
Aggregation of Crowdsourced Ontology-Based Item
Descriptions by Hierarchical Voting

Andrew Ponomarev

St. Petersburg Federal Research Center of the Russian Academy of Sciences, 39, 14th Line, St. Petersburg,

199178, Russian Federation

Abstract
The paper considers a special case of crowdsourcing problem, where each participant

describes items of a (potentially large) collection by sets of OWL statements, therefore,

linking these items to classes of an ontology (or even multiple ontologies). The descriptions

provided by the participants may be unreliable, so multiple descriptions of one item should

be aggregated in order to increase the description accuracy. We show how the structure of the

ontology may help in aggregating such descriptions. In particular, in this paper we analyze

OWL constructs that may be utilized for aggregation, propose a hierarchical voting

aggregation algorithm and show using a simulation study, that the proposed algorithm helps

to significantly increase the quality of aggregated descriptions.

Keywords1
OWL, label aggregation, ontologies, crowdlabeling, knowledge graphs

1. Introduction

Crowdsourcing plays an important role in modern IT landscape, allowing one to use human

potential and human information processing abilities in information processing problems that are hard

for machines. One of the important types of crowdsourcing applications is crowdlabeling, where each

participant is asked to associate some tags (or, labels) with the given object (usually, a complex one –

text, video, or image). In these applications, a participant has to interpret the contents of the object

and find the most appropriate tags for it. Such tagging is typically used either to train AI models, or to

enable tag-based search in data collections (in cases where it is much simpler to implement a tag-

based search than to build an automated content analyzer).

This paper deals with a special case of crowdlabeling, where a set of labels, as well as the set of

relationships between the items and labels are defined by some OWL 2 ontology [1]. Ontologies are a

cornerstone piece of Semantic Web and proved themselves to be an effective tool of reaching

semantic interoperability, as they a) define the precise meaning of terms, b) describe relationships

between terms, c) are based on formal models, enabling to infer information not provided explicitly

(usually, on description logics), representing a symbolic “branch” of AI. OWL 2, a W3C

recommendation, is currently one of the most popular ontology languages, that is used to represent

variety of the ontologies in a wide range of application areas. Besides, it is compatible with other

technologies of the Semantic Web stack (e.g., RDF, SPARQL), making it a first choice for creating

semantic applications on a Web.

One of the most important problems that has to be addressed in any crowdsourcing application is

quality management. Input received from one participant is unreliable. Quality management is

focused on the set of measures to increase the quality of data collected by an application [2]. One of

the ways here is to trade redundancy for quality, i.e., assign the same task to several participants and

VLDB 2021 Crowd Science Workshop: Trust, Ethics, and Excellence in Crowdsourced Data Management at Scale, August 20, 2021,

Copenhagen, Denmark
EMAIL: ponomarev@iias.spb.su

ORCID: 0000-0002-9380-5064

© 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

then aggregate their results (hopefully, obtaining the result better than individual ones). Variety of

label aggregation techniques have been proposed to address this issue (e.g., [3], [4]), however, only

few of them take into account relationships between labels. Ontology concepts are related explicitly

(relations are reflected in the ontology), and utilizing this relations might help in aggregating and

reconciling descriptions, received from multiple participants. Our research is aimed on the

development of a technique to aggregate descriptions expressed as ontology statements. In order to do

so, we analyze what OWL 2 relationships can affect the aggregation procedure and how. After that,

we propose an aggregation procedure for ontology-based crowdlabeling.

A motivating example (one of potential applications) for such procedure is semantic tagging of a

collection of documents (e.g., scientific papers). To some extent this can be achieved with automatic

annotation algorithms, however, these algorithms typically cannot extract important details of a paper

(like the experimental protocol details), that can easily be extracted by a researcher and represented

with one of the research-oriented ontologies (e.g. [5]).

The rest of the paper is organized as follows. In section 2, we discuss some related work both on

label aggregation and on ontology-based similarity. Section 3 contains a description of OWL

statements that are important in the process of label aggregation. Section 4 introduces the proposed

label aggregation algorithm. Finally, section 5 contains an experimental evaluation of the proposed

algorithm.

