
��������	
�
�
��
���
	���
�����
��
�	�
��	�����
���
�����		��
�����

����	���
�������
�������
�		����	���
��

��	����	����
!��
"#
��
$�

Android Password Managers and Vault Applications:
An Investigation on Data Remanence in Main Memory

Peter Sabev and Milen Petrov

Faculty of Mathematics and Informatics,
Sofi a University “St. Kliment Ohridski”,

5 James Bourchier Blvd., 1164, Sofi a, Bulgaria,

{petar.sabev, milenp}@fmi.uni-sofi a.bg,

Abstract. An application defi ning itself as password management / secure vault
software should meet a number of security requirements in order to provide an
adequate data protection. The data entrusted to such application is its most valuable
asset that the application is responsible to protect. To check to what degree the
popular Android password managers / vault applications are protecting their data
loaded into main memory, we analyze the runtime behavior of two of them from
security perspective. More specifi cally, we suggest a main memory inspection
procedure helpful for evaluation of the extent of how secure a given software
application is in regards to prevention of secrets exposure. Then we apply this
procedure to conduct a digital investigation in a forensically sound manner by
focusing on data remanence in main memory. In conclusion, we summarize the
investigation results by showing what part of the data entrusted to applications
examined remains exposed in clear text in main memory.

Keywords: Android Password Managers, Vault Applications, Main Memory Inves-
tigation, Data Remanence, Security Analysis, Garbage Collection.

1 Introduction

An application defi ning itself as a password management / secure vault software
should be built upon a strong security architecture, effi cient security mechanisms
and strong defense techniques in order to provide a secure environment. It must
not only allowing for secure storage, processing and management of sensitive
data, but also allowing for a much higher level of security compared to a general-
purpose software application. That means, a password manager (PM) / vault
application (VA) should meet a number of security requirements in order to
provide an adequate data protection.

Large number of Android applications defi ning themselves as password
management / secure vault software have been developed and published in the
offi cial Google Play Store [1]. Some of these applications are used by millions of

315

users, which are relying on them to protect their data [1]. Given this and based on
the experts security advice recommending the use of PMs [2]which may be un-
realistic, time consuming, or not really worth the effort. To improve the security
advice, our community must fi nd out what practices people use and what recom-
mendations, if messaged well, are likely to bring the highest benefi t while being
realistic to ask of people. In this paper, we present the results of a study which
aims to identify which practices people do that they consider most important at
protecting their security online. We compare self-reported security practices of
non-experts to those of security experts (i.e., participants who reported having
fi ve or more years of experience working in computer security, we can assume
that the PMs / VAs will become more and more widely used. Based on this and
also based on the fact that PMs / VAs are meant to protect user’s most valuable
data, it can be concluded that it is especially important for the user to have as
full as possible knowledge about the extent of how secure these applications are.
Related to this, the developers of this type of software are trying to provide an
informative technical documentation, including security white papers and other
types of documents revealing important details about the security of these ap-
plications. However, it is common for these documentations to only provide a
high-level overview of the security architecture and the algorithms in use, but
with missed important technical information explaining how exactly the security
architecture is implemented in order to be provided an adequate data protection.
More specifi cally, often in these documentations are missed the security require-
ments upon which the security architecture is built as well as the important tech-
nical details explaining the security measures taken by the actual implementation
for providing an adequate data protection. Because of this, we fi nd important to
be evaluated the real security of the popular Android PMs / VAs when they are
placed in equal conditions.

In our previous work [3], we have defi ned the fundamental security require-
ment and the sub requirements based on it that are essential for building strong
security architecture. They are summarized as follows: an application defi ning
itself as an application build upon a strong security architecture is expected to
provide a secure data storage, processing, and management environment ensur-
ing at least the integrity and authenticity of both public and sensitive data and
the confi dentiality of sensitive data entrusted to the application. In this work,
we use this fundamental security requirement, as well as the sub requirements
and the defi nitions from our previous work [3] as a basis to conduct a digital
investigation in a forensically sound manner by focusing on data remanence in
main memory. Our goal here is to evaluate to what degree the popular Android
PMs / VAs are protecting their data in main memory by using reverse engineer-
ing tools and techniques, including runtime analysis and debugging techniques.

