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Abstract. In this work, we propose an effi cient parallelization of multiple-precision 
Taylor series method with variable stepsize and fi xed order. For given level of 
accuracy the optimal variable stepsize determines higher order of the method than 
in the case of optimal fi xed stepsize. Although the used order of the method is 
greater than that in the case of fi xed stepsize, and hence the computational work per 
step is greater, the reduced number of steps gives less overall work. In addition, the 
greater order of the method is benefi cial in the sense that it increases the parallel 
effi ciency. As a model problem, we use the paradigmatic Lorenz system. With 
256 CPU cores in Nestum cluster, Sofi a, Bulgaria, we succeed to obtain a correct 
reference solution in the rather long time interval – [0,11000]. To get this solution 
we perform two large computations: one computation with 4566 decimal digits of 
precision and 5240-th order method, and second computation for verifi cation – with 
4778 decimal digits of precision and 5490-th order method.

Keywords: Parallel Computing, Multiple Precision, Variable Stepsize Taylor Se-
ries Method, Lorenz System.

1 Introduction

Multiple precision Taylor series method is an affordable and very effi cient 
numerical method for integration of some classes of low dimensional dynamical 
systems in the case of high precision demands [1], [2]. The method gives a new 
powerful tool for theoretical investigation of such systems. 

A numerical procedure for computing reliable trajectories of chaotic systems, 
called Clean Numerical Simulation (CNS), is proposed by Shijun Liao in [3] and 
applied for different systems [4], [5], [6]. The procedure is based on multiple pre-
cision Taylor series method. The main concept for CNS is the critical predictable 
time Tc, which is a kind of practical Lyapunov time. Tc is defi ned as the time for 
decoupling of two trajectories computed by two different numerical schemes. The 
CNS works as follows. An optimal fi xed stepsize is chosen. Then estimates of the 
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required order of the method N and the required precision (the number of exact 
decimal digits K of the fl oating-point numbers) are obtained. The optimal order N 
is estimated by computing the Tc – N dependence by means of the numerical solu-
tions for fi xed large enough K. The estimate of K is obtained by computing the 
Tc – K dependence by means of the numerical solutions for fi xed large enough N. 
This estimate of K is in fact an estimate for the Lyapunov exponent [7]. For given 
Tc the solution is then computed with the estimated N and K and after that one more 
computation with higher N and K is performed for verifi cation. The choice of N and 
K ensures that the round-off error and the truncation error are of the same order. 

When very high precision and very long integration interval are needed, the 
computational problem can become large. In this case, the parallelization of the 
Taylor series method is an important task and needs to be carefully developed. The 
fi rst parallelization of CNS is reported in [8] and later improved in [9]. A pretty 
long reference solution for the paradigmatic Lorenz system, namely in the time 
interval [0,10000], obtained in about 9 days and 5 hours by using the computational 
resource of 1200 CPU cores, is given in [10]. However, no details of the paralleliza-
tion process are given in [8], [9], [10]. In our recent work [11] we reported in details 
a simple and effi cient hybrid MPI + OpenMP parallelization of CNS for the Lorenz 
system and tested it for the same parameters as those in [10]. The results show very 
good effi ciency and very good parallel performance scalability of our program. 

This work can be regarded as a continuation of our previous work [11], 
where fi xed stepsize is used. Here we make a modifi cation of CNS with a variable 
stepsize and fi xed order following the simple approach given in [12]. Although 
the used order of the method is greater than that in the case of fi xed stepsize, and 
hence the computational work per step is greater, the reduced number of steps 
gives less overall work. In addition, the greater order of the method is benefi cial 
in the sense that it increases the parallel effi ciency. With 256 CPU cores in Nes-
tum cluster, Sofi a, Bulgaria, we succeed to obtain a correct reference solution in 
[0,11000] and in this way we improve the results from [10]. To obtain this solu-
tion we performed two large computations: one computation with 4566 decimal 
digits of precision and 5240-th order method, and second computation for veri-
fi cation – with 4778 decimal digits of precision and 5490-th order method for 
verifi cation. The computations lasted ≈ 9 days and 18 hours and ≈ 11 days and 7 
hours, respectively. Let us note that the improvement of the numerical algorithm 
does not change the parallelization strategy from our previous work [11], where 
the parallelization process is explained in more details. The difference from the 
previous parallel program is one additional OpenMP single section with negligi-
ble computational work, which computes the optimal step. 