2. Related work

Most of the existing label aggregation methods are based on strict comparison of the results

obtained from individual participants, ignoring possible relationship between labels. However, there

are several papers on adapting consensus methods to situations where there are relations between

labels. In [6], the authors propose an extension of the DS algorithm and explore different models for

representing relations between labels (including a Bayesian network as a compact representation of a

joint distribution). In [7], a probabilistic labeling model for hierarchical classification is proposed, that

is, for the situation when the labels that participants assign to objects are classes organized in a

hierarchy (classification of books, goods). This is especially close to the considered problem, because

typically a core of an ontology is a class taxonomy, defined with a help of OWL 2 SubClassOf

construct. Crowdlabeling with ontology classes is also considered in [8].

However, the results obtained in these papers are not entirely (or fully) applicable to the problem

under consideration: the set of consensus methods proposed in [6] is based on the DS algorithm,

which has high computational complexity, therefore, its applicability for labeling using large

ontologies is limited. The method proposed in [7] is intended for the scenario of sequential tag

refinement by a participant, which is not always reasonable. The closest problem definition is in [8],

however, only SubClassOf ontology construct is considered.

There is also a complimentary line of publications (for example, LexiTags [9]), where the

ontology is used to help the participant in choosing labels. Although this approach to quality

assurance can be effective, it can only be used as an auxiliary one, not removing the need for

reconciling contradicting labels.

3. Relevant OWL statements

This section explains the problem in more detail and introduces possible OWL constructs that may

be useful for aggregating labels.

3.1. Problem Statement

Ontology-based item description relies on two kinds of information: ontology specification and

item description. Ontology is a “a formal, explicit specification of a shared conceptualization” [10]. It

defines classes of objects in some domain and their relationships, and allows to reason about

properties of objects (usually, based on description logics). There are several languages for encoding

ontologies. In this paper, an “ontology” implies an ontology expressed in OWL 2 language. Ontology

language offers the set of constructs to capture relationships between classes and defining properties

and their characteristics. Fig. 1 contains an illustrative example of an ontology. It declares a hierarchy

of classes to be used for thematic classification, class Item, and three properties (hasTopic,

hasPrimaryTopic, and hasLength) that can be used to describe items.

Item description consists of a set of statements linking the item with some ontology entities

(classes or individuals) and/or using properties defined in the ontology. Each statement of such

description can also be encoded with OWL 2, using so-called assertion statements. Moreover, in this

paper we consider descriptions consisting of only two kinds of statements:

 ObjectPropertyAssertion(OP, item, v), where OP is an object property defined by the

ontology used for description, item is the item being described, v is some entity, introduced by the

ontology, and

 DataPropertyAssertion(DPE, item, lt), where DPE is a data property defined by the ontology,

item is the item being described, and lt is some literal.

Example of a description using the ontology shown in Fig. 1 could be the following:
ObjectPropertyAssertion(

 o:hasPrimaryTopic

 <https://doi.org/10.1000/xyz123>

 o:Crowdsourcing

)

ObjectPropertyAssertion(

 o:hasTopic

 <https://doi.org/10.1000/xyz123>

 o:AIOntology

)

DataPropertyAssertion(

 o:hasLength

 <https://doi.org/10.1000/xyz123>

 "5"^^xsd:int

)

Prefix(:=<http://example.com/ontologies/crowdscience/s6#>)

Ontology(<http://example.com/ontologies/crowdscience/s6>

 Declaration(Class(:Item))

 Declaration(ObjectProperty(:hasPrimaryTopic))

 Declaration(ObjectProperty(:hasTopic))

 Declaration(DataProperty(:hasLength))

 SubClassOf(:InformationTechnology owl:Thing)

 SubClassOf(:AI :InformationTechnology)

 SubClassOf(:AIOntology :AI)

 SubClassOf(:Crowdsourcing :InformationTechnology)

 SubObjectPropertyOf(:hasPrimaryTopic :hasTopic)

 ObjectPropertyDomain(:hasTopic :Item)

 DataPropertyDomain(:hasLength :Item)

 DataPropertyRange(:hasLength xsd:int)

)

Figure 1: Ontology example

This describes an item with the unique identifier <https://doi.org/10.1000/xyz123>, using two

object properties and one data property defined by the ontology. To save space, we use the namespace

“o:”, assuming that it is defined to match the ontology URI.

According to [11] this can also be represented as a set of RDF triples:

<https://doi.org/10.1000/xyz123> o:hasPrimaryTopic o:Crowdsourcing .

<https://doi.org/10.1000/xyz123> o:hasTopic o:AIOntologies .

<https://doi.org/10.1000/xyz123> o:hasLength "5"^^xsd:int .

