
��������	
�
�
��
���
	���
�����
��
�	�
��	�����
���
�����		��
�����

����	���
�������
�������
�		����	���
��

��	����	����
!��
"#
��
$�

On the Effi cient Parallel Computing of Long Term
Reliable Trajectories for the Lorenz System

Ivan Hristov1, Radoslava Hristova1, Stefka Dimova1, Peter Armyanov1,
Nikolay Shegunov1, Igor Puzynin2, Taisia Puzynina2, Zarif Sharipov2, Zafar Tukhliev 2

1 Sofi a University, Faculty of Mathematics and Informatics, Bulgaria
2 JINR, Laboratory of Information Technologies, Dubna, Russia

ivanh@fmi.uni-sofi a.bg, zarif@jinr.ru

Abstract. In this work, we propose an effi cient parallelization of multiple-precision
Taylor series method with variable stepsize and fi xed order. For given level of
accuracy the optimal variable stepsize determines higher order of the method than
in the case of optimal fi xed stepsize. Although the used order of the method is
greater than that in the case of fi xed stepsize, and hence the computational work per
step is greater, the reduced number of steps gives less overall work. In addition, the
greater order of the method is benefi cial in the sense that it increases the parallel
effi ciency. As a model problem, we use the paradigmatic Lorenz system. With
256 CPU cores in Nestum cluster, Sofi a, Bulgaria, we succeed to obtain a correct
reference solution in the rather long time interval – [0,11000]. To get this solution
we perform two large computations: one computation with 4566 decimal digits of
precision and 5240-th order method, and second computation for verifi cation – with
4778 decimal digits of precision and 5490-th order method.

Keywords: Parallel Computing, Multiple Precision, Variable Stepsize Taylor Se-
ries Method, Lorenz System.

1 Introduction

Multiple precision Taylor series method is an affordable and very effi cient
numerical method for integration of some classes of low dimensional dynamical
systems in the case of high precision demands [1], [2]. The method gives a new
powerful tool for theoretical investigation of such systems.

A numerical procedure for computing reliable trajectories of chaotic systems,
called Clean Numerical Simulation (CNS), is proposed by Shijun Liao in [3] and
applied for different systems [4], [5], [6]. The procedure is based on multiple pre-
cision Taylor series method. The main concept for CNS is the critical predictable
time Tc, which is a kind of practical Lyapunov time. Tc is defi ned as the time for
decoupling of two trajectories computed by two different numerical schemes. The
CNS works as follows. An optimal fi xed stepsize is chosen. Then estimates of the

79

required order of the method N and the required precision (the number of exact
decimal digits K of the fl oating-point numbers) are obtained. The optimal order N
is estimated by computing the Tc – N dependence by means of the numerical solu-
tions for fi xed large enough K. The estimate of K is obtained by computing the
Tc – K dependence by means of the numerical solutions for fi xed large enough N.
This estimate of K is in fact an estimate for the Lyapunov exponent [7]. For given
Tc the solution is then computed with the estimated N and K and after that one more
computation with higher N and K is performed for verifi cation. The choice of N and
K ensures that the round-off error and the truncation error are of the same order.

When very high precision and very long integration interval are needed, the
computational problem can become large. In this case, the parallelization of the
Taylor series method is an important task and needs to be carefully developed. The
fi rst parallelization of CNS is reported in [8] and later improved in [9]. A pretty
long reference solution for the paradigmatic Lorenz system, namely in the time
interval [0,10000], obtained in about 9 days and 5 hours by using the computational
resource of 1200 CPU cores, is given in [10]. However, no details of the paralleliza-
tion process are given in [8], [9], [10]. In our recent work [11] we reported in details
a simple and effi cient hybrid MPI + OpenMP parallelization of CNS for the Lorenz
system and tested it for the same parameters as those in [10]. The results show very
good effi ciency and very good parallel performance scalability of our program.