It is important to mention that although our test model is the classical Lorenz 
system, the proposed parallelization strategy is rather general – it could be ap-
plied as well to a large class of chaotic dynamical systems.
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2 Taylor series method and CNS for the Lorenz system

We consider as a model problem the classical Lorenz system [13]:

 (1)

where R = 28, σ = 10, b = 8/3 are the standard Salztman’s parameters. For these 
parameters, the system is chaotic. Let us denote with xi, yi, zi, i = 0, ..., N the normal-
ized derivatives (the derivatives divided by i!) of the approximate solution at the 
current time t. Then the N-th order Taylor series method for (1) with stepsize τ is:

 (2)

The i-th Taylor coeffi cients (the normalized derivatives) are computed as fol-
lows. From system (1) we have

By applying the Leibniz rule for the derivatives of the product of two func-
tions, we have the following recursive procedure for computing xi+1, yi+1, zi+1 for 
i = 0, ..., N-1:

 (3)
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To compute the i+1-st coeffi cient in the Taylor series we need all previous 
coeffi cients from 0 to i. In fact, this algorithm for computing the coeffi cients of 
the Taylor series is called automatic differentiation, or also algorithmic differen-
tiation [14]. It is obvious that we need O(N2) fl oating point operations for comput-
ing all coeffi cients. The subsequent evaluation of Taylor series with Horner’s rule 
needs only O(N) operations.

Let us now explain how we choose the stepsize τ. We use a variable stepsize 
strategy, which makes the method much more robust then in the fi xed stepsize 
case. We use a simple strategy taken from [12], which ensures both the conver-
gence of the Taylor series and the minimization of the computational work per 
unit time. If we denote the vector of the normalized derivatives of the solution 
with Xi = (xi, yi, zi) and take a safety factor 0.993, then the stepsize τ is determined 
by the last two terms of the Taylor expansions [12]:

 (4)

 

Fig. 1. Tc – N dependencies for fi xed and variable stepsize.
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In [12] the order of the method is determined by the local error tolerance. 
However, we do not work explicitly with some local error tolerance and, we do 
not use any explicit dependence between the local and the global error. Instead 
of this, as in [3], we compute an a priori estimate of the needed order of the 
method for a reliable solution. As said before, the critical predictable time Tc is 
defi ned as the time for decoupling of two trajectories computed by two different 
numerical schemes (in this case – by different N). The solutions are computed 
with large enough precision to ensure that the truncation error is the leading 
one. As a criterion for decoupling time, we choose the time for establishing 
only 30 correct digits. The obtained Tc – N dependencies for fi xed stepsize τ 
= 0.01 and variable stepsize are shown in Figure 1. As seen from this fi gure, 
the computational work for one-step in the case of variable stepsize is ≈ 80% 
greater than in the case of fi xed stepsize – (2.98/2.22)2 ≈ 1.80. However, the re-
duced number of steps gives less overall work. In addition, the greater order of 
the method is benefi cial in the sense that it increases the parallel effi ciency. The 
reason is that with increasing the order N of the method, the parallelizable part 
of the work becomes relatively even larger than the serial part and the parallel 
overhead part. 

Similarly, we compute an a priori estimate of the needed precision by means 
of computing the Tc – K dependence. In this case, we compare the solutions for 
different K and large enough N. We obtain the dependence Tc = 2.55K – 81, which 
is the same, as expected, for fi xed and for variable stepsize.

3 Parallelization of the algorithm

The improvement of the numerical algorithm does not change the parallelization 
strategy from our previous work [11], where the parallelization process is 
explained in more details. However, as we will see, the variable stepsize not only 
decreases the computational work for a given accuracy, but also gives a higher 
parallel effi ciency. 

Let us store the Taylor coeffi cients in the arrays x, y, z of lengths N+1. The 
values of xi are stored in x[i], those of yi in y[i] and those of zi in z[i]. As explained 
in [8], [9], the crucial decision for parallelization is to make a parallel reduction 
for the two sums in (3). However, in order to reduce the remaining serial part 
of the code and hence to improve the parallel speedup from the Amdal’s law, 
we should utilize some limited, but important parallelism. We compute x[i+1], 
y[i+1], z[i+1] in parallel. Moreover, we compute x[i+1] in advance, before com-
puting the sums in (3), when during the reduction process some of the computa-
tional resource is free. In the same way we compute in advance Rx[i] – y[i] from 
the formula for y[i + 1] and bz[i] from the formula for z[i + 1]. These computa-
tions are taken in advance; because multiplication is much more expensive than 
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the other used operations, such as division by an integer number is not so expen-
sive. The three evaluations by Horner’s rule for the new x[0], y[0], z[0] are also 
done in parallel. 

