
��������	
�
�
��
���
	���
�����
��
�	�
��	�����
���
�����		��
�����

����	���
�������
�������
�		����	���
��

��	����	����
!��
"#
��
$�

CPE Ontology

Vladimir Dimitrov [0000-0002-7441-253X]

Sofi a University „St. Kliment Ohridski”, Faculty of Mathematics and Informatics
1164 Sofi a, 1 James Bourchier Blvd., Bulgaria

cht@fmi.uni-sofi a.bg

Abstract. Common Platform Enumeration (CPE) is maintained by NIST as a
structured schema for naming of information technology systems, software and
packages. CPE is described in a several NIST documents (the last version):
• Common Platform Enumeration: Naming Specifi cation. Version 2.3.
• Common Platform Enumeration: Name Matching Specifi cation. Version 2.3.
• Common Platform Enumeration: Dictionary Specifi cation. Version 2.3
• Common Platform Enumeration: Application Language Specifi cation. Version

2.3.
CPE names are building block in NIST classifi cation systems for vulnerabilities
(CVE), weaknesses (CWE) and attack patterns (CAPEC).
In this paper, CPE names are described as an ontology in OWL Manchester Syntax.
This ontology is generated from NIST “Offi cial Common Platform Enumeration
Dictionary”. Its purpose is to be a reference ontology for the ontologies representing
vulnerabilities, weaknesses and attack patterns.

Keywords: CPE, OWL, Ontology, Cybersecurity.

1 Introduction

CPE (Common Platform Enumeration) has been developed by MITRE
Corporation [1], but since November 2014, it is supported only by NIST [2]. This
is a structured naming scheme for information technology systems, software and
packages (platforms).

The latest version of the CPE is 2.3 and is described in the NIST series of
publications [3-6].

The naming specifi cation is presented in [3]. Here, the logical structure of
CPE names is defi ned.

The name matching specifi cation [4] describes a method for comparing two
CPE names. Here, CPE names are treated as search patterns. In general, there is
no difference in the notation for CPE names and search patterns.

The offi cial NIST dictionary [5] contains only “basic” CPE names. These
“basic” CPE names can also be considered as search patterns because they rep-

303

resent a class of platforms that have the same vulnerabilities, vulnerabilities, and
attack patterns.

Each search pattern corresponds to a set of “basic” CPE names in the diction-
ary. The “basic” CPE name as a search pattern has only one element – the “basic”
CPE name itself.

The publication [4] defi nes how CPE names are compared as search patterns,
i.e. through the sets of their corresponding “basic” CPE names.

Complex CPE name confi gurations can be specifi ed with the CPE applicabil-
ity language [6]. These confi gurations are used in guidelines, policies, and other
places where platforms are referenced as CPE names.

CPE names are the main building blocks in the NIST specifi cations and in
the maintained vulnerability databases [7].

In NVD, CPE names are used to describe platforms that are affected by the
vulnerabilities. This is done through the applicability language. Statements in this
language refer to vulnerable platform confi gurations.

Before proceeding to the CPE ontology, a brief presentation the naming
specifi cation has to be done.

2 CPE naming

The CPE names are described with an abstract naming model WFN (Well-Formed
Name). Abstract names can be bounded to specifi c syntax. There are two specifi c
syntaxes described in [3]: URI [8] and FS (Formatted String).

WFN is just a logical construction in this specifi cation. It is an unordered set
of attribute-value pairs that are in the form “attribute = value”.

Attribute names are not case sensitive. The underline (the symbol “_”) is
treated as a letter.

The WFN name format is:
wfn:[a1=v1, a2=v2, …, an=vn]

The following attribute names are used: “part”, “vendor”, “product”, “ver-
sion”, “update”, “edition”, “language”, “sw_edition”, “target_sw”, “target_hw”
and “other”. Each attribute can participate no more than once in the CPE name.
If an attribute does not participate in the CPE name, its value by default is the
logical value ANY.