316

2 Background

This section provides background on Android Software Development, memory
management concepts and guidelines for building secure software.

Android is an open source operating system. It is based on a modifi ed version
of the Linux kernel and other open source software. Android provides a rich set
of tools, techniques and development kits (DK) for developing, debugging and
testing software applications. The two offi cially supported DK for Android ap-
plications development are Android Software Development Kit (Android SDK)
and Android Native Development Kit (Android NDK). [4][5]

Android SDK includes a set of development tools allowing application devel-
opers to develop Android applications in one or more high-level programming lan-
guages. Among them Java and Kotlin are the two offi cially supported programming
languages. Android application written in these languages are typically compiled to
bytecode and then executed into a process virtual machine (VM) providing an ap-
plication runtime environment. The current application runtime environment used
by the Android operating system is Android Runtime (ART), which is a replace-
ment of Dalvik (the process VM originally used by Android). [6] More specifi cally,
ART is a managed runtime environment having a few different garbage collection
(GC) plans that consist of running different garbage collectors. The two most nota-
ble among them are Concurrent Mark and Sweep (CMS) and Concurrent Copying
(CC) that is the default GC plan starting with Android 8 (Oreo).

Android NDK includes a set of development tools and platform libraries al-
lowing application developers to develop Android applications in C and C++ pro-
gramming languages. It is typically used when it is needed to be squeezed extra
performance out of a device in order to be achieved low latency or to be executed
computationally intensive tasks [5]. Without GC, such as programming C and
C++ languages, application developers have to manage memory usage manually,
meaning that it is a responsibility of the developers to consider object lifetimes,
explicitly allocate and deallocate memory. More specifi cally, the developers are
provided a fi ne control over object lifetimes allowing them to implement strate-
gies for secure memory management minimizing the chance for sensitive data
leakage, but the developers are also provided the entire responsibility to ensure
memory safety and memory leaks prevention.

An Android application may be built in such a way that one part of the ap-
plication is written in C / C++ code and the other part of the application is written
in Java / Kotlin code. The C / C++ code may be compiled into a native library and
packaged together with the bytecode produced by the Java / Kotlin compilation.
That means, thanks to the Java Native Interface (JNI), one part of the application
will be able to run in a managed runtime environment where GC is available and
the other part of the application will run without GC.

317

 An application such as a PM / VA is meant to not only securely store sensi-
tive data like passwords, credit card numbers, identity card numbers, etc., but it
is also meant to securely process and manage the data entrusted to it. In order to
do this effectively, the PM / VA should keep sensitive data in memory for as short
a time as possible and should take care to ensure that data never gets written as
a clear text to device’s fl ash memory or another type of long-term memory, such
as an external memory card. Clearing sensitive data promptly after use together
with memory locking techniques on a per-page basis and core dumps disabling
techniques are widely accepted security recommendations for strengthening the
overall security [7].

3 Applications selection

A lot of Android PMs / VAs are claiming to be secure. We have reviewed and
considered for selection a number of them. Part of these applications were already
analyzed by independent security researchers from security perspective. Based
on their results, we have decided to exclude the following three applications,
because we consider them as totally insecure [9]:

• Keepsafe (package name: com.kii.safe) – This application has more
than 50 million installs according to the Google Play Store [8]. But work
[9] shows that while Keepsafe 7.3.1 is storing encrypted picture and vid-
eos fi les, it also stores the Master Password in clear text in the value of
tag master-password of XML fi le com.kii.safe_preferences.xml in the
application’s shared_prefs folder and a 32 byte Key that can be found
also in com.kii.safe.secmanager.xml fi le in shared_prefs.

