
��������	
�
�
��
���
	���
�����
��
�	�
��	�����
���
�����		��
�����

����	���
�������
�������
�		����	���
��

��	����	���� 
!��
"#
��
$�

Applications of Unit Tests in Computer Science 
and Software Engineering Education

Atanas Semerdzhiev[0000-0002-7760-1619], Petar Armyanov[0000-0002-4903-8945],
Trifon Trifonov[0000-0002-2247-1968] and Kalin Georgiev[0000-0002-6283-1040]

Department of Computer Informatics, Faculty of Mathematics and Informatics, 
Sofi a University “St. Kliment Ohridski”, Bulgaria

{asemerdzhiev, parmyanov, triffon, kalin}@fmi.uni-sofi a.bg

Abstract. The article discusses the authors’ experience with incorporating unit tests 
in the learning materials and examples used in Computer Science and Software 
Engineering courses and applying them in the grading process. This approach 
served several distinct purposes: (1) To teach students how to control and improve 
the quality of their solutions to training problems; (2) To provide additional means 
of grading students’ submissions; (3) To automate tasks performed by the teaching 
team; and (4) To improve the quality of learning materials provided to the students. 
The article describes how unit tests were integrated in the courses led by the authors, 
what conclusions were reached, and what best practices were established as a result.

Keywords: Education, Unit Test, Sofi a University, Computer Science, Software 
Engineering.

1 Introduction

In the past 5 years, the teaching teams led by the authors of this article, worked 
towards integrating unit testing into courses they teach. This was done not only 
as a part of the curriculum (i.e., including unit tests as a topic being taught), but 
also to improve the quality of the work and to automate certain tasks. To be more 
precise, unit tests were used: (1) To teach students how to control and improve 
the quality of their solutions to training problems; (2) To provide additional 
means of grading students’ submissions; (3) To automate tasks performed by the 
teaching team; and (4) To improve the quality of learning materials provided to 
the students.

The main factors that motivated this change were:
• the authors’ belief that unit tests are an important part of modern software 

development and should be incorporated as a part of the curriculum; 
• feedback from companies in the IT sector (among other prospective em-

ployers of the students), which stated that students are lacking knowledge 
in this area, which is recognized by the companies as highly important; 



64

• feedback from the students, who asked questions about the concept and 
the mechanics of unit tests and expressed general interest to gain knowl-
edge and skills in the area; and 

• internal needs of the teaching teams.
The present study describes how unit tests were integrated in the courses 

led by the authors, what conclusions were reached, and what best practices were 
established as a result. The introduction of unit tests as teaching tools has been 
previously experimented and reported on by other authors as well [1].

2 Use of unit tests

IEEE’s Guide to the Software Engineering Body of Knowledge (SWEBOK) 
version 3.0 describes unit testing as follows: “Unit testing verifi es the functioning 
in isolation of software elements that are separately testable. Depending on the 
context, these could be the individual subprograms or a larger component made of 
highly cohesive units. Typically, unit testing occurs with access to the code being 
tested and with the support of debugging tools. The programmers, who wrote the 
code typically, but not always, conduct unit testing.” [2]. Unit tests have become 
an industry standard – an indispensable part of software development and are 
tightly integrated in any modern software development processes, as described, 
for example, in [3] and [4].

Unit testing practices are traditionally introduced to students as part of a ded-
icated intermediate or advanced course on software testing. The common percep-
tion is that the concept is too complicated for introductory students to grasp and 
effectively apply. It is clear that there is a certain cognitive cost to be paid when 
introducing an additional concept at an early stage. We argue that this cost can be 
offset by applying the concept of unit tests in multiple contexts, thus increasing 
the gains and the students’ confi dence in its applicability.

The goal of our study was to examine how unit tests can be introduced into 
introductory programming courses. Our methodology was to introduce unit test-
ing throughout the entire educational process and demonstrate that it is a multi-
faceted concept applicable not only to student grading, but as a hinting assistant 
during an exam, as a validation tool for course and examination materials, and as 
program analysis tool, among others.

In this section, we describe in more detail how our teams applied unit tests in 
a variety of educational activities.

