerPoint slides and asked contributors a nonleading 
question: "What do you see?"2 

3.1. Task 

We asked participants to imagine that designers of a game, similar to Pokémon Go, required their 
assistance in designing an aspect of the game. For example, the game requires players to interact with 
artificial insects. Specific insects called Tyrans are harmful and can kill a player's character, while 
similar insects called nontyrans, which lack some defining features, can provide energy to a player's 
character in the game. The designers, therefore, needed to test if the participants can report data about 
these insects to help improve their game. The participants were further informed that the goal of the 
experiment was to examine how people report the entities they observe.  

Participants were issued data entry booklets in which to write down their observations. For each 
participant, individually numbered pages within the booklet had spaces to record their observation about 
a correspondingly numbered image slide that was projected on a screen. The prompt on each page of 
the booklet was, "What do you see?" Participants were also required to complete a demographic section 
after the study. 

3.2. Participants 

The 93 students who participated in this experiment were undergraduate students at a Canadian 
university. Students chose to receive either course credit or a donation to their class graduation, and 
each participant was entered into a draw for a campus bookstore gift card. After screening for 
completeness and the attentiveness of the contributor using embedded 'catch' items, responses from 84 
participants were analyzed. Submissions from the remaining nine participants were excluded due to 

 
2 This is similar to the prompt used by eBird, a popular data crowdsourcing platform (www.ebird.org). 
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illegible writing, failure to report at least 3 out of 4 catch items correctly, and incomplete reports. Thirty-
six participants identified as male and 48 as female. 
We randomly assigned participants to three groups: (1) explicitly trained, (2) implicitly trained, and (3) 
untrained. The explicitly trained group members were taught the classification rule introduced above 
for identifying the primary entities as tyrans or nontyrans. To increase their familiarity with the task, 
participants in the explicitly trained group were also shown five sample tyrans, asked if they were 
tyrans, and given feedback on why these entities qualified as tyrans. We only showed participants 
images of tyrans because there are unlimited ways the attributes of a primary entity may violate the 
classification rules (here, we also follow [31], [32]). We briefed participants in the implicitly trained 
group on the task they would perform and showed them the same five target stimuli used to teach the 
explicitly trained group, one at a time, to allow them to elicit classification criteria. The participants 
were allowed to study each image; however, we did not provide explicit rules to members of this group, 
nor did we give them feedback on their ability to determine whether an entity is a tyran or not. Members 
of the untrained group were not shown any sample images. However, like those of the other groups, 
they were informed that we were interested in examining how people report information. 

3.3. Measures 

We developed a coding scheme that accounts for attributes of both the primary and secondary 
entities reported by participants. Two of the authors coded the first ten reports to establish consensus 
and conformance with the coding scheme. The first author coded the remaining reports, while the 
second author reviewed the coded data at different stages of the coding process. The variables coded 
for are presented in Table 1.  
 
Table 1.  
Variables Coded in the Contributed Data 
Codes for Attribute types Description 

Behavior Attribute The number of attributes describing the behavior of the primary entity 

Mutual Attribute  

(primary entity) 

The number of primary entity mutual attributes (a class of attributes that 
show an interaction between the primary entities and secondary entities)  

Diagnostic Attribute The number of attributes intrinsic to the primary entity that can be used to 
identify the primary entity  

Non-diagnostic Attribute The number of attributes intrinsic to the primary entity that cannot be used 
to identify the primary entity  

Secondary Entity The number of secondary entities reported 

Diagnostic Attributes 
(Secondary Entity) 

The number of attributes that can be used to identify the secondary entity 

Mutual Attribute  

(Secondary Entity) 

The number of attributes describing an interaction between the secondary 
entity and other entities 

Behavior Attribute  

(Secondary Entity) 

The number of attributes about the behavior of the secondary entity 

 
Using the coded data about each attribute class, we analyzed the image data to see their attribute 

compositions. Eight classes of attributes are present in different proportions in the dataset. Our goal is 
to understand the probability they will be classified correctly using a classification type machine-
learning algorithm. 



3.4. Manipulation Check 

Before testing for imbalance, we confirmed that the trained contributors exhibited selective attention 
to the primary entity and its attributes more than untrained contributors. Since secondary entities in the 
images were familiar objects (such as birds and fences), we examined the degree to which each group 
reported their presence as evidence of a differing degree of selective attention to primary entities. 
Applying one-way ANOVA to the data of the 13 images that included secondary entities, we found that 
the untrained contributors reported more secondary entities than did trained contributors. The implicitly 
trained group reported more secondary entities than did the explicitly trained group. The results indicate 
that those we expected to show more selective attention (i.e., the explicitly trained group) did so by 
reporting the least number of secondary entities (Table 2). This shows that our training was effective 
and selective attention indeed occurs at different levels in our groups. 