• AppLock (package name: com.domobile.applock) – This application
claims to be “#1 app lock in the world. Launched in 2012 and trusted by
300 million users in over 150 countries” [10]. However, it is:
 ◦ storing unencrypted pictures and videos in separate directories under /

sdcard/.MySecurityData/dont_remove; [9]
 ◦ storing Base64 encoded Secure Hash Algorithm 1 (SHA1) hash value

of the gesture for the pattern lock in the XML fi le com.domobile.ap-
plock_preferences.xml in the application’s shared_prefs directory;
[9]

 ◦ known to be vulnerable to swap attack (to reset the gesture) and rain-
bow table attack (to crack the gesture); [9]

• Calculator Vault (package name: com.calculator.vault) – This appli-
cation has more than 5 million installs according to the Google Play Store
[11]. But work [9] shows that Calculator Vault 8.5 disguised itself as a
calculator on the system and vault function is activated only when the
correct password is provided, but it stores unencrypted photos and vid-

318

eos under the directory /data/data/com.calculator.vault/fi les/locker1762,
which is only protected by Android’s built-in application isolation. In ad-
dition, the password is stored in clear text as a value of the tag mpass,
part of the XML fi le com.calculator.vault_preferences.xml, located in
shared_prefs directory.

Among the other applications that we have reviewed, we have selected the
following two applications to serve as representatives of the close sourced appli-
cations and the open source applications respectively, which are defi ning them-
selves as PMs / VAs:

• Keeper (package name: com.callpod.android_apps.keeper) – At the
time of the writing, this application has rating ~ 4.6 with more than 10
million installs according to the Google Play Store and based on the de-
scription there: “Keeper is the Most Secure Password Manager in the
Industry“ [12].

• Bitwarden (package name: com.x8bit.bitwarden) – At the time of the
writing, this application has rating ~ 4.6 with more than 500 000 installs
according to the Google Play Store and based on description there “Bit-
warden is focused on open source software. The source code for Bitwar-
den is hosted on GitHub and everyone is free to review, audit, and con-
tribute to the Bitwarden codebase” [13].

For the above applications, we have analyzed the fi ndings and results [9],
[14] for them from several publicly available security researches. In these fi nd-
ings and results [9], [14], we were unable to fi nd strong evidences proving that
the above two applications are relying on security through obscurity as a main
method of providing security or are using broken or weak hashing / encryption /
protection approaches or techniques as a main method to protect the data entrust-
ed to them. This motivates our choice to select exactly the above applications,
especially given the fact that the goal of our current work is focused on applica-
tions striving to provide as much security as possible.

4 Main memory inspection procedure

In this section, we suggest a Main Memory Inspection Procedure helpful for
evaluation of the extent of how secure a given PM / VA is in regards to preven-
tion of secrets exposure in main memory. It consists of six main phases visually
presented in Fig. 1.

319

Fig. 1. Inspection procedure of the main memory.

To support the suggested main memory inspection procedure, we use the
execution states defi ned in our previous work [3] as a foundation to defi ne the
following three Main Memory States of a PM / VA. These are essential for both
the correctness and the relevance of the usage scenarios defi nitions (phase 3 that
is shown on Fig. 1), as well as for the accuracy of the results of the data leakage
analysis process (phase 6 that is shown on Fig. 1):

MMS1. DESTROYED – PM / VA, is in this state when there is no run-
ning instance of the application in the operating memory, the application is fully
stopped, all processes and services owned by the application are fully destroyed
and there are no their previous instances (if any were existed before transition to
this state) left running in the operating memory. An example of a PM / VA that
is considered to be in MMS1.DESTROYED is an application that is explicitly
killed by the force stop feature and all processes and services owned by the ap-
plication are destroyed. Another example is a PM / VA that is implicitly killed by
the operation system itself due to full system restart or if the device is completely
turned off and then turned on.

MMS2. RUNNING_UNTRUSTED – PM / VA is in this state when there
is at least one running instance of the application (a running process and / or a
service owned by the PM / VA) in the operating memory, there is no active trusted
user session established and the access to the data entrusted to the PM / VA is
strictly forbidden. An example of a PM / VA that is considered to be in MMS2.
RUNNING_UNTRUSTED is a running application that is started for the fi rst
time right after it is installed on the device. Another example is a running PM /
VA in which an explicit (lock button is clicked, log out button is clicked, etc.) or
implicit (auto lock security feature is triggered due to user inactivity, switch ac-
counts button is clicked, etc.) transition from MMS3.RUNNING_TRUSTED to

320

MMS2.RUNNING_UNTRUSTED is completed successfully. As result of that,
the previously established trusted user session is destroyed and the access to the
data entrusted to the PM / VA is strictly forbidden.