2.1 As a part of the curriculum

An established benefi cial routine in the teaching of classes in Computer Science and 
Software Engineering (CS/SE) focused on software development is to introduce 
students, often by example, to as many best practices as possible. This helps 



65

them, especially during the early learning stages, to develop a habit of discipline 
in programming, conforming to the contemporary expectations for quality in 
software development. For the students from the Information Systems program 
in our faculty, it is even more important to achieve knowledge for different types 
of testing, including unit testing, as they have courses, related to higher level 
of software design, modeling and testing in the third and fourth year. In such 
a way, we are attempting to stimulate and develop behavioral competencies, 
such as, for example, recognizing development of unit tests as a best practice 
of a seasoned professional, and being able to explain clearly its advantages, and 
utilizing unit tests as means for intra-team and inter-team communication of the 
intended purpose of the code [5]. Accordingly, we address the topic of unit testing 
at an early stage and aim to develop a culture where the code and the tests are 
considered as one whole – the software unit is only complete when the unit tests 
for it are also fully developed.

This introduction can be challenging at the beginning of the undergraduate 
program, especially in the fi rst semester of the fi rst year. One typical obstacle is 
that unit-testing frameworks typically rely on advanced mechanisms, which the 
students have not been introduced to at that stage of their education. For example, 
a typical C/C++ unit test framework relies on the preprocessor and some basic 
understanding of linkage, translation units and how to organize a solution into 
multiple projects (for example, cf. [6,7]). It may be argued that students should 
simply consider the unit-testing framework as a “black box”, whose inner work-
ings they do not need to comprehend. In practice, advanced C/C++ knowledge 
may be required to utilize fully and properly a unit test framework properly, as 
well as to be able to resolve non-obvious unit test errors occurring at compilation 
time or at runtime.

That said, we have found it quite possible to teach students to start using 
unit tests even in the fi rst semester. Our methodology introduced unit tests in a 
simplifi ed and controlled manner, which may sacrifi ce effi ciency of the unit tests 
for the sake of simplicity. A parallel can be drawn with how fi rst semester classes 
in C++ introduce students to input and output using the iostream library. At 
the very beginning, students do not have knowledge of classes, inheritance, op-
erator overloading, or ADL. However, the abstraction allows usage ��������� 
and std::cin for output and input and they learn to do so quite well, despite 
the fact, they will understand the details of the implementation much later, and 
many will never become aware of the full implementation. In other words, one 
can learn how to use a well-designed programming construct properly, at least on 
a certain level, even if they do not yet understand how it is implemented.

From our experience, the introduction of unit testing early on has many posi-
tive effects. Students learn how to properly design units of code and gain a better 
understanding of some of the processes and requirements of real-world develop-



66

ment. They understand the benefi ts and the importance of program decomposi-
tion by observing them in practice. Finally yet importantly, they acquire a certain 
degree of confi dence, because they feel they are gaining real-world skills and that 
they are growing as IT professionals.

Of course, as in actual software development, the benefi ts of unit tests come 
at a cost. Firstly, the teaching team must be prepared to work with unit testing in a 
training scenario. Obviously, at a minimum they must have a good understanding 
of the topic themselves, so that they can relate it to their students. The less evident 
fact is that a signifi cant amount of additional work arises for the team:

• Unit tests developed by the students must be reviewed and appropriate 
feedback should be provided from the teaching team.

• For each assignment, it should be considered what aspects of unit testing 
should be included in it (for example should the students develop unit 
tests, what part of the grade comes from the unit tests, etc.).

• Incorporating unit tests in the standard curriculum is not a straightforward 
endeavor and the team needs to make a conscious and focus effort to 
identify how to incorporate them in its daily teaching activities.

The second aspect of the cost of introducing unit tests is that, just as in real-
world development, unit test development may consume as much time as the 
development of a given code unit, or even more. Thus, when assigning tasks to 
the students, it should be ascertained they have enough time to develop both the 
code units and the tests. As a result, often the team needs to resort to two tactics 
– either increase the time limit for assignments, and/or simplify the tasks, so that 
the development of code units becomes simpler, leaving more time to develop 
unit tests.