Let an item x can be completely described by a set of statements D*(x), such that each statement

actually correspond to the contents of x, none of the statements in D*(x) follow from other statements,

and no statements could be added.

The goal of the problem-setter is to obtain description D*(x), but it is generally unknown, and what

the problem-setter can get are descriptions, that are close to the real one, but with possible deviations

(missing statements, too general statements, etc.).

The ontology-based item description problem can be specified by a tuple P = <x, U, D, M, O>,

where x – is an item, U is a set of users (participants), D is a set of descriptions of the item (each

consisting of a set of statements), M is a mapping between users and descriptions, and O is an

ontology used in the descriptions D. The aggregation method ℳ(𝑃) should result in some description

for item x that is as close as possible to D*(x). The interpretation of difference between descriptions

relies on the interpretation of some ontology constructs, that are explained below.

3.2. OWL Constructs

Even if two statements describing the same item are different in the most primitive sense (i.e., they

use different properties and/or different property values) the meaning conveyed by these two

statements may be similar. For example, let one participant (using the ontology from Fig. 1) stated

that:

<https://doi.org/10.1000/xyz123> o:hasTopic o:InformationTechnology .

While another participant stated that:

<https://doi.org/10.1000/xyz123> o:hasTopic o:Crowdsourcing .

These two statements are different, but they (partially) agree in that the topic of the item

referenced as < https://doi.org/10.1000/xyz123> is connected with information technology (because

crowdsourcing is defined in the ontology as a subclass of information technology).

Partial agreement of these statements is the result of the relationship between the concepts

explicitly defined in the ontology using SubClassOf statement. In order to develop a procedure of

relating arbitrary statements describing an item, we have to identify ontology constructs that may

influence this relationship (other than SubClassOf).

There were two sources of this analysis. First, we analyzed publications on the determining of

semantic similarity of concepts [12]–[17] (since their subject is the formalization of the definition of

similarity and consistency, therefore, the ontological relations used in them allow give an idea what

relationships are instrumental for that). Second, we analyzed a set of constructs supported by the

OWL 2 language. It was decided to focus on the OWL QL profile – a subset of OWL 2, which

provides polynomial time complexity for all standard ontological inference problems and efficient

query processing when storing instances (OWL individuals) in a relational database. This profile is

most consistent with the typical application of crowdsourcing, where a large number of items are

described using a relatively simple (in terms of possible relationships and their properties) ontology.

Besides, its temporal (and spatial) complexity guarantees allow for efficient matching algorithms.

The set of constructs that are supported by OWL QL profile and can be used for statement

agreement is provided in Table 1. In particular, SubClassOf, SubObjectPropertyOf and

SubDataPropertyOf can be used to identify and agree on different levels of descriptions, the

EquivalentClasses property – to handle synonyms, Disjoint, DisjointObjectProperties,

DisjointDataProperties and DifferentIndividuals – to identify and handle inconsistencies.

Table 1
The set of OWL QL constructs that can be used for statement agreement

Consruct Construct meaning

SubClassOf Defines one class as a subclass (or, more specialized class of
another class). Instances of the subclass are also instances of
the more general class.

EquivalentClass Asserts that two classes are equivalent, i.e. contain exactly the
same set of individuals.

Disjoint No individual can be at the same time an instance of two
classes of the specified ones.

SubObjectPropertyOf/
SubDataPropertyOf

Allows one to state that the extension of one object property
expression is included in the extension of another object
property expression.

EquivalentObjectProperties Allows one to state that the extensions of several object
property expressions are the same.

DisjointObjectProperties/
DisjointDataProperties

Allows one to state that the extensions of several object
property expressions are pairwise disjoint — that is, that they
do not share pairs of connected individuals.

DifferentIndividuals Allows one to state that several individuals are all different
from each other.

Some of the OWL QL constructs were found to be inapplicable for agreement (for example, Range

and Domain properties). This is mainly due to the fixed form of the ontological description considered

(all statements are made with respect to one item, as a rule, of a known class).

4. Description aggregation algorithm

This section describes an algorithm for statements aggregation, taking into account the ontological

relationships identified in Sec. 3.

The proposed aggregation algorithm is based on an observation, that an description statement can

be generalized (following the ontology specification) without losing its validity. For example, let one

of the participants stated that some article is primarily dedicated to crowdsourcing:

<https://doi.org/10.1000/xyz123> o:hasPrimaryTopic o:Crowdsourcing .