MMS3. RUNNING_TRUSTED – PM / VA is in this state when there is at
least one running instance of the PM / VA (a running process and / or a service
owned by the PM / VA) in the operating memory, there is a trusted user session
established and the user is provided a full access to the data entrusted to the PM
/ VA. A PM / VA is allowed to complete a transition from MMS2.RUNNING_
UNTRUSTED to MMS3.RUNNING_TRUSTED, only after user’s identity is
successfully verifi ed by the authentication mechanism of the application – for
example when the user is prompted to provide a correct combination of Email
and Master Password. The transition from MMS2.RUNNING_UNTRUSTED to
MMS3.RUNNING_TRUSTED is completed successfully only if user’s identity
is successfully verifi ed and a trusted user session is established.

We denote the above three Main Memory States as
 MMS = {MMS1.DESTROYED, MMS2.RUNNING_UNTRUSTED, MS3.
RUNNING_TRUSTED}.

In addition to them, we also defi ne the following two terms:
Main Memory State Transition (MMST) – For a PM / VA, it is a transition

from one MMS to another MMS caused by an interaction between the user and
the PM / VA, the operating system and the PM / VA or the PM / VA itself based
on its internal logic. A MMST from a MainMemoryStateX to a MainMemo-
ryStateY is denoted as follows: MainMemoryStateX => MainMemoryStateY,
where MainMemoryStateX ∈ MMS and MainMemoryStateY ∈ MMS

Sequence of Main Memory State Transitions (SMMST) – For a PM /
VA, it is a numbered sequence of one or more MMST representing the order in
which the transitions had occurred. SMMST representing n consecutive MMST
is denoted as follows:

1. MainMemoryStateA => MainMemoryStateB
2. MainMemoryStateB => MainMemoryStateD
…
n. MainMemoryStateD => MainMemoryStateN,

where n is a positive natural number, MainMemoryStateA ∈ MMS, Main-
MemoryStateB ∈ MMS, MainMemoryStateD ∈ MMS, … , MainMemoryS-
tateN ∈ MMS.

The focus of the suggested main memory inspection is primarily to evalu-
ate the protections and security measures taken by the inspected PM / VA itself.
Because of this, it suggests to be monitored only the portions of main memory
owned by the processes of the inspected PM / VA, including the managed heap
as part of phase 4 (shown on Fig. 1). It excludes from the inspection the memory
portions of the other user-mode processes, the kernel, drivers, caches, CPU / GPU

321

specifi cs, etc. However, we fi nd important to note that all of these may be used
by a potential attacker to break the confi dentiality of the data entrusted to the PM
/ VA.

5 Device setup and data preparation

To complete phases 1 and 2 from inspection procedure of the main memory
(shown on Fig. 1) and to prepare for the digital investigation, we performed the
following actions:

1. A new Android virtual device emulating Pixel 3 device was created.
More details about this device and the exact versions of software in-
stalled are provided in Table 1.

Table 1. Emulated test device details.

Device
Emulated

Android
Version Build Number CPU/ABI Google Play

Version Is Rooted

Pixel 3

Android
9.0 (Google
APIs), API

28

sdk_gphone_x86_
arm-userdebug 9
PSR1.180720.117
5875966 dev-keys

x86
19.3.36-all

[0] [PR]
302041649

Yes

2. The latest versions of the applications from representative sample were
downloaded from Google Play Store and then installed on the emulat-
ed test device. More details about their exact versions are provided in
Table 2.

Table 2. Representative sample applications.

Application Package Name Version
Keeper com.callpod.android_apps.keeper 14.5.31.1

Bitwarden com.x8bit.bitwarden 2.3.1

3. Two free accounts were created. More details are provided in Table 3.
Table 3. Accounts details.

Application Email Master Password Free Premium
Keeper secure.vault.app.test@gmail.com analy1@te$t@db500 Yes

Bitwarden secure.vault.app.test@gmail.com analy1@te$t@db500 No

4. A large set of data to be entrusted to the applications from representative
sample was prepared and imported. It consists of the following:
a. Credentials_f0x1f2x5.csv – A CSV fi le containing 10 000 text-

only records representing synthetic login data for external sites (the

322

data was generated by a special tool written in Kotlin). More details
are provided on Fig. 2.

b. Two records containing fi le attachments. More details are pro-
vided in Table 4. (Note: These records were not imported in
Bitwarden, because its fi le attachments feature requires paid
account).