Additionally, tasks given to students need to be carefully selected and 
thought through. As unit tests themselves become a part of the curriculum, there 
may be tasks that focus solely on the tests. For example, the students may receive 
an assignment that requires them to develop one or more units of code, which 
are not challenging in themselves, however covering them with unit tests might 
be. Respectively, for such assignments it is the unit tests that are being examined 
and graded, and not the actual solution. For “hybrid” tasks, where both the solu-
tion and the accompanying unit tests are graded, a careful advance consideration 
needs to be made as to what code units has to be developed and what it will take 
to cover them with unit tests. Last, but not least, unit tests should not be turned 
into a religion: exceptions could also be made where appropriate. For example, if 
a class needs to work with the fi le system, it may not be easy to subject it to unit 
tests for students in the fi rst year of their studies. At this stage, they may not yet 
be able to deal with topics such as mocking, stubs, etc. Therefore, unit tests for 
the problematic areas may be simplifi ed, omitted, or given as an extra credit for 
advanced students.



67

2.2 As an aid for students during exams

In the courses, which are in the focus of this paper, students are often subjected 
to a particular type of exam. It is of relatively short duration, usually between 
1 and 3 hours. At the beginning of the exam, the students receive one or more 
problems they are required to provide a solution. For example, they may need to 
create a computer program as a solution to the exam problems. In other situations, 
students are not required to implement an entire program, but a single class or a 
single function or a combination of such program units. Each student solves the 
exam on their own, using a computer with preinstalled IDE, compiler, etc. At the 
end of the exam, the students submit their work in the form of one or more source 
fi les. Submissions are uploaded to our faculty’s e-learning system, which is an 
instance of the popular LMS Moodle [8].

In such exams, we have found it helpful to provide the students with a com-
prehensive set of unit tests that cover the major use cases of the code units they 
are required to develop. Students are free to add unit tests of their own, if they see 
fi t (this may be useful if they choose to develop additional code units, apart from 
the ones mandated by the exam text).

The unit tests are provided simultaneously with the problem statement of the 
exam. Revealing them in the days before the exam may compromise it: based on 
the unit tests it is often straightforward to determine what the exam problem is. 
This may allow the students to prepare their solution in the days before the exam 
has started, using external help, and only be able to reproduce it verbatim during 
the actual exam. This defeats its purpose, as the exam checks the ability of the 
students to solve a problem in a limited period, while the teaching staff can moni-
tor their work and can make sure they do so independently and do not receive aid 
from third parties.

It is important to note that while the ideal conditions for conducting such an 
examination is in a controlled environment with a university-provisioned ma-
chine on which the student has restricted rights, the authors have often been com-
pelled to work in a less suitable examination environment. As an example, some 
examinations need to be performed simultaneously for a large number of students 
during a time slot with limited availability of university-provisioned machines or 
under the conditions of restricted or unavailable Internet access. One potential 
solution for such scenarios is to allow students to use their own computers and 
distribute the unit tests in advance as an encrypted archive. The students are re-
quired to download the archive in advance and are provided with the decryption 
key only at the exam. For increased security, we prefer ZIP archives encrypted 
with the industry-standard AES-256 algorithm as opposed to the legacy and less 
secure ZipCrypto algorithm [9]. One drawback is the lack of native support for 
AES-256 in Windows, macOS, and Linux, which can be overcome by utilizing 



68

the open source 7-zip archiver [10]. For testing purposes, students may be pro-
vided with a test encrypted ZIP archive with a known password so that they can 
test their ability to decrypt successfully such an archive.

The unit tests are provided for several reasons. Firstly, they serve as an aid to 
students and can help focus their attention to specifi c corner cases, which they may 
otherwise omit. In addition, they will know well before the exam is graded whether 
their solution works correctly or not, based on the outcome from running the tests. 
Secondly, they help the students work in an environment, which is closer to that in 
real-world development, where they will have all kinds of tests to help them reduce 
the risk of introducing bugs in their code. Thirdly, it also aids our goal to help stu-
dents build a habit of using unit tests and think of them as “assistants” in solving 
their problem. In this case, the tests are provided by another person (members of the 
teaching staff) and the students need to use them properly.

Since the exam is of short duration, the teaching staff do not want the stu-
dents to waste time trying to confi gure their projects to run the unit tests (unless 
that activity is a part of the exam, of course). For this reason, an empty template is 
provided to the students. Such template could even be provided in advance of the 
exam, as it reveals nothing of substance about the actual examination. The tem-
plate consists of one or more fi les, which the students download. It may consist 
not only of source code fi les, but also project confi guration fi les that bundle all of 
the solution together and can also contain an empty “placeholder” fi le for the unit 
tests. In the day of the exam, the students simply overwrite it with the actual set 
of unit tests they are provided.