Attribute values can be “logical” or character strings. Additional restrictions
may be imposed on the individual attributes.

The “logical” values are ANY and NA. The fi rst value ANY (any value)
means that any value is applicable for that attribute. The second value NA (not
applicable / not used) means that for this attribute cannot be assigned any mean-
ingful or valid value, or that the attribute is not used in the name.

304

The attribute values that are character strings consist of printed UTF-8 char-
acters. They are enclosed in quotation marks.

The underscore is considered as a letter.
There are three special characters: “\” backslash, “*” star and “?” question

mark.
The backslash is used to escape characters. All non-alphanumeric characters

must be escaped in the attribute value string, including the backslash itself when
used without its special meaning. The attribute value string cannot be “\ _”.

The star means zero or more random symbols in place, and the question
mark – one random symbol. In fact, these two symbols are used to set matching
patterns. However, there are restrictions on their use:

• The special characters “*” and “?” can be at the beginning or end, i.e.
cannot be used in the middle of the pattern string.

• A single star cannot be an attribute value.
• The star cannot be used more than once in a sequence.
The question mark can be a single attribute value, and can be used more than

once in a row.
Star and a question mark at the beginning or the end of the string does not

make sense, but it is permitted the string to starts or ends with a star and several
question marks.

These rules for attribute values are presented in [3] as a grammar in ABNF
(Augmented Backus-Naur Form).

Specifi c restrictions on attribute values are:
• The “part” attribute can have a value of “a” for applications; “o” for op-

erating systems; or “h” for hardware devices.
• The “edition” attribute, in general, has ANY value, but may have a string

value for backward compatibility with the previous versions of the speci-
fi cation.

The names of the attributes correspond to their meaning, but there are attrib-
utes whose names are not so directly clear:

• “sw_edition” fi xes the product to a specifi c market or class of end users.
• “target_sw” determines the software environment in which the product

operates.
• “target_hw” sets the architectural set of machine instructions. Bytecode

intermediate languages are also considered as an architectural set of ma-
chine instructions.

• “language” is a valid language label according to RFC 5646 [10], but
only language and region codes are used. This attribute describes the lan-
guage of the user interface.

• “other” is anything else that can be used to identify the class.
Examples from [3] for WFN names:

305

wfn:[part=”a”, vendor=”microsoft”, product=”internet_
explorer”, version=”8\.0\.6001”, update=”beta”,
edition=NA]

wfn:[part=”a”, vendor=”hp”, product=”insight_
diagnostics”, version=”7\.4\.0\.1570”, sw_
edition=”online”, target_sw=”windows_2003”, target_
hw=”x64”]

There are three operations defi ned for WFN:
• new() – creates an empty WFN, i.e. there are no attribute-value pairs in

it, or, equivalently, the attributes are initialized with ANY value.
• get(w, a) – from WFN (argument “w”) returns the value of the sec-

ond argument (“a”). If no value is set for this attribute, it will return ANY.
• set(w, a, v) – in the WFN “w” of the attribute “a” sets the value

“v”.
The absence of an attribute in the WFN is equivalent to initializing it with

an ANY value, and then deleting an attribute is equivalent to assigning to it the
ANY value.

The above considerations have been used in the implementation of a module
for manipulating CPE names. The original idea was to use the cpe 1.2.1 module
from the Python repository. This module supports all published versions of CPE:
1.1, 2.2 and 2.3, as well as the syntax of WFN, URI and FS. The module has
minimal gaps in its implementation, but in general, it turned out to be completely
unusable for processing huge amounts CPE names – it is too slow. Most likely
this is due to the universal and simultaneous support of the all three versions of
the specifi cation.

The above limitations necessitated the development of new module only for
CPE 2.3 and with minimum functionality required only for conversion between
the three formats (WFN, URI and FS).