 Table 4. Records containing fi le attachments.

Name URL File Attachment
TextSingleLineFile_

x2f5.txt
https://WebSingle-
LineFile_x2f5.txt

SingleLineFile_x2f5.txt (text fi le containing a
line of 1500000 alpha-numeric characters)

ImageBankCard_
b0x2b.jpg

https://WebImage-
BankCard_b0x2b.

jpg

BankCard_b0x2b.jpg (binary jpg fi le contain-
ing a photo of test bank card)

Fig. 2. Credentials_f0x1f2x5.csv – Number of values grouped by fi eld names.

6 Usage scenarios defi nition

To complete phase 3 from inspection procedure of the main memory (shown on
Fig. 1) and to prepare for the digital investigation, we defi ned a number of usage
scenarios (US) covering multiple MMST, but in this study, we will focus on the
following ones:

US 2. Log in, and then open the default view of application’s Vault screen
Sequence of Main Memory State Transitions:
 1. MMS1.DESTROYED => MMS2.RUNNING_UNTRUSTED
 2. MMS2.RUNNING_UNTRUSTED => MMS3.RUNNING_TRUSTED
Prerequisite:
PR1; PR2; PR4; PR5; PR6; PR8; PR11;
Steps:
 1. Enter the credentials, provided in Table 3.
 2. Click the Log In button.
 3. Wait the login process to complete.
 4. Open the default view of application’s Vault screen (if not opened by

default).

323

 5. Wait until the screen is loaded.
 6. Observe the result.
US 4. Open an existing record
Sequence of Main Memory State Transitions:
 1. MMS3.RUNNING_TRUSTED => MMS3.RUNNING_TRUSTED
Prerequisite:
PR1; PR2; PR4; PR5; PR7; PR9; PR11;
Steps:
 1. Select an existing record at random.
 1. Open the selected record by tapping its name.
 2. Wait until the record is loaded and displayed on the screen.
 3. Observe the result.
US 6. Open the text fi le attached to an existing record
Sequence of Main Memory State Transitions:
 1. MMS3.RUNNING_TRUSTED => MMS3.RUNNING_TRUSTED
Prerequisite:
PR1; PR2; PR4; PR5; PR7; PR9; PR11;
Steps:
 1. Open the TextSingleLineFile_x2f5.txt record by tapping its name.
 2. Wait until the record is displayed on the screen.
 3. Observe the result.
 4. Open the attached fi le by tapping its name.
 5. When prompted by the application to select an external application to

open the fi le, choose the default HTML Viewer.
 6. Wait until the fi le is loaded and displayed on the screen.
 7. Observe the result.
Note: Not applicable to Bitwarden, because fi le attachments feature re-

quires paid account.
US 9. Log out
Sequence of Main Memory State Transitions:
 1. MMS3.RUNNING_TRUSTED => MMS2.RUNNING_UNTRUSTED
Prerequisite:
PR1; PR2; PR4; PR5; PR7; PR9; PR11;
Steps:
 1. Log out.
 2. Observe the result.
To support the usage scenarios above, we also defi ned the following prereq-

uisites:
 PR1. The device described in Table 1 is used.
 PR2. The PMs / VAs listed in Table 2 are already installed on the device

and their shortcuts are already present on the Home screen.

324

 PR4. The accounts with the details provided in Table 3 are already created.
 PR5. The dataset described in Section 5 is already imported.
 PR6. The user is logged out.
 PR7. The user is already logged in and some time is passed since then.
 PR8. The current screen is the application’s Login screen.
 PR9. The current screen is application’s Vault screen (all records view).
 PR11. Autofi ll feature in application settings is enabled; application’s

Autofi ll service in Accessibility services is selected and turned on.