Depending on the language being used, the template should be organized in a 
way to make it possible to develop the solution without the unit tests interfering. 
For example, in a C/C++ project, a Visual Studio solution with two separate proj-
ects inside it may be provided, or a CMakeLists.txt fi le with two separate 
targets, etc.

A variation of this technique is to provide only a subset of all unit tests that 
would normally be used to cover the entire solution. It can further be extended 
to two more sub-variations. On the one hand, the students may be required to 
complete the set of unit tests to provide optimal coverage. In this case, the unit 
tests they develop are too subject to evaluation. The second option is to make the 
development of additional unit tests optional. In this case, the students can choose 
not to invest time in developing unit tests at the higher risk of missing signifi cant 
errors in their solution.

2.3 As a grading aid

When grading exams, the teaching teams often face several issues summarized 
below:



69

• There are repetitive checks that need to be performed on each submission. 
For example, if the task requires the students to write a function f, it may 
be required to test how f behaves when called with certain inputs (does 
it throw an exception, does it calculate proper results, etc.). As another 
example: students may be required to implement a class for which the 
exam text describes its contract. This class may need to be tested in mul-
tiple scenarios. If executed manually each time, these checks consume a 
lot of time.

• The checks need to be performed with all submissions and no checks 
must be left out to ensure objective and equal grading. In addition, each 
check must be executed fully, faithfully, and under the same conditions. 
When ran manually, it is easy for a person to forget a certain check, or to 
degrade its quality.

• The checks should be graded in the same manner for each submission to 
ensure fairness. When executed manually, it is easy to miscalculate the 
number of passed and failed checks.

As can be easily seen, all issues described above could be addressed by 
utilizing unit tests. In fact, the rationale is the very same as for any software 
development team, which in itself is instructive for the students. However, one 
potential setback here must be stated. In regular software development scenarios, 
at a given point in time, the source code may fail to build, or may raise runtime 
errors, or not implement all the requirements of a given class’ contract. Over time 
all those issues are typically overcome, or, if for some reason it is decided that 
some of the requirements will be omitted from scope, then the unit tests need to 
be changed accordingly. In short, both the code and the unit tests are not seen as 
static, but as evolving as the needs addressed by the software evolve. In contrast, 
during an examination, this is not the case. The students work on their solution 
for a limited period and after they submit it, it cannot be modifi ed anymore. Ad-
ditionally, both the requirements and the unit tests are provided to students in the 
beginning of the examination. They remain static throughout the course of the 
exam. Thus, a student may submit a solution, which implements only a part of 
the required units/functionality, and which contains bugs and does not build cor-
rectly. It may be impossible to run the original unit tests against it (if it does not 
build), or there may be such a bug inside it, which causes most tests to fail, due 
to runtime errors, while at the same time there may be valid solutions to certain 
parts of the exam text, which should be graded positively.

For the reasons described above, it is necessary to view unit tests as a com-
plement to, rather than a core part of, the examination. In particular, all solutions 
submitted need to be reviewed and graded manually and appropriate feedback to 
be given to the students, akin to a peer code review in a regular software develop-
ment process. The unit test results are thus seen as assisting tools and providing 



70

additional information to the reviewer with minimal effort. Also, for submissions 
which do not implement all required units and/or contain bugs (and thus cause the 
tests to fail), the teacher should decide whether to adapt the unit tests, so that they 
can run for the given submission, or to leave them out altogether, if this requires 
more effort than grading the submission manually.

2.4 As means to improve the quality of teaching materials

Often, when a teacher supplies learning materials to their students, they are bound 
to contain errors and omissions. Sometimes such errors are easy to spot and may 
be considered as a mere inconvenience to the students. However, they may also 
be subtle and manifest in such a way as to change the meaning of the original 
document. In such a case, they may cause the students to internalize falsehoods. 
Another problem, albeit hugely dependent on the cultural context, is how those 
errors affect the reputation of the teacher. In some workplaces, if the materials 
supplied by a teacher, contain errors, they may be perceived as a professional 
with poor skills and practice. In our experience, this issue may have a signifi cant 
impact on the self-esteem and confi dence of the teacher and cause considerable 
amount of stress.