According to the formal definition of the OWL 2 SubClassOf construct, which is used in the

ontology (Fig. 1) to describe class Crowdsoucing, any individual belonging to this class also belongs

to class InformationTechnology. Therefore, the statement:

<https://doi.org/10.1000/xyz123> o:hasPrimaryTopic o:InformationTechnology .

is also valid. It is less specific, however, valid. This generalization can be continued, using other

SubClassOf definitions to the statement that the primary topic of the paper is owl:Thing (which is

rather meaningless – the paper is literally about ‘something’, however, important).

Moreover, the ontology uses OWL 2 SubObjectPropertyOf to establish relation between

hasPrimaryTopic and hasTopic, which means that any pair of entities connected by hasPrimaryTopic

property are also connected by a more general property hasTopic. Therefore, the original statement

can also be generalized to:

<https://doi.org/10.1000/xyz123> o:hasTopic o:Crowdsourcing .

And further to:

<https://doi.org/10.1000/xyz123> owl:ObjectProperty o:Crowdsourcing .

where owl:ObjectProperty is a top object property. Both paths of generalization can be applied

independently, so there are six statements that follow from the from the original statement.

On the other hand, there are disjoint classes, implying that an individual may belong only to one of

these classes and disjoint properties, implying that no two entities can be connected by both

properties. It means that along with possible generalizations, there are also some negative statements

that follow from the original statement. Fig. 2 shows an algorithm for finding both positive and

negative consequences of the given statement. The algorithm relies on ValueGeneralizations and

PropertyGeneralizations functions that return sets of the entities, following SubClassOf,

EquivalentClass, ClassAssertion (for ValueGeneralizations) and

SubObjectPropertyOf/SubDataPropertyOf, EquivalentObjectProperties (for PropertyGeneralizations).

The algorithm also relies on Disjoints function that returns a set of all values not ‘compatible’ with

the specified one (using Disjoint and DifferentIndividuals ontology constructs), and

DisjointProperties (interpreting DisjointObjectProperties/DisjointDataProperties constructs). All these

functions (or their close analogs) are usually provided by ontology processing software libraries.

Algorithm: StatementConsequences

Input: statement < item, p, v >

S+, S-, V+, V- :=

for v’ ValueGeneralizations(v)

 V+ := V+ {v’}

 V- = V- Disjoints(v’)

for p’ PropertyGeneralizations(p)

 S+ = S+ {<item, p’, pv> | pv V+}

 S- = S- {<item, p’, nv> | nv V-}

 for np DisjointProperties(p’)

 S- = S- {<item, p’, pv> | pv V+}

return < S+, S- >

Figure 2: An algorithm for finding statement consequences

Algorithm: DescriptionConsequences

Input: description D (set of statements)

M := dictionary()

for s D

 < S+, S- > := StatementConsequences(s)

 for s’ S+

 if s’ M.keys

 M[s’] = max(M[s’], 1)

 else

 M[s’] = 1

 for s’ S-

 if s’ M.keys

 M[s’] = max(M[s’], -1)

 else

 M[s’] = -1

return M

Figure 3: An algorithm for finding description consequences

Each of the consequences of the original statement is actually asserted by a participant. In the

proposed algorithm all positive consequences are assigned “vote” of 1, and all the negative

consequences are assigned “vote” of -1. The description provided by a participant usually contains

several statements, and usually there are generalized statements that follow from more than one

original statement (indeed, a statement that the value of an owl:ObjectProperty of the item is

owl:Thing generalizes vast majority of statements). Such statements (following from more than one

original statement) receive a maximal “vote”, e.g. if a statement receives a “vote” of 1 from one

statement, and a “vote” of -1 from another, resulting “vote” will be 1. The algorithm of finding

consequences of a whole description is shown in Fig. 3.

The aggregation algorithm is organized in the following way: it builds consequences of each

description (provided by different participants), sums votes for respective statements, filters only

those statements that have the specified number of votes, and removes all the statements that follow

from some other statements in the resulting set (see Fig. 4). The set of consequences of a statement is

constructed using hierarchies (of classes and properties) defined in the ontology, the votes are

propagated along this hierarchies, hence the name of the approach.

Algorithm: Aggregate

Input: Q - set of descriptions from different participants,

 - votes threshold.