The binding of the abstract WFN is done with the two specifi c formats URI
and FS. In the specifi cation, the URI format is included rather for backward com-
patibility with previous versions, while preference is given to the FS format.

From the point of view of OWL ontologies, an URI is more appropriate for
identifi er of individuals in an ontology because it is an IRI in the sense of an OWL
– each URI is an IRI.

FS simply structures attributes without considering their representation ca-
pabilities as IRI. In fact, the content of an FS can be considered as a set of attrib-
ute values in the CPE ontology linked as values to data properties. Therefore, it is
unnecessary to maintain FS in the ontology in any other way.

306

3 Binding WFN to URI

The URI syntax used in CPE is presented in [3] as a grammar with ABNF. This
is a restriction on the URI.

The language label is in a simplifi ed version.
Note to the case: It is generally assumed that the control of CPE contents is

performed by NIST, i.e. the language label is set according to the requirements.
New CPEs are not entered in the ontology; instead, they are imported from the
CPE dictionary.

The CPE’s URI starts with “cpe:/” (header or prefi x) and then follow the
attribute’s values of “part”, “vendor”, “product”, “version”, “update”, “edition”,
and “language” in the specifi ed order and separated by a colon. There is also a
colon after the header and before “part”. If a value of an attribute is missing, its
place is marked with an empty string, i.e. “::”.

The absence of trailing attributes until the header itself is allowed. Simply,
the last missing values and their colons are omitted. |The URI’s format with re-
moved trailing empty attribute values will be called “compressed” URI format.

CPE URI version 2.3 maintains backward compatibility with CPE URI ver-
sion 2.2. This is achieved by “packaging” the new attribute values with the value
of the “edition” attribute. It is discussed below.

Special characters and punctuation, in the attribute values, coding with the
percentage notation is required.

The logical value ANY is represented in the URI with the empty string at the
position of the attribute, i.e. “” or in place of the attribute position it is represented
as “::”.

The logical value NA is represented by “-“.
In WFN, non-alphanumeric characters in attribute value strings must be pre-

ceded by “\”, except for “*” and “?” when they have been used as special sym-
bols.

In URI, non-alphanumeric characters are represented in percentage encod-
ing.

In WFN, the characters minus “-” and dot “.” are “escaped”, i.e. they are
represented as “\-” and “\.”. In URI, they are not in the percentage notation.

The special characters “?” and “*” when not “escaped” are represented by
“%01” and “%02” encodings, respectively.

3.1. Packaging of the new attributes

CPE version 2.3 has four new attributes: “sw_edition”, “target_sw”, “target_hw”,
and “other”. When one of them has a value other than ANY, they are “packaged”
in the specifi ed order in the component “edition” of the URI. Otherwise they are
skipped. In the packaged format, the symbol “~” is used as a separator. In fact,

307

the sixth component of the URI packs fi ve attributes: the old “edition” and the
four new attributes. Packaging consists of concatenation of attribute values in the
specifi ed order, using “~” as a prefi x and delimiter.

If the four new attributes have an ANI value, then no packaging is performed
and the only value in the sixth component is that of “edition”.

4 Unbinding URI to WFN

If the URI meets the format requirements of CPE 2.3, then it can be “unbind” to
WFN.

URI components 1-5 and 7 are decoded in the corresponding values as:
• the empty string is represented by the logical value ANY;
• the unit value “-” – with NA;
• the dot “.” and minus “-” are escaped;
• and decode the percentage forms.
The sixth component is unpacked if it starts with “~”.

5 Binding WFN to FS

The formatted string is similar to URI, but unfortunately, it is not. Many of URI
restrictions are released.

The formatted string starts with “cpe:2.3:” and is followed by the attribute
values separated by “:”. Its format is:
cpe:2.3: part : vendor : product : version : update :
edition : language : sw_edition : target_sw : target_hw :
other

The symbols that are not “escaped” in the values of its attributes are the let-
ters, numbers, “-”, “.” and “_”.