One particular type of teaching materials, that are seriously affected by the 
issues described above, are those used in exams. For example, in certain pro-
gramming exams, students are given a specifi c problem and they are required 
to solve it in a limited period (e.g., a couple of hours). After the exam, they are 
provided a sample solution to the exam. If this solution contains errors (i.e., 
compilation errors, bugs, etc.), this raises a question about the validity of the 
exam. The thinking usually is along the following lines: “If the teaching staff 
cannot provide a proper solution, when they have more time on their hands and 
a greater experience and expertise than the students, is it reasonable to expect 
that the students can solve the problem fl awlessly in a couple of hours?” Of 
course, if the situation is such that there are signifi cant errors in the solution, 
or the exam was inappropriately diffi cult, this line of thinking may be justi-
fi ed. However, even a simple and inconsequential oversight may provoke such 
statements. There are situations when the students with a biased viewpoint and 
are caused by emotions such as resentment and anger, ignited after receiving 
a poor grade. In such cases, it is diffi cult to rationalize that in a programming 
exam simple oversights are not the underlying cause for a poor grade. Students 
may fail to appreciate that, in fact, educators understand that under the stressful 
conditions of an exam it is easy to make errors and, as a result, are tolerant of 
such oversights. Furthermore, the students need to be taught that human pro-
gramming errors are an integral part in the discipline of software development 
and, consequently, need to be managed by appropriate methods and techniques 



71

instead of simply being punished by a poor grade, or, similarly, by a fi nancial 
deduction for a professional. It should be made clear and explained that it is the 
more signifi cant errors, that speak of poor understanding of the contents of the 
curriculum, that are indicated with lower scores.

Based on the above, it is easy to see how unit tests may be benefi cial. For 
example, when providing source code examples that accompany the lectures, the 
teacher can use unit tests to provide some level of guarantee that they work cor-
rectly. In programming exams, a working solution can be developed before the 
exam. This serves two purposes. Firstly, it helps the teacher validate the task that 
will be given to the students. They can see how large (as volume of source code) 
the solution will be; whether it requires the development of additional units of 
code, which were not foreseen, while writing the exam text; whether the solution 
involves topics not yet covered in the classes, etc. Secondly, this solution may 
be released to students immediately after the exam. To validate this solution, the 
teacher may cover it with unit tests. This will not only help them fi x any errors 
and oversights, which could be introduced in the solution, but it will also greatly 
reduce the stress experienced by the teaching staff, as the proper test coverage 
will give them a peace of mind and increase their confi dence in the correctness 
of the supplied solution. Finally, the solutions will help validate the unit tests 
themselves. Invalid or incorrect unit tests may cause students even greater dis-
tress than an erroneous reference solution. Even if they are considered comple-
mentary material, our experience shows that unit test validity is as important to 
the students as the correctness and clarity of the statements of the examination 
problems.

3 Practical considerations

This section contains certain best practices that were discovered by our 
teaching teams in the process of integrating unit tests in our work.

3.1 Exam preparation

Step 1: Develop the exam assignment.
While the text of the exam is being developed, in parallel, a solution to it 

is also being written. Of course, it is also possible to achieve this in a waterfall 
style – fi rst develop the exam text and after that the solution, but it seems more 
natural and easier, when they are done in parallel, or even if the solution precedes 
the text of the exam. This may seem strange at fi rst, but here is a viewpoint, which 
helps understand the underlying principle. In reality, the text of the exam is only a 
physical externalization of a concept, a set of requirements that the solution must 
fulfi ll. If this concept is kept only in our heads, it is easy to omit one or more of 
its aspects. By externalizing it as a fully working, assembled software system, we 



72

can consider it in its entirety and be able to describe better it. On the other hand, 
if we fi rst develop the solution and only then begin to describe it, there is an in-
creased risk of missing one or more of the important points.

During this process, unit tests may be written in parallel too, but often this 
leads to a more complicated workfl ow. They can also be implemented in a test-
driven development (TDD) style [11], or after the solution is fully developed. 
This depends a lot, on what the teaching staff is comfortable.

During this process, it may be discovered that the exam task is too compli-
cated or too easy, that it contains one or more elements that should be removed, 
that it does not address properly the curriculum of the course, etc. If this turns out 
to be the case, there is an excellent and timely opportunity for the problem to be 
adjusted appropriately.

Step 2: Reevaluate the scope of the assignment.
After the solution is completed and properly covered by unit tests and they 

all pass, it may be considered valid. At this point, it should be considered if the 
amount of source code that needs to be written is proper for the time limit of the 
exam, whether the required knowledge and skills correspond to what the students 
have been taught in the course, etc. The statement of the exam problems should 
also be given a fi nal revision. Our experience shows that during this fi nal revi-
sion process it is crucially important that the three exam components: problem 
statement, unit tests, and reference solutions, are all kept in sync, and any change 
made to one of them is immediately propagated to the other to avoid confusion 
and misalignment.