 1) M := dictionary()

 2) # Find logical consequences of each description

 3) # (summing votes)

 4) for q Q

 5) V := DescriptionConsequences(q)

 6) for s V.keys

 7) if s M.keys

 8) M[s] = M[s] + V[s]

 9) else

10) M[s] = V[s]

11) # Filter out statements that don’t have enough support

12) S := {s | s M.keys, M[s] >= }

13) # Filter out non-specific statements

14) for s S

15) G+, G- := StatementConsequences(s)

16) S := S \ G+

17) return S

Figure 4: A description aggregation algorithm

5. Evaluation

The proposed approach was evaluated using a simulated dataset. This section describes the

procedure of dataset generation (and participant’s error model as a cornerstone piece of it) and

evaluation results.

5.1. Ontologies

In the simulation study, we used three generated ontologies of different sizes: small, medium and

large. The core of any ontology is the hierarchy of concepts, defined by a SubClassOf construct, so it

is the case for the generated ontologies – each includes several hierarchies. Besides, typically there

are certain number of synonyms (EquivalentClasses). In each ontology we created “synonym classes”

and linked them to random classes, connected to the hierarchies (the number of “synonym classes”

was set as 1/3 of the classes forming hierarchies).

Besides, each ontology defines five object properties organized into two object property

hierarchies. The ontologies do not include data properties, as the evaluation mostly aims at exploring

conceptual aggregation, to deal with data properties any data aggregation approach could be plugged.

Characteristics of the generated ontologies are the following:

 Small – 2 hierarchies, each with 4 levels, 3 subclasses per non-leaf class. In one hierarchy the

subclasses are disjoint. There are 313 classes in total.

 Medium – 4 hierarchies, each with 4 levels. Two of them has 3 subclasses per non-leaf class,

the other two – 4 subclasses. In half of the hierarchies, the subclasses are disjoint. There are 1197

classes in total.

 Large – simply twice as big as the medium one, 2393 classes in total.

5.2. Participant Model

According to [18]–[21], main error reasons in crowd computing systems are:

 machine-human interface (incorrect representation of the labeling task, insufficient or

inadequate explanations);

 participant’s characteristics (lack of knowledge, lack of concentration, etc.);

 human-machine interface (misinterpretation of the human input GUI elements, inadequate

post-processing).

To concretize the types of errors, it is necessary to clarify the possible structures of statements

received from a participant in the human-machine computing system. As mentioned above, these

statements have the form «object – property – value». Therefore, errors can be associated with both

the property used and the specified property value.

So, when choosing a property, the following types of errors are possible: a) using an invalid

property of an object (for example, using properties included in the DisjointObjectProperties /

DisjointDataProperties group), b) using a property that is too general (insufficient specification), c)

using a valid property, but not reflecting the relationship between the object and the value (too

specific, for example, or just onrelated). Some of these errors (in particular, errors of type (a)) can be

detected using an ontological inference engine. Others – (b) and (c) – should be fixed in the process of

aggregation.

When specifying class values, the following types of errors are possible: a) using a class that is too

general (insufficient specification), b) using a class that is too specific, c) using a class that is not

related to the correct class by the transitive relation SubClassOf.

When specifying values (individuals or data), following errors are possible: a) specifying a value

that is different from the true one (different values of the data property or the presence of the

DifferentIndividuals axiom connecting the specified and the true values), b) specifying a value that is

not true (another IRI, but there is no axiom postulating difference with true meaning). Option (b) may

not be interpreted as an error, it is determined by the peculiarities of the ontology structure. In

addition, in some cases, a third version of the error is also possible, when, within the framework of the

ontology, a certain property is defined that defines the relationship between individuals (OWL

Individuals), which can be used to characterize the admissibility of using one individual instead of

another (by analogy with the SubClassOf construction for classes).

Therefore, let an item can be described by a certain number of true statements. Each participant

can be characterized by a following characteristics:

 Observancy, describing how many of these statements he/she can detect. We will characterize

observancy by a number [0;1] corresponding to the probability that a particular true statement is

considered by the participant.

 Diligence, describing the propensity of using exact values, not generalizing them. Diligence is

also given by a number d [0;1] corresponding to the probability that the statement will be

returned as is. With probability 1 – d the property name or object value will be changed to more

general.

 Noise, controlling how many statements unrelated to the true statements a participant will

generate. Defined as a probability to generate a noise statement (where property and value are

selected uniformly at random).

We used three types of participants in the simulation:

 high quality (observancy 0.9, diligence 0.9, noise 0.1),

 medium quality (observancy 0.75, diligence 0.75, noise 0.2), and

 low quality (observancy 0.6, diligence 0.6, noise 0.4).