This work can be regarded as a continuation of our previous work [11],
where fi xed stepsize is used. Here we make a modifi cation of CNS with a variable
stepsize and fi xed order following the simple approach given in [12]. Although
the used order of the method is greater than that in the case of fi xed stepsize, and
hence the computational work per step is greater, the reduced number of steps
gives less overall work. In addition, the greater order of the method is benefi cial
in the sense that it increases the parallel effi ciency. With 256 CPU cores in Nes-
tum cluster, Sofi a, Bulgaria, we succeed to obtain a correct reference solution in
[0,11000] and in this way we improve the results from [10]. To obtain this solu-
tion we performed two large computations: one computation with 4566 decimal
digits of precision and 5240-th order method, and second computation for veri-
fi cation – with 4778 decimal digits of precision and 5490-th order method for
verifi cation. The computations lasted ≈ 9 days and 18 hours and ≈ 11 days and 7
hours, respectively. Let us note that the improvement of the numerical algorithm
does not change the parallelization strategy from our previous work [11], where
the parallelization process is explained in more details. The difference from the
previous parallel program is one additional OpenMP single section with negligi-
ble computational work, which computes the optimal step.

It is important to mention that although our test model is the classical Lorenz
system, the proposed parallelization strategy is rather general – it could be ap-
plied as well to a large class of chaotic dynamical systems.

80

2 Taylor series method and CNS for the Lorenz system

We consider as a model problem the classical Lorenz system [13]:

 (1)

where R = 28, σ = 10, b = 8/3 are the standard Salztman’s parameters. For these
parameters, the system is chaotic. Let us denote with xi, yi, zi, i = 0, ..., N the normal-
ized derivatives (the derivatives divided by i!) of the approximate solution at the
current time t. Then the N-th order Taylor series method for (1) with stepsize τ is:

 (2)

The i-th Taylor coeffi cients (the normalized derivatives) are computed as fol-
lows. From system (1) we have

By applying the Leibniz rule for the derivatives of the product of two func-
tions, we have the following recursive procedure for computing xi+1, yi+1, zi+1 for
i = 0, ..., N-1:

 (3)

81

To compute the i+1-st coeffi cient in the Taylor series we need all previous
coeffi cients from 0 to i. In fact, this algorithm for computing the coeffi cients of
the Taylor series is called automatic differentiation, or also algorithmic differen-
tiation [14]. It is obvious that we need O(N2) fl oating point operations for comput-
ing all coeffi cients. The subsequent evaluation of Taylor series with Horner’s rule
needs only O(N) operations.

Let us now explain how we choose the stepsize τ. We use a variable stepsize
strategy, which makes the method much more robust then in the fi xed stepsize
case. We use a simple strategy taken from [12], which ensures both the conver-
gence of the Taylor series and the minimization of the computational work per
unit time. If we denote the vector of the normalized derivatives of the solution
with Xi = (xi, yi, zi) and take a safety factor 0.993, then the stepsize τ is determined
by the last two terms of the Taylor expansions [12]:

 (4)

Fig. 1. Tc – N dependencies for fi xed and variable stepsize.

82

In [12] the order of the method is determined by the local error tolerance.
However, we do not work explicitly with some local error tolerance and, we do
not use any explicit dependence between the local and the global error. Instead
of this, as in [3], we compute an a priori estimate of the needed order of the
method for a reliable solution. As said before, the critical predictable time Tc is
defi ned as the time for decoupling of two trajectories computed by two different
numerical schemes (in this case – by different N). The solutions are computed
with large enough precision to ensure that the truncation error is the leading
one. As a criterion for decoupling time, we choose the time for establishing
only 30 correct digits. The obtained Tc – N dependencies for fi xed stepsize τ
= 0.01 and variable stepsize are shown in Figure 1. As seen from this fi gure,
the computational work for one-step in the case of variable stepsize is ≈ 80%
greater than in the case of fi xed stepsize – (2.98/2.22)2 ≈ 1.80. However, the re-
duced number of steps gives less overall work. In addition, the greater order of
the method is benefi cial in the sense that it increases the parallel effi ciency. The
reason is that with increasing the order N of the method, the parallelizable part
of the work becomes relatively even larger than the serial part and the parallel
overhead part.