Step 3: Determine whether to supply the solution to students after the exam.
Depending on the situation at hand, it should be decided whether to supply 

the solution to the students and if so, when (i.e., immediately after the exam, or 
after a given period, etc.). For example, in certain cases, the students are allowed 
to attempt a given exam multiple times. Typically, a given time interval must pass 
before students are granted another attempt (a week, a month, etc.). If one sup-
plies the solution immediately after the fi rst attempt, this may make it pointless to 
give an option for a second try.

Step 4: Determine whether to supply the unit tests to students after the exam.
It should also be considered whether to supply the unit tests as part of the 

supplied solution. This may be an excellent opportunity for the students to learn 
how to cover their solution with unit tests, how to organize them, etc. However, it 
also means that the teaching staff needs to spend additional time organizing (and 
probably documenting) the unit tests, so they are in an appropriate form, which 
can be presented to the students.



73

Step 5: Determine whether to supply the unit tests to students during the 
exam.

Another thing to consider is whether to supply the unit tests to the students 
during the exam and if so – whether to supply the entire suite of tests, or just a 
proper subset of it. It should also be considered whether the students will be re-
quired to develop unit tests themselves and if so, how this will affect evaluation. 
In this case, the teaching staff, which oversees the exam, may need to be quali-
fi ed to provide aid and/or to answer any questions that the students may have, 
related to the unit tests. This however is not always necessary, nor desired. For 
example, in certain exams in our university, the staff overseeing the examination 
is not allowed to discuss the topic of the examination and/or to give any advice 
or guidance.

3.2 Exam grading

If the teaching team has followed the practices described in the previous section, 
they will have a suite of unit tests that can be used to check the submissions. 
However, there are some important things to consider.

Let us assume the exam statement requires the students to develop a given set 
of code units. For example, they may be required to implement specifi c classes, 
based on a description of their interfaces. A given student may fail to implement 
all units. In such a case, there will be unit tests that refer to units not present in the 
source code and this will most likely prevent us from running a successful build. 
A possible solution is for the examiner to provide simple, “dummy” defi nitions 
for such units, which fail all tests. For example, if students are required to imple-
ment a certain function, but it is missing in a certain submission, the examiner 
can add a version of the function, which does nothing, but fail. Usually, unit test 
frameworks have a dedicated function/macro for that purpose, or the programmer 
can simply write an “assert false” statement in the code.

Secondly, it is possible there are errors in the submission, which prevent the 
program from building properly. In such a case, the examiner can comment out 
the problematic code and supply a “dummy” unit, as described above.

Thirdly, a very common (at least in our experience) mistake made by stu-
dents is to misspell a code unit. For example, the exam text may ask them to 
implement a function called sortArray, but they may call it sort_array, 
or SortArray in their code. This will also cause the unit tests to fail. An easy 
solution may be to add a defi nition, which links the identifi er used in the unit tests 
to the one the student has written. For example, the examiner may defi ne a macro, 
which replaces sortArray with the identifi er used by the student, or they may 
defi ne a new function sortArray, which simply delegates to the function de-
veloped by the student.



74

All of the above, however, may cause a signifi cant amount of work for the 
examiner and for each submission; it should be considered if the effort spent, 
supplying dummy units outweighs the benefi ts of using unit tests to grade the 
submission.

To alleviate this issue, it may be benefi cial to design the exam with unit 
testing in mind. For example, students may be required to organize their code 
in separate fi les/modules, so that code units are divided into subsets that can be 
tested independently. Of course, this depends a lot on the exam and such an ap-
proach may not be possible.

In our view, it is important to state explicitly that unit tests should be viewed 
as an aid, and they can in no way replace proper examination of the submitted 
solution by a human.

• The examiner should always check the source code, regardless of wheth-
er it passes all checks or not.

• The fi nal grade should never be automatically assigned, based on how 
many tests have passed successfully, but should be determined by the 
examiner after reviewing the solution. If any grade suggestion is being 
automatically calculated, all team members must have a clear understand-
ing that it is intermediate and subject to review and change.

