
��������	
�
�
��
���
	���
�����
��
�	�
��	�����
���
�����		��
�����

����	���
�������
�������
�		����	���
��

��	����	���� 
!��
"#
��
$�

CPE Ontology Generator

Vladimir Dimitrov [0000-0002-7441-253X] 

Sofi a University „St. Kliment Ohridski”, Faculty of Mathematics and Informatics
1164 Sofi a, 1 James Bourchier Blvd., Bulgaria

cht@fmi.uni-sofi a.bg

Abstract. This product has been developed as an automatic tool for generation of 
CPE ontologies from NIST Offi cial Common Platform Enumeration Dictionary. It 
is written Python and is available at GitHub.
The tool downloads dictionary from its site. It is in XML format – compressed as 
Zip fi le. Then decompress it and generate a CPE ontology.
NIST CPE Dictionary is very huge fi le that permanently grows. Its processing 
require all server resources to be used (computing power and memory). The tool is 
using in concurrent (parallel) mode all available CPUs and their cores available on 
a single server. Currently, there is no need to expand the execution on several severs 
but the execution model can be easy extended to such a variant.
For every available processor core, a worker process is generated. The main process 
parses the dictionary and put every CPE item description in a common worker input 
queue. The worker process consume a CPE parsed XML description and generate 
an OWL individual for it. Generated individuals are queued on a common worker 
output queue that is consumed by a “writer” process that write it contents is a single 
fi le in OWL Manchester Syntax. Only one ontology fi le is generated.
Synchronization among processes is achieved via the queues. A process is blocked 
when it tries to queue read in or write out, and the queue is full. This is pipeline with 
several parallel workers, one source and one sink.
Finally. The main process signal via the queue the end of processing and wait for all 
other processes to fi nish their execution.

Keywords: CPE, OWL, Ontology, Cybersecurity, Python, Generator.

1 Introduction

The CPE dictionary of platform names is freely available on the NIST website 
[1]. It is designed to serve as a naming base for other cybersecurity databases, 
such as the databases for vulnerabilities, vulnerabilities and patterns of attacks.

The initial idea for vulnerability description in CVE [2] has been to follow 
a semi-structured pattern identifying the main vulnerability characteristics. This 
recommendation is still valid, but recognizing the individual characteristics in the 
phrase is a problem even for a cybersecurity specialist.



360

An attempt for automatic recognition of these phrases has been made in [3].
This vulnerability description pattern may include vulnerability type (CWE 

[4] according to the MITRE Corporation classifi cation, if possible), platform 
component, supplier, product, version, root cause, attacker, infl uence and attack 
vector.

The main problem in the recognition process is the retrieval of the supplier 
and product names. Unfortunately, the available databases that can help to do that 
do not contain such standardized information. For example, IBM or International 
Business Machine Corporation? A typical example of such a database is [5]. The 
quality of the data in this database is extremely poor – manufacturers’ data are 
mixed with those for products, and any spelling of names is included.

Another fundamental problem is the fact that this description pattern of CVE 
is not followed. The reasons for this are various – from the lack of information to 
the inability to fi t into this pattern, but this is the actual situation.

In that situation, it was necessary to create a unifi ed classifi cation of CPE 
platforms [6], according to which CVE vulnerabilities can be classifi ed. CPE 
is a development of MITRE Corporation, but is currently maintained by NIST. 
Vulnerabilities in NVD [7] are classifi ed by CPE [1], while those in MITRE Cor-
poration are not. The vulnerability database of MITRE Corporation is commu-
nity-based. Cybersecurity community adds and examines newly registered vul-
nerabilities, for some of them the information is partial. The NIST vulnerability 
database contains only those vulnerabilities for which suffi cient information has 
been collected, and they have been further processed and enriched by NIST. In 
particular, the additional processing classifi es vulnerabilities by platforms using 
CPE names.

CPE is a publicly available dictionary of platform names. For each platform, 
it contains information about a part (rather a type of platform: hardware, operat-
ing system or application), vendor, product, version, update, edit, language (of 
the interface), software edition (for a specifi c environment), target software (on 
which it runs), target hardware (on which it runs), and other. The values of these 
attributes of CPE names are standardized according to the specifi cation [8].

The CPE Names Dictionary is freely available for use from NIST site in 
XML format. This dictionary can be extended by the users in accordance with 
their needs, but the recommendations are when doing so to follow the CPE speci-
fi cations.

In fact, the CPE specifi cation is the building block on which the other data-
bases of vulnerabilities, vulnerabilities and attack patterns of NIST are built.

Based on the CPE specifi cations, an ontology has been developed that allows 
CPE names to be used in an OWL environment. A publication on CPE ontology 
is forthcoming.

The subject of this paper is the OWL ontology generator for CPE names.



361

2 The implementation

The CPE ontology generator is implemented in Python 3.9. It is published in 
GitHub at [9]. It is in the form of a Python script generateCPEontology.
py and a shell (set of axioms) of the ontology in a shell.owl fi le. The shell is 
a description of the ontology that, in our case, is modifi ed by the generator and 
fi lled with individuals. It can be opened in Protégé for viewing and editing.