5.3. Aggregation quality

To measure the similarity of descriptions (e.g., ground truth descriptions and aggregated) we use

the following score.

Let 𝐷(1) = {𝑠𝑖
(1)

} and 𝐷(2) = {𝑠𝑖
(2)

} be two descriptions defined as sets of statements. Further, let

𝐺(𝑠) be a set of statements that generalize statement 𝑠, and 𝐿(𝑠, 𝑠′) be a minimal number of

generalizations to transform 𝑠 to 𝑠′. Then, statement penalty score is calculated as:

𝑝(1)(𝑠) = min
𝑠𝑖

(2)
∈𝐷(2),𝑠′

(𝐿(𝑠, 𝑠′) + 𝐿(𝑠𝑖
(2)

, 𝑠′)) , 𝑠 ∈ 𝐷(1),

𝑝(2)(𝑠) = min
𝑠𝑖

(1)
∈𝐷(1),𝑠′

(𝐿(𝑠, 𝑠′) + 𝐿(𝑠𝑖
(1)

, 𝑠′)) , 𝑠 ∈ 𝐷(2).

In other words, penalty for a statement (with respect to some other description), is the minimal

distance (in generalization operations) to any of the statements of the other description.

Description penalty score is calculated as:

𝑃(𝐷(1), 𝐷(2)) = ∑ 𝑝(1)(𝑠𝑖) +

𝑠𝑖∈𝐷(1)

∑ 𝑝(2)(𝑠𝑖)

𝑠𝑗∈𝐷(2)

.

In the presented results, the value of this metric is the description penalty score averaged per items.

5.4. Results

The first experiment is to verify that the proposed aggregation method is able to improve

descriptions with respect to the descriptions provided by one participant and to understand the effect

of algorithm parameters (number of voters, voting threshold) on the resulting description quality. To

do so, we used the small ontology and medium quality participants. Table 2 shows the average

description penalty score after 10 simulations (for 500 items), standard deviation is shown in

parenthesis. The average quality of descriptions of one medium quality participant is 8.41 (0.39).

Table 2
Influence of redundancy and voting threshold on the quality

Threshold\Redundancy 1 2 3 4 5 6

1 8.41
(0.39)

5.81
(0.22)

6.53
(0.28)

7.69
(0.29)

9.44
(0.43)

11.27
(0.48)

2 - 10.08
(0.23)

5.36
(0.16)

2.83
(0.16)

1.96
(0.15)

1.64
(0.10)

3 - - 11.87
(0.15)

7.44
(0.21)

4.25
(0.10)

2.37
(0.14)

4 - - - 12.86
(0.11)

9.55
(0.21)

6.03
(0.14)

5 - - - - 13.43
(0.1)

11.00
(0.2)

6 - - - - - 13.76
(0.11)

It can be seen, that with three or more participants working on a description, it is possible to

achieve significantly better description quality, than with one participant. When the number of

participants is greater than five, the gain in description quality is diminishing. Most effective

threshold in most cases is 2. It can be explained by the fact, that with stricter thresholds, the consensus

is reached only in higher levels of aggregation, increasing the description penalty, while with smaller

thresholds and large numbers of participants (high redundancy) aggregate description starts to include

many noise statements, that are far from any of the ground truth statements.

Table 3 shows how the ontology size influences the description quality. All the descriptions were

done by a medium quality participant, the threshold was set to 2 (the results shown are averages of 10

runs).

Table 3
Sensitivity to the size of the ontology

Ontology size\Redundancy Single 3 4 5 6

Small 8.38
(0.35)

5.35
(0.23)

2.86
(0.08)

1.82
(0.14)

1.75
(0.12)

Medium 9.0
(0.2)

5.75
(0.14)

3.13
(0.16)

1.93
(0.11)

1.67
(0.14)

Large 9.21
(0.33)

5.67
(0.21)

2.91
(0.17)

1.89
(0.15)

1.61
(0.10)

The quality of descriptions doesn’t depend on the size of the ontology (all variations are within

confidence intervals). The proposed algorithm with redundancy 3 to 5 provides significant gains in

description quality (relative gains are roughly the same for all the examined ontology sizes).