• The grading process should be clear and transparent to students. We rec-
ommend that the teaching team assure explicitly students that each sub-
mission is carefully reviewed and graded by the members of the team.

It should also be stated that there are limits to what can be checked with unit 
tests. Obviously, they cannot be used to evaluate the coding style, and may not 
be able to detect bad practices. It is also neither feasible, nor necessary to check 
for every possible error that can be introduced in each code unit. On the other 
hand, submissions usually contain all sorts of errors – memory leaks, improperly 
organized code, poor architecture, bad complexity, etc. A certain balance must be 
found: again, an excellent teaching opportunity for students, as such a balance is 
important in actual software development as well.

Finally, it may be benefi cial for the team to keep the unit tests used to check 
submissions in a centralized place and to improve them as grading proceeds. For 
example, one examiner may fi nd that many submissions contain a certain type of 
error, which is not detected by the unit tests. It is very likely that the error may be 
present in the submissions checked by the other members of the team. Thus, the 
examiner may implement one or more tests that detect the error and push them 
back to the central repository. The other examiners can pull the improved unit 
tests and run them again against the submissions they are processing.



75

4 Related work

The application of unit tests to programming education has been explored 
by multiple authors in a variety of contexts. Automated testing of student 
submissions in programming courses for the purposes of grading has a long 
history spanning over 50 years and have been studied extensively [12,13]. Most 
of the case studies rely on end-to-end tests, which test the entire solution on 
various inputs and validate against an expected set of outputs. Such an approach 
aids the development of a mindset in the students for considering a wide spectrum 
of input possibilities for their program in order to ensure obtaining a maximum 
grade. It also teaches them that the correctness of their solution can be evaluated 
automatically given the appropriate set of tests, which is something they can 
do themselves before submitting their programs for grading. With end-to-end 
tests, incremental grading is typically achieved by developing an appropriate set 
of tests, which aim to capture corner and error cases (e.g., small inputs, null 
or invalid inputs, large inputs) or potential logical fl aws (e.g., by falsifying a 
potentially incorrect assumption about the input). This approach, however, rarely 
focuses on testing individual units of the solution, and a simple omission in the 
program (e.g., off-by-1 error) can lead to a zero score.

The discipline of writing unit test has typically been taught in intermediate 
and advanced programming courses dedicated to software testing and production 
programming, as opposed to introductory programming courses (cf. [14,15]). It is 
only a recent trend that software-testing practices are increasingly introduced in in-
troductory courses. A useful systematic survey of research related to the application 
of unit test to programming education [16] offers similar observations to ours: the 
benefi ts of introducing unit tests early on can extend signifi cantly beyond grading, 
but also into curriculum, familiarizing students with testing tools and processes, im-
proving course materials, and developing perceptions and behaviors toward testing.

Some authors, such as Howles [17] and Edwards [18] argued as early as 
2003 that fostering a software quality culture should start from the very early 
stages of programming education. This idea has been taken further by Janzen and 
Saieidian [19], who coined the team test-driven learning, inspired by test-driven 
development, where students learn by starting from the unit tests before design-
ing their solution. The authors later attempted to evaluate the effectiveness of this 
approach with a quantitative approach with moderately positive results, although 
the small amount of data was insuffi cient to draw broad conclusions [20]. The 
authors discuss similar benefi ts to what we have noticed in terms of teaching the 
underlying concepts of software quality practices and the change in perception of 
students where unit tests are concerned.

Some authors note the danger of introducing undue cognitive load on intro-
ductory-level students by adding concepts such as unit testing and test-driven 



76

development early on [21]. Their proposed solution is the development of a sim-
plifi ed macro language for defi ning unit tests in function comments as opposed to 
applying a fully-fl edged unit-testing framework. Our approach is slightly differ-
ent: we insist on using an actual unit-testing framework without the application of 
intermediate tools, but we carefully select a framework by considering simplicity 
of usage and apply only a limited set of capabilities, which we found suffi cient 
for an introductory level course.

5 Conclusion

Based on several years of experience in utilizing unit tests in teaching and 
examinations in CS/SE/IS courses, the authors believe that their early introduction 
is highly benefi cial for students. In addition to the purely practical benefi ts of 
providing a degree of safety and confi dence in the correctness of the developed 
code, be it examination solutions or teaching materials, the exposure of students 
to this practice helps them achieve a fi rst-hand appreciation of its advantages 
and drawbacks. We have found that it helps them build their own style of 
approaching unit testing in parallel with fi nding the programming style that they 
feel most comfortable. Last, but not least, students appreciate obtaining a level of 
familiarity with the unit testing practice, which is a valued and benefi cial practice 
in commercial software development, especially of widely used information 
systems.