The generator, shell, and work fi les are in the same directory. The generation 
creates the ontology in a fi le named cpe23.owl in the same directory.

Before generating the ontology, the generator downloads the dictionary from 
the NIST website (offi cial-cpe-dictionary_v2.3.xml.zip) and un-
zips it to the offi cial-cpe-dictionary_v2.3.xml fi le.

To avoid frequent visits to the NIST site, the dictionary fi le is not down-
loaded by default. If there is no downloaded and unzipped copy, the script will 
give an exceptional error for the lack of an input fi le.

To cause the dictionary fi le to be downloaded from the NIST site, the -d or 
-download parameter must be passed to the script. The argparse package is 
used to process the parameters. This is done globally in the module.

The CPE vocabulary is huge. On March 2021, it contains over 600 000 
names and is growing steadily.

The dictionary is loaded from the site by the function downloadCPE23(). 
It also performs above mentioned unzip. No problem if there are old copies of 
the fi les – they are just deleted. This function uses the urllib.request and 
zipfi le packages.

The description of the CPE dictionary is made in the following three schemes: 
CPE 2.3 XML Schema (cpe-dictionary_2.3.xsd), CPE 2.3 Dictionary 
Extension XML Schema (cpe-dictionary-extension_2.3.xsd) and 
CPE 2.2 XML Schema (cpe-dictionary_2.2.xsd).

Additionally, there is a description of the NIST CPE Metadata 0.2 XML 
Schema metadata (cpe-dictionary-metadata_0.2.xsd).

These XML schemas are available from [1].
The concept of the CPE version 2.3 design is to be an extension of the sche-

ma of version 2.2 through the element xsd:any. In fact, the CPE 2.3 XML 
Schema follows CPE version 2.2, and its extensions appears in the second CPE 
2.3 Dictionary Extension XML Schema.

The third CPE 2.2 XML Schema is just the old version of the schema.
The effect of this solution is that an application that is working with CPE 

version 2.2 would continue to work with the dictionary of the newer version, 
practically ignoring its extensions.

A detailed description of the dictionary and XML schemas can be found in 
the specifi cation [11].



362

After loading the dictionary and unzipping it, the generator loads the con-
tents of the dictionary in the main memory and parses it. This is done with the 
function parseXML() from the package xml.etree.ElementTree.

The next step is the initialization of the ontology fi le (shell.owl) with 
annotations using some of the information fi elds. This is done by the function 
generateShell().

After generating the ontology description, the actual generation of its indi-
viduals begins. This is the task of the function generateIndividuals().

A critical problem in the individual generation is the dictionary volume. In 
sequential processing, only one processor core is used and the operation lasts 
several hours. For example, on the development system it lasts about 8-9 hours. 
All this time, the other processors and cores are idle or under minimal load.

The above considerations necessitated the conversion of the generator into 
a parallel version, which uses all the processors and cores. For this purpose, the 
package multiprocessing has been used, which realizes real parallelism 
in Python. In fact, each process with this package is hooked up to a separate 
core.

The development has been done on Windows 10, and it is not tested in an-
other environment. However, in accordance with the package (multiproc-
essing) description, it should work in parallel on every Python port without 
any problems.

The function generateIndividuals()creates two inQueue and 
outQueue queues and a process that writes individuals to the ontology fi le. 
The last process reads individual descriptions from the queue outQueue until it 
receives an end signal. The queue transmits individual descriptions as character 
strings (serialized). Then the writer process adds these descriptions to the ontol-
ogy fi le. When a character string with a value of “DONE” is read, the process 
closes the ontology fi le and completes its execution. The code of this process is in 
the function writeResults(). It opens the ontology fi le in the add-in mode, 
because the function generateShell()closes it when fi nishes its work.

The function generateIndividuals()creates as many parallel pro-
cessing processes as there are cores available on the computer. The code of these 
processes is represented in the function generateIndividual().

Each of these processes reads from the queue inQueue a description of 
CPE name in a serialized, parsed XML format and generates in the output queue 
outQueue the description of the received individual.

In the main process, generateIndividuals() fi lls the inQueue 
queue with serialized XML descriptions of CPE names. If the queue becomes 
full, the process blocks until a space is released in the queue. If the queue out-
Queue is full, then the processes generateIndividual() block until the 
process writeResults() releases a space in the queue.



363

The processes generateIndividual() have a built-in synchronization 
mechanism when reading from the input queue inQueue, as well as when writ-
ing to the output queue outQueue. The same goes for the processes gener-
ateIndividuals() when writing in inQueue and for writeResults() 
when reading from outQueue.

In parallel processes generateIndividual() there is another feature 
related to parallelism. This is the CPE23Names parameter, which is a shared 
dictionary of type Manager, and it contains for each of the dictionary entries a 
key with FS binding the CPE name with a value its URI binding. The dictionary 
is prepared by the function getCPE23Names()and passed at process initializa-
tion. Dictionary reading (Manager) has a built-in synchronization mechanism. 
The need for this dictionary is dictated by the fact that the FS name is the priority 
name in the CPE dictionary, while the URI name is rather a parameter in the CPE 
name description, while in CPE ontology the URI name is used as individual 
identifi er.