The logical values ANY and NA are represented by “*” and “-”, respectively.
All other characters are “escaped” with “\”. The special symbols for the logi-

cal values, when used as such (as a stand-alone value), are not “escaped”.
Each attribute must have a value in the formatted string.
The binding process is relatively simple. Each WFN attribute value is pro-

cessed separately and then the resulting processed values are concatenated. Since
there is a difference between the “escaped” symbols in WFN and FS, the work must
be a bit more precise here. Each “escaped” symbol is checked (if preceded by “\”).
The characters “.”, “-” and “_” are “escaped” in WFN, but not in FS. The conver-
sion of “escaped” characters in WFN to characters in the formatted string is:

• When a character is “escaped” in WFN, it remains the same in FS.
• From the “escaped” dot, minus and underscore (“.”, “-” and “_”) is re-

moved the escape symbol (“\”).

308

The binding and unbinding algorithms are described in pseudo code in the
bind_to_fs(wfn) and unbind_to_fs(uri) functions.

There are two other functions recommended by the specifi cation: con-
vert_uri_to_fs(uri) and convert_fs_to_uri(fs).

6 CPE ontology

The ontology has been developed in OWL 2 Manchester Syntax [11]. The reason
for this is that Manchester Syntax is compact and easy to read by humans.

The development was carried out with the Protégé tool [12], which supports
the above version of OWL.

A general scheme of the classes is presented in Fig. 1.
The ontology follows the specifi cation of CPE 2.3, but it is an incomplete

implementation of CPE 2.3 requirements and recommendations. It cannot be re-
garded as CPE 2.3 compatible implementation.

Fig. 1. Class hierarchy.

URI identifi ers are selected to be ontology individual identifi ers. Each CPE
name description in the NIST dictionary contains both a FS name and an URI
name. The latter is suitable for IRI individuals in the ontology.

CPE is the main class in the ontology. It has three main subclasses: Applica-
tion, Hardware and OS, which correspond to the classifi cation given by the “part”
attribute. In such a way, greater search fl exibility is achieved and the “part” at-
tribute itself does not need to be stored as a data property.

The class Deprecated is the fourth subclass of CPE. This is the subclass of
obsolete names. An obsolete name can be from the other three subclasses of CPE
and therefore Deprecated is a subclass of one of Application, Hardware and OS.
The defi nition of this class is:
CPE and (Application or Hardware or OS)

309

The class Deprecation is at the level of the class CPE. This utility class as-
sociates the obsolete name with its replacements. There are several possible rea-
sons a name to be deprecated and for each of them a subclass has been defi ned:
AdditionalInformation, NameCorrection and NameRemoval.

It is not clear to what extent obsolete names would play role into the practical
use of the ontology.

The hierarchy of classes is presented partly in Fig. 2.

Fig. 2. Another view on class hierarchy.

Deprecated name is associated with an individual of class Deprecation. This
is done through the object property “deprecation” of class Deprecated. In this
individual (of class Deprecation), the reason for cancellation of the name by
subclasses is specifi ed. In the current version of the dictionary, there are mainly
deprecated names that have been changed, i.e. of class NameCorrection. Maybe
over time the situation will change and other reasons for canceling the names will
appear. The defi nition of the object property “deprecation” is presented below:
ObjectProperty: deprecation
 Domain:
 Deprecated
 Range:
 Deprecation

Correcting one name or adding additional information about it may result
in several new names. Therefore, an individual in the subclasses of Depreca-
tion may point to several new (or already deprected) names. The object property
“deprecated-by” of the class Deprecation is used for this purpose. The following
is the defi nition of “deprecated-by”:
ObjectProperty: deprecated-by
 Domain:
 AdditionalInformation or NameCorrection
 Range:
 CPE

310

When a name is removed, then there should be no object property “deprecat-
ed-by” in the corresponding individual from class NameRemoval.