7 Findings and results

 In this section, we summarize the digital investigation that we have conducted,
our fi ndings and the results from the investigation. As part of the preparation
for the digital investigation, we performed the actions needed to ensure that the
phases 1 to 3 from inspection procedure of the main memory (shown on Fig. 1)
are fully completed. After that, we moved to the actions needed for phase 4
(shown on Fig. 1). We sequentially executed the US defi ned in Section 6 for
each of the representative applications. During the execution of each US’s steps
we were monitoring the main memory portions of each application, including
its managed heap to analyze the runtime behavior of each application. As part
of this process we were capturing PM’S / VA’s main memory contents to make
it available for offl ine analysis. More specifi cally, we were creating a separate
memory dump after the execution of each scenario’s last step and after ensuring
that each US is fully completed (the full memory dumps can be requested on our
email).

After we ensured that phase 4 (shown on Fig. 1) is fully completed, we
moved to phases 5 and 6 of the Main memory inspection procedure (shown on
Fig. 1). More specifi cally, we tried to extract as much of the data entrusted to each
of the reprehensive PMs / VAs as possible by analyzing the memory dumps cre-
ated in a special tool written in Kotlin (the raw result produced by the tool can be
requested on our email). Then, we summarized our fi ndings.

Fig. 3 is showing the total count of Master Password copies found in clear
text in the memory dumps. Fig. 4 and Fig. 5 are showing the total count of values
(values of user’s data entrusted to the PM /VA) found in clear text in the memory
dumps. We grouped the results by the respective memory dumps, applications
and fi eld values as follows:

• Keeper’s memory dumps:
Keeper_US2_MD2 – A memory dump created right after the comple-
tion of US 2. Based on what is shown on Fig. 3, we can conclude that
Keeper has failed to timely (promptly after use) scrub / clear all copies of
the Master Password that are present in Keeper’s process main memory.

325

The results shown on Fig. 4 are also confi rming this. As it can be seen on
the fi gure, Keeper is loading all entrusted to it data in main memory right
after the transition in MMS3.RUNNING_TRUSTED (all 50 000 values
are present).

Fig. 3. Count of Master Password copies found in clear text in the memory dumps.

Keeper_US4_MD3 – A memory dump created right after the completion
of US 4. Based on what is shown on Fig. 3, we can conclude that Keeper has
performed some actions to scrub / clear all copies of the Master Password
that are present in main memory, but it is also possible for this to be caused
by an implicit data overwriting due to memory exhaustion, garbage collec-
tion, etc. About the data entrusted to Keeper, Fig. 4 shows that the results
here are the same as the previous results.
Keeper_US6_MD4 – A memory dump created right after the comple-
tion of US 6. As shown on Fig. 3, 64 copies of Keeper’s Master Password
remained exposed in cleartext in main memory even after the full completion
of US 6. This is the highest count of Master Password copies so far. About
the data entrusted to Keeper, Fig. 4 shows that the results here are the same
as the previous results.
Keeper_US9_MD6 – A memory dump created right after the comple-
tion of US 9. As shown on Fig. 3, Keeper’s Master Password is not present
in main memory. About the data entrusted to Keeper, Fig. 4 shows that the
results here are the same as the previous results.
• Bitwarden’s memory dumps:
Bitwarden_US2_MD2 – A memory dump created right after the com-
pletion of US 2. As shown on Fig. 3, Bitwarden’s Master Password is ex-
posed in main memory similarly to Keeper’s result, but this time there is
only one copy of it. About the data entrusted to Bitwarden, Fig. 5 shows that
Bitwarden is holding only 198 values loaded in main memory.

326

Bitwarden_US4_MD4 – A memory dump created right after the com-
pletion of US 4. As shown on Fig. 3, Bitwarden’s Master Password is not
present in main memory. About the data entrusted to Bitwarden, Fig. 5 shows
that the results here are similar to the previous ones.
Bitwarden_US6_N/A – A memory dump created right after the comple-
tion of US 6 is not applicable (N/A) to Bitwarden, because fi le attach-
ments feature requires paid account (“File Attachments are available
for Premium users, including members of Paid Organizations (Families,
Teams, or Enterprise).” [15]).
Bitwarden_US9_MD6 – A memory dump created right after the com-
pletion of US 9. As shown on Fig. 3, Bitwarden’s Master Password is not
present in main memory. About the data entrusted to Bitwarden, Fig. 5 shows
that the results here are similar to the previous ones.