In this work we consider a hybrid MPI + OpenMP strategy [15], [16], i.e., 
every MPI process creates a team of OpenMP threads. For multiple precision 
fl oating-point arithmetic, we use GMP library (GNU Multiple Precision library) 
[17]. The main reason to consider a hybrid strategy, rather than a pure MPI one, 
is that OpenMP performs slightly better than MPI on one computational node. 
For packing and unpacking of the GMP multiple precision types for the MPI 
messages, we rely on the tiny MPIGMP library of Tomonori Kouya [18], [19], 
[20], [21].

It is important to note that for our problem the pure OpenMP parallelization 
has its own importance. First, the programming with OpenMP is easier, because it 
avoids the usage of libraries like MPIGMP. Second, since the algorithm does not 
allow domain decomposition, the memory needed for one computational node 
is multiplied by the number of the MPI processes per that node, while OpenMP 
needs only one copy of the computational domain and thus some memory is 
saved. 

The sketch of our parallel program is given in Figure 2. Every thread gets 
its id and stores it in tid and then the loop with index i is performed. Every MPI 
process takes its portion – the fi rst and the last index controlled by the process. 
After that the directive #pragma omp for shares the work for the loop between 
threads. 

Although OpenMP has a build-in reduction clause, we cannot use it, be-
cause we use user-defi ned types for multiple precisions number and user-de-
fi ned operations. A manual reduction by applying a standard tree based parallel 
reduction is done. We use containers for the partial sums of every thread and 
these containers are shared. The containers are stored in the array sum. We have 
in addition an array of temporary variables tempv for storing the intermediate 
results of the multiplications. To avoid false sharing, a padding strategy is ap-
plied [16]. At the point where each process has computed its partial sums, we 
perform MPI_ALLREDUCE between the master threads [15]. It is useful to 
regard MPI_ALLREDUCE as a continuation of the tree based reduction pro-
cess, which starts with the OpenMP reduction. Communications between mas-
ter threads are overlapped with some computations for x[i+1], y[i+1], z[i+1] 
that can be taken before the computation of the sums in (3) is fi nished. When 
the MPI_ALLREDUCE is fi nished, we compute in parallel the remaining op-
erations for x[i+1], y[i+1], z[i+1]. 

In between the block which computes the Taylor coeffi cients and the block 
which computes the new values of x[0], y[0], z[0] in parallel, we compute the 
new optimal stepsize within an omp single section. While the block for comput-
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ing the Taylor coeffi cients is O(N2) and the block for evaluations of the polyno-
mials is O(N), this block is only O(1) and hence the work is negligible. Let us 
note that the GMP library does not offer a power function for the computations 
from formula (4). The good thing is that we do not need to compute the stepsize 
with multiple precision and double precision is enough. Therefore, we use the C 
standard library function pow in double precision. We do a normalization of the 
large GMP fl oating point numbers in order to work in the range of the standard 
double precision numbers. The C-code in terms of GMP library of our hybrid 
MPI + OpenMP program can be downloaded from [22]. 

Let us mention that if one half of the OpenMP threads computes one of the 
sums in (3) and the other half computes the other sum, one could also expect some 
small performance benefi t, because for the small indexes i the unused threads will 
be less and the difference from the perfect load balance between threads will be 
less. However, the last approach is not general because it strongly depends on the 
number of sums for reduction (two in the particular case of the Lorenz system) 
and the number of available threads.
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#pragma omp parallel private(i,j,tid)
{
   tid = omp_get_thread_num();
   for (i = 0; i<N; i++)
   {
      // Every process takes its portion of indexes
      #pragma omp single
      {
        istart=(rank*(i+1))/size;
        ifi nal=((rank+1)*(i+1))/size-1;
      }
      # pragma omp for
      for (j=istart; j<=ifi nal; j++)
      {
        mpf_mul(tempv[pad*tid],x[i-j],z[j]);
        mpf_add(sum[pad*tid],sum[pad*tid],tempv[pad*tid]);
        mpf_mul(tempv[pad*tid],x[i-j],y[j]);
        mpf_add(sum[pad*tid+1],sum[pad*tid+1],tempv[pad*tid]);
      }
      //Explicit OpenMP Parallel Reduction for log(p) additions
      // The result of reduction is in sum[0] and sum[1]
      ....................................................
      #pragma omp barrier
      ....................................................
      //MPI_ALLREDUCE for sum[0] and sum[1]
      //Communication is only between master threads
      //Communication is overlapped with some computations
      //for x[i+1],y[i+1],z[i+1] that can be taken in advance
      .....................................................
      #pragma omp barrier
      .....................................................
      // The rest computations
      // for y[i+1],z[i+1] independently in parallel
      ...................................................
      #pragma omp barrier
      // Setting sum[pad*tid] and sum[pad*tid+1] to zero
      ...................................................
   }
   #pragma omp single
   {
      // Computing the optimal stepsize
      // from x[N-1],y[N-1],z[N-1],x[N],y[N],z[N]
   }
   // One step forward with Horner’s rule
   #pragma omp sections
   {
      // Computing the new x[0],y[0],z[0]
      // independently in three parallel sections
   }
}