The considerations in the above two paragraphs should be refl ected in spe-
cial axioms, but this is not done for reasons of possible errors in CPE dictionary,
which would block loading of the entire ontology in Protégé.

Every change of name (its cancellation) took place on a certain date. A name
may be deprecated gradually, i.e. may be replaced by several new names at differ-
ent times. The name can be changed or even removed. Obviously, the considera-
tion a removed name not to be discarded (even when it is revoked), is to support
the systems that use dictionaries with older content. For example, a CVE weak-
ness that references a deprecated name continues to refer to it without the need
to change the reference to it in the CVE. Most likely, the vulnerability itself will
disappear at some point, but at least until the deprecated CPE name is referenced,
it should be kept in the dictionary. However, the CPE dictionary is primarily in-
tended to serve other systems.

In addition to this scheme of aging CPE names, version 2.3 also supports
compatibility with previous versions of the specifi cation. In the latter case, one
CPE name is replaced by no more than one other CPE name (removed ones are
not replaced). For this purpose it uses the object property “deprecated_by” (here
is an underscore, not a minus) of class Deprecated.

Most likely, the outdated name substitution mechanism (before CPE 2.3)
will not be used, at least in the current content of the dictionary. This will require
the omission of the object property “deprecated_by” with all possible axioms for
its maintenance. However, an axiom requiring the presence of an object property
“deprecation” in individuals of Deprecated has to be added. In the current version
of the ontology, neither is done, because backward compatibility is supported.
The following is the defi nition of “deprecated_by”:
ObjectProperty: deprecated_by
 Characteristics:
 Functional
 Domain:
 Deprecated
 Range:
 CPE

Deprecated names can be viewed as a tree whose lists are removed CPE
names or current ones.

There are two problematic attributes in the old and the new version of the
specifi cation. These are the “deprecation-date” and “deprecation_date” data prop-
erties. The last property is inherited from the previous version of the specifi cation
and it indicates the date of deprection of the CPE name. This property is a data

311

property in Deprecated. The following are the defi nitions of “deprecation-date”
and “deprecation_date”:
DataProperty: deprecation-date
 Characteristics:
 Functional
 Domain:
 Deprecation
 Range:
 xsd:dateTime
DataProperty: deprecation_date
 Characteristics:
 Functional
 Domain:
 Deprecated
 Range:
 xsd:dateTime

On the other hand, according to the new scheme, a CPE name can be dep-
recated in stages and therefore each stage is refl ected with an individual from
Deprecation where the “deprecation-date” property is used.

Both data properties are used in the dictionary, but the relationship between
them is not obvious and at least such an information have not been found.

The other data properties used are the WFN attributes (without “part”). They
belong to the class CPE. The values of these attributes are according to FS rules.
There is no data property for the FS identifi er. The defi nitions of the data proper-
ties are uniform. Fig. 3 presents the defi nition of data property “product”.

Fig. 3. Defi nition of data property “product”.

312

The data property “language” is simply a character string – it does not need
to follow RFC 5646. The value is controlled in the NIST dictionary.

Finally, in addition to the dictionary specifi cation, there are a number of de-
scriptions related to offi cial information on the maintenance of the dictionary.
This information is transferred to the ontology annotation system.

It turned out that, at least offi cially, the offi cial information is not maintained
in NIST. However, its description is included insofar as it is available in the speci-
fi cation.

7 Conclusion

The CPE ontology complies with the CPE 2.3 specifi cation. It includes its
requirements for backward compatibility with the previous versions.

In the ontology development, the basic concept is the minimalism but com-
plete inclusion of dictionary information. This means that information, which
does not actually participate in the dictionary or is descriptive or duplicated, is
presented in annotations or ignored. In this context, preference is given to remov-
ing attributes at the expense of building a hierarchy of classes.