As part of future discussion, we will aim at mapping the introduction of unit 
tests to specifi c learning outcomes (cf. [5]) in order to isolate better their contri-
bution to the overall learning process.

6 Acknowledgements

The authors gratefully acknowledge fi nancial support by Sofi a University “St. 
Kliment Ohridski” grant 80-10-173/05.04.2021.

References
1. Peláez C. (2016). Unit testing as a teaching tool in higher education. In SHS Web of Conferences 

(Vol. 26, p. 01107). EDP Sciences.
2. IEEE Computer Society (2014) Guide to the Software Engineering Body of Knowledge (SWE-

BOK) Version 3.0. Chapter 4 Software Testing pp.4-2
3. Robert M. (2020) Clean Agile. Chapter 5: Technical practices; section “Test-driven-develop-

ment”. Pearson.
4. Robert Martin (2009) Clean Code. Chapter 9: Unit Tests. Prentice Hall.
5. Kanabar V., & Kaloyanova, K. (2017). Identifying and embedding behavioral competencies in 

Information Systems courses.
6. Catch2 Tutorial. https://github.com/catchorg/Catch2/blob/devel/docs/tutorial.md, last accessed 

2021/05/05.



77

7. Googletest Primer. https://github.com/google/googletest/blob/master/docs/primer.md, last ac-
cessed 2021/05/05.

8. Moodle. https://moodle.org/, last accessed 2021/05/05.
9. Stay, M. (2001, April). ZIP attacks with reduced known plaintext. In International Workshop on 

Fast Software Encryption (pp. 125-134). Springer, Berlin, Heidelberg.
10. 7-zip, https://www.7-zip.org/, last accessed 2021/05/05.
11. Beck, K. (2003). Test-driven development: by example. Addison-Wesley Professional.
12. Kirsti M Ala-Mutka (2005) A Survey of Automated Assessment Approaches for Programming 

Assignments, Computer Science Education, 15:2, 83-102, DOI: 10.1080/08993400500150747.
13. Daly C., Livingstone D., and Orwell J. (2005) Automatic test-based assessment of programming: 

A review. J. Educ. Resour. Comput. 5, 3, 4–es. DOI:https://doi.org/10.1145/1163405.1163409.
14. Garousi V., and A. Mathur (2010) Current State of the Software Testing Education in North 

American Academia and Some Recommendations for the New Educators, 23rd IEEE Con-
ference on Software Engineering Education and Training, 2010, pp. 89-96, doi: 10.1109/
CSEET.2010.29.

15. Allen E., Cartwright R., & Reis C. (2003). Production programming in the classroom. ACM 
SIGCSE Bulletin, 35(1), 89. doi:10.1145/792548.611940.

16. Passos Scatalon L., Jeffrey C., Carver, Rogério E. G., and Francine Barbosa E. (2019) Soft-
ware Testing in Introductory Programming Courses: A Systematic Mapping Study. In Pro-
ceedings of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE 
‘19). Association for Computing Machinery, New York, NY, USA, 421–427. DOI:https://doi.
org/10.1145/3287324.3287384.

17. Howles T. (2003). Fostering the growth of a software quality culture. ACM SIGCSE Bulle-
tin,35(2), 45 – 47.

18. Edwards S. H. (2003). Rethinking computer science education from a test-fi rst perspective. 
Companion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming, 
Systems, Languages, and Applications - OOPSLA ’03. doi:10.1145/949344.949390.

19. Janzen D. S., & Saiedian H. (2006). Test-driven learning. ACM SIGCSE Bulletin, 38(1), 254. 
doi:10.1145/1124706.1121419.

20. Janzen D., & Saiedian H. (2008). Test-driven learning in early programming courses. ACM 
SIGCSE Bulletin, 40(1), 532. doi:10.1145/1352322.1352315.

21. Lappalainen V., Itkonen J., Isomöttönen V., & Kollanus S. (2010). ComTest. Proceedings of the 
Fifteenth Annual Conference on Innovation and Technology in Computer Science Education - 
ITiCSE ’10. doi:10.1145/1822090.1822110.