Fig. 2. The sketch of hybrid MPI+OpenMP code in terms of GMP library.
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4 Computational resources. Performance and numerical results

The preparation of the parallel program and the many tests are performed in 
the Nestum Cluster, Sofi a, Bulgaria [23] and in the HybriLIT Heterogeneous 
Platform at the Laboratory of IT of JINR, Dubna, Russia [24]. The large 
computations for the reference solution in the time interval [0,11000] and the 
presented results for the performance are from Nestum Cluster. Nestum is a 
homogeneous HPC cluster based on two socket nodes. Each node consists of 2 
x Intel(R) Xeon(R) Processor E5-2698v3 (Haswell-based processors) with 32 
cores at 2.3 GHz. We have used Intel C++ compiler version 17.0, GMP library 
version 6.2.0, OpenMPI version 3.1.2 and compiler optimization options -O3 
-xhost.

We use the same initial conditions as those in [10], namely x(0) = -15.8, y(0) 
= -17.48, z(0) = 35.64, in order to compare with the benchmark table in [10]. We 
computed a reference solution in the rather long time interval [0,11000] and re-
peated the benchmark table up to time 10000. Computing this table by two differ-
ent stepsize strategies is a good demonstration that Clean Numerical Simulation 
(CNS) is a correct and valuable approach for computing reliable trajectories of 
chaotic systems. 

We performed two large computations with 256 CPU cores (8 nodes in Nes-
tum). The fi rst computation is with 4566 decimal digits of precision and 5240-th 
order method (5% reserve from the a priori estimates). The second computation is 
for verifi cation – with 4778 decimal digits of precision and 5490-th order method 
(10% reserve from the a priori estimates). The fi rst computation lasted ≈ 9 days 
and 18 hours and the second ≈ 11 days and 7 hours. The overall speedup with 256 
cores for the fi rst computation is 162.8, for the second – 164.6. 

By estimating the time needed for the same accuracy and with fi xed step-
size 0.01, we conclude that by applying variable stepsize strategy we have 2.1x 
speedup. There are two reasons for this speedup – less overall work and increased 
parallel effi ciency. Although the work per step in the case of variable stepsize 
increases by ≈ 80%, the average stepsize is ≈ 0.034 and thus the overall work is 
≈ 53% from the work in the case of fi xed stepsize 0.01. In addition, the parallel 
effi ciency increases from 55.5% up to 63.6% for the fi rst computation and from 
56.2% up to 64.3% for the second. This is because by increasing the order of the 
method N, we increase the amount of the parallel work, which mitigates the im-
pact of the serial work and the parallel overhead work. 

As we computed the reference solution with some reserve of the estimated N 
and K, we actually obtain the solution with some more correct digits. The refer-
ence solution with 60 correct digits at every  100-time units can be seen in [22]. 
The reference solution at t = 11000 is:
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x = 6.10629269055689971917782003095370055267185885053970862735508

y =-3.33795350928712428173974978144552360814210542698512462640748

z = 34.1603471532583648867450334710712261840913307358242610005285

5 Conclusions

Parallelized version of multiple precision Taylor series method and particularly 
the Clean Numerical Simulation should be used with a variable stepsize strategy 
as a better alternative of the fi xed stepsize one. An important observation is that 
variable stepsize not only decreases the computational work for a given accuracy, 
but also gives a higher parallel effi ciency.
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