 
  Table 2.  
  Differences in the Reporting of Secondary Entities 

A B mean(A) mean(B) Mean Diff. Std. Err T p-value 
E I 1.036 1.544 −0.508 0.109 −4.674 0.001 
E U 1.036 2.289 −1.253 0.109 −11.521 0.001 
I U 1.544 2.289 −0.745 0.109 −6.847 0.001 

         E=Explicitly trained group, I= Implicitly trained group, U= Untrained group 

3.5. Comparing Imbalance in Attribute Classes Between Datasets 

We used only images containing secondary entities in our analysis. This is because some of the 
attributes coded for included Behavioral and Mutual Attributes for both the primary and secondary 
entities. Images with other entities provided a reference frame for contributors to report behavior and 
attribute types that involve more than one entity. We assume a case where mutual and behavioral 
attributes can give more insight into the observed entity than only attributes intrinsic to the entity. To 
compare the level of imbalance in the datasets collected by the three groups of contributors, we used 
the Shannon diversity index (H) – a mathematical measure of variability and can be used to compare 
entities in a specific space. Two different aspects contribute to the measurement of diversity: richness 
and evenness [30]. Richness is the total number of unique classes of a thing (attribute classes) in the 
data, and evenness is the distribution of the number of instances (attributes) for the available classes in 
the dataset.  

 The Shannon diversity index is denoted by the formula below: 
              
H= ∑ 𝑖 = 1

𝑠 [(pi)×ln(pi)] 
 

Where pi = proportion of total sample represented by class i (divide number of instances belonging 
to each class i by the total number of instances). ln is the natural logarithm, ∑ is the sum of the 
calculations, and s is the number of classes. 

Although H is sometimes used as an indicator of imbalance, it is most sensitive to the number of 
classes in an observation, so it is usually biased towards measuring class richness.  Evenness (EH) is a 
better measure of imbalance because it focuses on the distribution of instances (attributes) for the 
available classes, regardless of the number of classes available.  is measured 
as a number between 0 and 1, with 1 denoting perfect evenness. 

• S = number of attribute types, = class richness 
• Hmax=ln(S) = Maximum diversity possible 
• EH = Evenness = H/ Hmax 



In our experiment, each group observed and reported on the same thirteen images. We, therefore, 
compared the evenness in the number of attributes reported for each attribute class we expected. We 
calculated values of Shannon's equitability index (EH) of each group across each of the 13 images. Using 
ANOVA, we compared the EH for each group for all the images. There was no significant difference 
between the untrained and implicitly trained groups (U and I) with a p-value of 0.7989. However, there 
was a significant difference in the EH values for explicitly trained contributors and the other groups. 
The explicitly trained contributors reported more imbalanced data than the implicitly trained and 
untrained contributors (see Table 3). 
 
Table 3. 
Comparison of the level of imbalance in the datasets 

                                           

E=Explicitly trained group, I= Implicitly trained group, U= Untrained group 
 
Even though the Shannon equitability index gives insight into which dataset should be more 

balanced in theory, there is little empirical evidence to show that a high or low Shannon equitability 
index translates to more or less balance in real classification situations. There is a need to therefore 
examine the effect of the Shannon index score on actual classification of data. Given that we have 
different datasets about the same observation from the same number of people and under the same 
conditions, we have a unique opportunity to better understand how evenness translates to classification 
quality. 

3.6. Relating Shannon Index to Classification Quality 

We applied unsupervised classification to the data from the three groups. We clustered the data 
reported for each image using affinity propagation, an algorithm that automatically determines the 
number of clusters suitable for a dataset by optimizing the fit function [34]. Using the same model, the 
dataset from the explicitly trained group generated 122 clusters, while the dataset from the implicitly 
trained group generated 166 clusters. The dataset from the untrained group generated 171 clusters. 
Again, since these datasets were provided under the same conditions and within the same time limits, 
the key differentiating factor in determining the number of clusters formed was the level of training 
provided to contributors. The higher number of clusters may indicate a higher volume of data supplied 
by the contributors in the untrained group or a higher capacity for the model to cluster the data for the 
untrained group.  