The scheme of the parallel processes is shown in Fig. 1.
Each of the processes generateIndividual() analyzes the XML de-

scription of the CPE name and creates an individual description for the OWL 
ontology. Part of the data goes into annotations, and another part – in data proper-
ties.

It is more complicated with obsolete CPE names, where not only data prop-
erties are generated, but an object property pointing to individual of class Dep-
recation is created. The last one describes the facts about the name replace-
ment or removal. A major problem in generating Deprecation individuals is 
the creation of the deprecated-by object properties, since the replacement 
of CPE names are not with “basic” CPEs, but search patterns are used accord-
ing to [12]. These patterns are extended to sets of “basic” CPE URI names with 
the function getByWildCards(). The latter works with the CPE23Names 
dictionary and uses regular expressions based on the CPE Match pattern. The 
FS names (keys) that correspond to the regular expression are selected from the 
dictionary, and the URI names (their values) are loaded into the resulting set.



364

Fig. 1. Parallelism schema.

Some patterns do not match any basic CPE names. What is the reason for this 
is not clear, but it is not rare case.

When the process generateIndividuals() has fi nished loading in 
inQueue XML descriptions of CPE names, it write there one “DONE” mes-
sage for each of generateIndividual() processes. The latter ones loops 
from until the character string “DONE” is read from the queue. In Python, it is 
very convenient – there is no strict type checking and any objects (serialized) can 
be passed in the queues. In the case of inQueue, both serialized XML objects 
and the regular “DONE” string are passed. Type and value checking is built-in 
in Python.

After sending the “DONE” signals to the generateIndividual() pro-
cesses, the main generateIndividuals() process waits (synchronizes) 
with them to complete – they continue to run until the queue inQueue is ex-
hausted.

Finally, generateIndividuals()sends a “DONE” message to the 
queue outQueue to inform the process writeResults that the job is com-



365

plete and waits (synchronizes) for the process to complete. The latter ends af-
ter the queue outQueue is exhausted. This completes the operation of the 
generator.

3 Conclusion

The process generateIndividual() can be initialized on other computers 
accessible over the network. Dictionary (class Manager) and Queue sharing 
mechanisms are also applicable in the case of distributed processing without 
modifi cation. At least that is according to the documentation.

Of course, it will be necessary to specify the URLs of the respective ma-
chines, which is not done in the current version.

Such an extension has not been made, as for now the generator successfully 
copes within reasonable limits with the generation of the order of 1-2 hours on a 
desktop computer with a quad-core processor.

4 Acknowledgements

I would also like to thank NIST for consulting on certain issues in the dictionary 
and especially to Amy Mahn for her responsiveness.

This work was conducted using the Protégé resource, which is supported by 
grant GM10331601 from the National Institute of General Medical Sciences of 
the United States National Institutes of Health.

This research is supported by the National Scientifi c Program “Information 
and Communication Technologies for a Single Digital Market in Science, Educa-
tion and Security (ICTinSES)”, fi nanced by the Ministry of Education and Sci-
ence.

References
1. NIST, NVD (National Vulnerability Database), Offi cial Common Platform Enumeration (CPE) 

Dictionary, https://nvd.nist.gov/products/cpe, last accessed 24/04/2021.
2. MITRE Corporation, CVE, https://cve.mitre.org, last accessed 24/04/2021.
3. Dimitrov, V., Chapter Two. CVE Annotation, in Information Security in Education and Prac-

tice, editor K. Kaloyanova, Cambridge Scholars Publishing, 2021, ISBN (10): 1-5257-6066-X, 
ISBN (13): 978-5375-6066-6.

4. MITRE Corporation, CWE (Common Weakness Enumeration), https://cwe.mitre.org
5. Özkan S., CVE Details, https://www.cvedetails.com, last accessed 24/04/2021.
6. MITRE Corporation, CPE, https://cpe.mitre.org, last accessed 24/04/2021.
7. NIST, NVD (National Vulnerability Database), https://nvd.nist.gov, last accessed 24/04/2021.
8. NIST, NISTIR 7695, Common Platform Enumeration: Naming Specifi cation Version 2.3, htt-

ps://csrc.nist.gov/publications/detail/nistir/7695/fi nal, last accessed 24/04/2021.
9. Dimitrov V., CPE-ontology-generator, https://github.com/VladimirDimitrov1957/CPE-ontolo-

gy-generator, last accessed 24/04/2021.



366

10. Musen, M.A. The Protégé project: A look back and a look forward. AI Matters. Association of 
Computing Machinery Specifi c Interest Group in Artifi cial Intelligence, 1(4), June 2015. DOI: 
10.1145/2557001.25757003.

11. NIST, NISTIR 7697, Common Platform Enumeration: Dictionary Specifi cation Version 2.3, 
https://csrc.nist.gov/publications/detail/nistir/7697/fi nal, last accessed 24/04/2021.

12. NIST, NISTIR 7696, Common Platform Enumeration: Name Matching Specifi cation Version 
2.3, https://csrc.nist.gov/publications/detail/nistir/7696/fi nal, last accessed 24/04/2021.