Table 4 shows the effect of the quality of the original descriptions on the aggregated ones (on the

small ontology dataset). Aggregation turns out to be effective for each of the original description

qualities, however, it has certain limits – no matter how many low quality participant descriptions are

aggregated, the result is still significantly worse, than could be produced by one high quality

participant.

Table 4
Original and aggregate descriptions quality

Participant
Quality

Single Redundancy

3 4 5 6

Low 14.32
(0.47)

10.33
(0.24)

8.21
(0.29)

7.4
(0.22)

7.02
(0.28)

Medium 8.23
(0.15)

5.25
(0.3)

2.96
(0.19)

1.87
(0.1)

1.71
(0.07)

High 3.57
(0.18)

1.28
(0.14)

0.4
(0.07)

0.3
(0.06)

0.36
(0.03)

6. Conclusion

The paper considers the problem of aggregating semantic descriptions, expressed as represented as

sets of statements, describing items in terms of some OWL QL ontology. We examined OWL QL

constructs to identify those that may be utilized in the process of aggregation. Then, we proposed an

algorithm based on statement generalization and voting on generalized statements. The experimental

evaluation using a simulated dataset shows that the proposed algorithm allows to utilize the

redundancy in order to significantly improve the quality of semantic descriptions.

The proposed aggregation procedure as well as all the evaluation modules are implemented on

Python and available on GitHub [https://github.com/m-hatter/onto-voting].

Potential applications of the semantic description aggregation are various crowdlabeling systems,

especially in the fields where many high-quality ontologies exist (e.g., scientific research, and, in

particular, biomedical sciences). For example, the algorithm can be used in for filling semantic

databases, powered by Semantic MediaWiki core (https://www.semantic-mediawiki.org/) used by

SNPedia (https://www.snpedia.com/), SKYbrary (https://www.skybrary.aero/) and a number of other

public projects, as well as in commercial companies. Semantic MediaWiki technology is similar to

MediaWiki, used, for example, in Wikipedia, but participants can add to the description of an object

not simple text, but a set of triples (object-predicate-value). The existing versions, however, are not

supposed to automatically reconcile information received from different participants, the entire

reconciliation process is based, as in MediaWiki, on the sequential development of descriptions and

edits from community members. The proposed algorithm can be used to develop automated services

(“bots”) that implement automated reconciliation of descriptions in Semantic MediaWiki. Besides, as

ontologies are a universal tool, based on strong logical foundations, some problems related to

collecting descriptions may be reduced to the ontology-based semantic labeling, which widens the

scope of possible applications even further.

The considered problem formulation is very under-developed in comparison to other areas of

crowd science. This opens many opportunities for further research:

 The proposed algorithm is based on a voting scheme, where all participants are treated

equally. It may be improved to take into account some prior information about participants’

accuracy (and adjust it).

 In the proposed algorithm (and quality metric) concept generalization and property

generalization are treated equally. However, for the most important in a practical sense ontologies

– Gene Ontology (GO), Human Phenotype Ontology (HPO), Plant Ontology (PO) and others –

specialized algorithms are developed to measure the semantic similarity of the concepts, giving

results that are most consistent with expert assessments, and taking into account the peculiarities of

the structure of the corresponding ontologies [22]. Embedding such approaches into the vote

propagation and error metric algorithms may be an interesting research direction, improving the

effectiveness of aggregation in real-world scenarios.

 More complex statements describing items may be considered. For example, ones, involving

anonymous nodes, etc.

 Other subsets of OWL (and/or) other Semantic Web languages – RDFS, for example, may be

considered (however, from the semantic relationships point of view, RFDS provides less

opportunities, so it would actually be narrowing the set of relations, discussed in this paper).

7. Acknowledgements

The reported study was funded by Russian Foundation for Basic Research, project number 19-07-

01120.

8. References

[1] W3C, ‘OWL 2 Web Ontology Language Document Overview’, 2012. [Online]. Available:

https://www.w3.org/TR/owl2-overview/. [Accessed: 10-Oct-2020].

[2] G. Li, J. Wang, Y. Zheng, and M. J. Franklin, ‘Crowdsourced Data Management: A Survey’,

IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 9, pp. 2296–2319, 2016.

[3] A. I. Chittilappilly, L. Chen, and S. Amer-Yahia, ‘A Survey of General-Purpose

Crowdsourcing Techniques’, IEEE Transactions on Knowledge and Data Engineering, vol.

28, no. 9, pp. 2246–2266, 2016.