To better understand the effect of training on the quality of classification, we calculated the purity 
of the clusters formed from each dataset. Purity evaluation estimates the homogeneity of members of a 
cluster using human judgment and, therefore, estimates the degree of imbalance in a dataset [35]. To 
compute purity scores, we calculate the percentage of objects that are correctly and wrongly classified 
in a cluster based on "ground truths" or knowledge we have about the observed entities. Two people 
examined and coded attributes in the clusters for the number of right and wrong class members in each 
cluster. The coders included one of the authors and a student who was not briefed on the purpose or 
context of the study but presented the clusters and was asked to judge the suitability of the members of 
each cluster for class membership. The two coders achieved an interrater reliability score (Cohen's 
Kappa) of 0.86 without a need for discussion among the coders or any resolution. Then we applied the 
purity formula:  

 
Where 𝑁 = number of objects (data points), 𝑘 = number of clusters, 𝑐𝑖 is a cluster in 𝐶, and 𝑡𝑗 is the 

classification which has the maximum count for cluster 𝑐𝑖. We found that the clusters formed from data 

A B Mean A Mean B Mean Diff F  p-value 
E I 0.594 0.755 -0.161 17.922 0.000 
E U 0.594 0.748 -0.154 15.914 0.000 
I U 0.755 0.748 0.007 0.066 0.799 



from the untrained group were purer than clusters formed from the data for the trained groups. Also, 
the data from the implicitly trained group was as impure as the data from the explicitly trained group. 
Table 4 shows the purity scores compared using ANOVA.   
 
Table 4:  
    Comparing the Purity of Classification of Resulting Datasets 

A B mean(A) mean(B) diff SE T p-value 
E I 0.789 0.830 -0.040 0.025 -1.638 0.232 
E U 0.789 0.895 -0.106 0.025 -4.265 0.001 
I U 0.830 0.895 -0.065 0.025 -2.627 0.025 

     E=Explicitly trained group, I= Implicitly trained group, U= Untrained group 
 
From the purity evaluation, we found that attribute instances that would have formed minority 

classes are subsumed into majority classes more often in datasets provided by trained contributors than 
was the case for the dataset provided by untrained contributors. 

4. Discussion 

Decisions made in the design of data crowdsourcing systems can affect the balance of data. We 
examine one such design decision – training contributors in a data collection task. Training contributors 
can induce an imbalance in crowdsourced datasets because it leads contributors to focus mainly on 
relevant features they have learned. Trained contributors will selectively attend to attributes to which 
they have been exposed and have learned to prioritize in training. We see this in the results of our 
manipulation check in Table 2. Implicitly trained contributors reported more secondary entities than 
explicitly trained contributors, and both trained groups show more selective attention than the untrained 
group.  

Training contributors has consequences for the balance of crowdsourced data reported. Untrained 
and implicitly trained contributors have a higher propensity to report balanced data than explicitly 
trained contributors. Training contributors with explicit rules rather than allowing them to learn on their 
own therefore has the most adverse effect on the balance of data. Data from the explicitly trained 
contributors also resulted in the most impure classifications, potentially limiting the insights that can be 
gathered from data.  

Focusing on the effect of training on imbalance is unlike the majority of research on data imbalance 
which seek to address imbalance after data has been collected. Our approach is preventative, seeking to 
proactively design crowdsourcing systems to collect balanced data. One key value of this approach is 
that it emphasizes that imbalance is not solely inherent in phenomena but can be caused by our designs 
of data crowdsourcing systems and that some imbalance, particularly design-induced imbalance, is 
preventable.  

Nonetheless, there are limits to the generalizability of our results. Indexes such as the Shannon 
Equitability Index give us an insight into how a design choice can affect the balance of data, but they 
may not accurately predict how a machine-learning algorithm will process data. Also, our hypotheses 
have not been tested in other conditions beyond this experiment.  

Beyond these limits, emphasizing that imbalance can be artificial should prompt further research 
into preventing data imbalance where possible. Generally, future research on identifying how to design 
crowdsourcing systems so that they do not inadvertently promote the collection of imbalanced data 
would benefit data consumers. More specific to training, it would be helpful to understand how to 
mitigate the impact of selective attention on the balance of data when contributors need to be trained. 
Also, it would be interesting to know if contributors could be trained to report balanced data.  

5. Conclusion 

Imbalance is usually considered an inherent consequence of collecting data about things in the real 
world and has been mainly addressed after data has been collected. In this paper, we showed that 



imbalance could also be caused artificially by the design choices made for data-crowdsourcing systems. 
The paper emphasizes the effect of training on the balance of data and the resulting usefulness of 
collected data. Design decisions, such as the choice to train contributors, can have negative 
consequences for the insightfulness of data because they encourage cognitive biases that limit the data 
contributed. Data requirements can change at several stages of a decision-making process – during 
collection or even after the initial analytics results come in. Thus, imbalanced data may support present 
known uses of data but fail to support emergent uses. How we design our data-crowdsourcing systems 
should therefore be determined by the priority we place on the insightfulness of our crowdsourced data, 
now and in the future. 
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