The second concept in ontology design is maximum search fl exibility with
SPARQL. This implies the elimination of possible additional no-SPARQL search.
For example, searching CPE patterns involves searching with regular expres-
sions. The latter mechanism can be used to achieve full compatibility with the
requirements for CPE implementation, but is inadequate with the concepts of
OWL. The ontology is an extended environment used in conjunction with other
ontologies and inference engines.

The ontology, and more precisely its content (individuals), is generated from
NIST offi cial CPE dictionary. At this time, NIST does not plan to shift CPE dic-
tionary from XML to OWL – a lot of extra work needs to be done to do this.

CPE dictionary replaces obsolete names with search patterns of CPE names.
In fact, these are again CPE names according to [5]. Here in the ontology, this
approach is rejected because there is no similar search engine in OWL. The on-
tology uses comprehensive referencing of CPE names (base names). Moreover,
with this approach, the control over the integrity of the ontology is stronger using
standard control tools such as HermiT reasoner that can be applied during the
ontology loading in Protégé particularly.

The presented ontology is used in another real ontology developed that one
for CVE vulnerabilities.

CPE ontology generator is published at https://github.com/VladimirDim-
itrov1957/CPE-ontology-generator.

313

8 Acknowledgements

I would also like to thank NIST for consulting on certain issues in the dictionary
and especially to Amy Mahn for her responsiveness.

This work was conducted using the Protégé resource, which is supported by
grant GM10331601 from the National Institute of General Medical Sciences of
the United States National Institutes of Health.

This research is supported by the National Scientifi c Program “Information
and Communication Technologies for a Single Digital Market in Science, Educa-
tion and Security (ICTinSES)”, fi nanced by the Ministry of Education and Sci-
ence.

References
1. MITRE Corporation, CPE, https://cpe.mitre.org, last accessed 25/04/2021.
2. NIST, National Vulnerability Database, NVD, Offi cial Common Platform Enumeration (CPE)

Dictionary, https://nvd.nist.gov/products/cpe, last accessed 25/04/2021.
3. NIST, NISTIR 7695, Common Platform Enumeration: Naming Specifi cation Version 2.3, htt-

ps://csrc.nist.gov/publications/detail/nistir/7695/fi nal, last accessed 25/04/2021.
4. NIST, NISTIR 7697, Common Platform Enumeration: Dictionary Specifi cation Version 2.3,

https://csrc.nist.gov/publications/detail/nistir/7697/fi nal, last accessed 25/04/2021.
5. NIST, NISTIR 7696, Common Platform Enumeration: Name Matching Specifi cation Version

2.3, https://csrc.nist.gov/publications/detail/nistir/7696/fi nal, last accessed 25/04/2021.
6. NIST, NISTIR 7698, Common Platform Enumeration: Applicability Language Specifi cation

Version 2.3, https://csrc.nist.gov/publications/detail/nistir/7698/fi nal, last accessed 25/04/2021.
7. NIST, National Vulnerability Database, NVD, https://nvd.nist.gov, last accessed 25/04/2021.
8. W3C, Naming and Addressing: URIs, URLs, ..., https://www.w3.org/Addressing, last accessed

25/04/2021.
9. ISO, ISO/IEC 14977: 1996(E), Information technology — Syntactic metalanguage — Extend-

ed BNF, https://www.iso.org/standard/26153.html, last accessed 25/04/2021.
10. IETF, RFC 5646, Tags for Identifying Languages, https://tools.ietf.org/html/rfc5646, last ac-

cessed 25/04/2021.
11. W3C, OWL 2 Web Ontology Language, Manchester Syntax (Second Edition, https://www.

w3.org/TR/owl2-manchester-syntax, last accessed 25/04/2021.
12. Musen, M.A. The Protégé project: A look back and a look forward. AI Matters. Association of

Computing Machinery Specifi c Interest Group in Artifi cial Intelligence, 1(4), June 2015. DOI:
10.1145/2557001.25757003