[4] A. Drutsa, V. Fedorova, D. Ustalov, O. Megorskaya, E. Zerminova, and D. Baidakova,

‘Crowdsourcing Practice for Efficient Data Labeling: Aggregation, Incremental Relabeling,

and Pricing’, in Proceedings of the 2020 ACM SIGMOD International Conference on

Management of Data, 2020, pp. 2623–2627.

[5] L. N. Soldatova and R. D. King, ‘An ontology of scientific experiments’, Journal of The Royal

Society Interface, vol. 3, no. 11, pp. 795–803, Dec. 2006.

[6] L. Duan, S. Oyama, H. Sato, and M. Kurihara, ‘Separate or joint? Estimation of multiple labels

from crowdsourced annotations’, Expert Systems with Applications, vol. 41, no. 13, pp. 5723–

5732, 2014.

[7] N. Otani, Y. Baba, and H. Kashima, ‘Quality control of crowdsourced classification using

hierarchical class structures’, Expert Systems With Applications, vol. 58, pp. 155–163, 2016.

[8] A. Ponomarev, ‘An Iterative Approach for Crowdsourced Semantic Labels Aggregation’, in

Advances in Intelligent Systems and Computing, vol 1295, 2020, pp. 887–894.

[9] C. Veres, ‘Crowdsourced semantics with semantic tagging: “Don’t just tag it, LexiTag it!”’, in

CrowdSem’13: Proceedings of the 1st International Conference on Crowdsourcing the

Semantic Web - Volume 1030, 2013, pp. 9:1-15.

[10] R. Studer, V. R. Benjamins, and D. Fensel, ‘Knowledge engineering: Principles and methods’,

Data & Knowledge Engineering, vol. 25, no. 1–2, pp. 161–197, Mar. 1998.

[11] W3C, ‘OWL 2 Web Ontology Language Mapping to RDF Graphs’, 2012. [Online]. Available:

http://www.w3.org/TR/owl-mapping-to-rdf.

[12] M. Gan, X. Dou, and R. Jiang, ‘From Ontology to Semantic Similarity: Calculation of

Ontology-Based Semantic Similarity’, The Scientific World Journal, vol. 2013, pp. 1–11,

2013.

[13] Z. Wu and M. Palmer, ‘Verbs semantics and lexical selection’, in Proceedings of the 32nd

annual meeting on Association for Computational Linguistics -, 1994, pp. 133–138.

[14] R. Rada, H. Mili, E. Bicknell, and M. Blettner, ‘Development and application of a metric on

semantic nets’, IEEE Transactions on Systems, Man, and Cybernetics, vol. 19, no. 1, pp. 17–

30, 1989.

[15] C. Leacock and M. Chodorow, ‘Filling in a sparse training space for word sense

identification’, 1994.

[16] N. Seco, T. Veale, and J. Hayes, ‘An intrinsic information content metric for semantic

similarity in WordNet’, in ECAI’04: Proceedings of the 16th European Conference on

Artificial Intelligence, 2004, pp. 1089–1090.

[17] Y. Guisheng and S. Qiuyan, ‘Research on Ontology-Based Measuring Semantic Similarity’, in

2008 International Conference on Internet Computing in Science and Engineering, 2008, pp.

250–253.

[18] B. Frenay and M. Verleysen, ‘Classification in the Presence of Label Noise: A Survey’, IEEE

Transactions on Neural Networks and Learning Systems, vol. 25, no. 5, pp. 845–869, May

2014.

[19] C. Eickhoff and A. P. de Vries, ‘Increasing cheat robustness of crowdsourcing tasks’,

Information Retrieval, vol. 16, no. 2, pp. 121–137, 2013.

[20] G. Kazai, J. Kamps, and N. Milic-Frayling, ‘Worker types and personality traits in

crowdsourcing relevance labels’, Proceedings of the 20th ACM international conference on

Information and knowledge management - CIKM ’11, pp. 1941–1944, 2011.

[21] U. Gadiraju, R. Kawase, S. Dietze, and G. Demartini, ‘Understanding Malicious Behavior in

Crowdsourcing Platforms’, Proceedings of the 33rd Annual ACM Conference on Human

Factors in Computing Systems - CHI ’15, pp. 1631–1640, 2015.

[22] S. Zhang, X. Shang, M. Wang, and J. Diao, ‘A New Measure Based on Gene Ontology for

Semantic Similarity of Genes’, in 2010 WASE International Conference on Information

Engineering, 2010, pp. 85–88.