Fig. 4. Count of values found in cleartext in the memory dumps of Keeper.

Fig. 5. Count of values found in cleartext in the memory dumps of Bitwarden.

327

8 Conclusion and future work

Based on the results above, we can conclude that Keeper is providing a big enough
time window for a potential attacker to steal not only user’s Master Password, but
also the data entrusted to Keeper and this is achievable by a simple inspection
of the main memory portions of Keeper’s process. Moreover, Keeper is holding
all entrusted to it data in cleartext in main memory for the whole lifetime of its
process and the services on which it depends, including the case when the user is
explicitly logged out and the application is in MMS2. RUNNING_UNTRUSTED
(transition is fully completed).

In contrast to Keeper, Bitwarden’s Master Password was only found in Bit-
warden_MD2. In addition to this, the results have showed that Bitwarden is load-
ing a very small amount of the data entrusted to it in clear text in main memory.
Based on this, we can conclude that Bitwarden is taking a much better security
measures to limit data exposure in main memory compared to Keeper. However,
Bitwarden similarly to Keeper allowed some of the values to remain in main
memory even after the transition to MMS2. RUNNING_UNTRUSTED was
completed.

Future research should investigate on the development of better approaches
and security mechanisms for limitation of data exposure in main memory by tak-
ing into consideration the specifi cs of Android’s managed runtime environment.

9 Acknowledgments

Research presented in this paper was supported by the FNI-
SU-80-10-152/05.04.2021, FNI project of Sofi a University “St. Kliment
Ohridski” (Bulgaria) “Challenges of developing advanced software systems and
tools for big data in cloud environment (DB2BD-4)”.

References
1. Password Manager - Android Apps on Google Play, https://play.google.com/store/search?q=p

assword+manager&c=apps, last accessed 2016/04/19.
2. Ion I., R. Reeder, S. Consolvo: ‘...No one can hack my mind’: Comparing expert and non-

expert security practices. In: SOUPS 2015 - Proceedings of the 11th Symposium on Usable
Privacy and Security (2019).

3. Kaloyanova K., Ed.: Requirements for Securing User Data in Android Applicationsat at Soft-
ware Level in Information Security in Education and Practice, pp. 114–130. Cambridge Schol-
ars Publishing (2021).

4. Download Android Studio and SDK tools | Android Developers, https://developer.android.
com/studio, last accessed 2016/04/19.

5. Get started with the NDK | Android NDK | Android Developers, https://developer.android.
com/ndk/guides, last accessed 2016/04/19.

6. Android Runtime (ART) and Dalvik | Android Open Source Project, https://source.android.

328

com/devices/tech/dalvik/, last accessed 2016/04/19.
7. OWASP Top 10 -2017 The Ten Most Critical Web Application Security Risks, https://owasp.

org/www-project-top-ten/2017/, last accessed 2016/04/19.
8. KeepSafe - Google Play, https://play.google.com/store/apps/details?id=com.kii.safe, last ac-

cessed 2016/04/19.
9. X. Zhang, I. Baggili, F. Breitinger: Breaking into the vault: Privacy, security and forensic

analysis of Android vault applications. Comput. Secur., vol. 70, pp. 516–531, doi: 10.1016/j.
cose.2017.07.011 (2017).

10. AppLock - Protect Your Privacy, http://www.domobile.com/best/applock.html, last accessed
2016/04/19.

11. Calculator - Google Play, https://play.google.com/store/apps/details?id=com.calculator.vault,
last accessed 2016/04/19.

12. Password Manager - Keeper - Google Play, https://play.google.com/store/apps/details?id=com.
callpod.android_apps.keeper&hl=en_US, last accessed 2016/04/19.

13. Bitwarden Password Manager - Google Play, https://play.google.com/store/apps/
details?id=com.x8bit.bitwarden, last accessed 2016/04/19.

14. Bitwarden Security Assessment Report, https://cdn.bitwarden.net/misc/Bitwarden Security
Assessment Report.pdf, last accessed 2016/04/19

15. File Attachments | Bitwarden Help & Support, https://bitwarden.com/help/article/attach-
ments/, last accessed 2016/04/19