Similarly, we compute an a priori estimate of the needed precision by means
of computing the Tc – K dependence. In this case, we compare the solutions for
different K and large enough N. We obtain the dependence Tc = 2.55K – 81, which
is the same, as expected, for fi xed and for variable stepsize.

3 Parallelization of the algorithm

The improvement of the numerical algorithm does not change the parallelization
strategy from our previous work [11], where the parallelization process is
explained in more details. However, as we will see, the variable stepsize not only
decreases the computational work for a given accuracy, but also gives a higher
parallel effi ciency.

Let us store the Taylor coeffi cients in the arrays x, y, z of lengths N+1. The
values of xi are stored in x[i], those of yi in y[i] and those of zi in z[i]. As explained
in [8], [9], the crucial decision for parallelization is to make a parallel reduction
for the two sums in (3). However, in order to reduce the remaining serial part
of the code and hence to improve the parallel speedup from the Amdal’s law,
we should utilize some limited, but important parallelism. We compute x[i+1],
y[i+1], z[i+1] in parallel. Moreover, we compute x[i+1] in advance, before com-
puting the sums in (3), when during the reduction process some of the computa-
tional resource is free. In the same way we compute in advance Rx[i] – y[i] from
the formula for y[i + 1] and bz[i] from the formula for z[i + 1]. These computa-
tions are taken in advance; because multiplication is much more expensive than

83

the other used operations, such as division by an integer number is not so expen-
sive. The three evaluations by Horner’s rule for the new x[0], y[0], z[0] are also
done in parallel.

In this work we consider a hybrid MPI + OpenMP strategy [15], [16], i.e.,
every MPI process creates a team of OpenMP threads. For multiple precision
fl oating-point arithmetic, we use GMP library (GNU Multiple Precision library)
[17]. The main reason to consider a hybrid strategy, rather than a pure MPI one,
is that OpenMP performs slightly better than MPI on one computational node.
For packing and unpacking of the GMP multiple precision types for the MPI
messages, we rely on the tiny MPIGMP library of Tomonori Kouya [18], [19],
[20], [21].

It is important to note that for our problem the pure OpenMP parallelization
has its own importance. First, the programming with OpenMP is easier, because it
avoids the usage of libraries like MPIGMP. Second, since the algorithm does not
allow domain decomposition, the memory needed for one computational node
is multiplied by the number of the MPI processes per that node, while OpenMP
needs only one copy of the computational domain and thus some memory is
saved.

The sketch of our parallel program is given in Figure 2. Every thread gets
its id and stores it in tid and then the loop with index i is performed. Every MPI
process takes its portion – the fi rst and the last index controlled by the process.
After that the directive #pragma omp for shares the work for the loop between
threads.

Although OpenMP has a build-in reduction clause, we cannot use it, be-
cause we use user-defi ned types for multiple precisions number and user-de-
fi ned operations. A manual reduction by applying a standard tree based parallel
reduction is done. We use containers for the partial sums of every thread and
these containers are shared. The containers are stored in the array sum. We have
in addition an array of temporary variables tempv for storing the intermediate
results of the multiplications. To avoid false sharing, a padding strategy is ap-
plied [16]. At the point where each process has computed its partial sums, we
perform MPI_ALLREDUCE between the master threads [15]. It is useful to
regard MPI_ALLREDUCE as a continuation of the tree based reduction pro-
cess, which starts with the OpenMP reduction. Communications between mas-
ter threads are overlapped with some computations for x[i+1], y[i+1], z[i+1]
that can be taken before the computation of the sums in (3) is fi nished. When
the MPI_ALLREDUCE is fi nished, we compute in parallel the remaining op-
erations for x[i+1], y[i+1], z[i+1].

In between the block which computes the Taylor coeffi cients and the block
which computes the new values of x[0], y[0], z[0] in parallel, we compute the
new optimal stepsize within an omp single section. While the block for comput-

84

ing the Taylor coeffi cients is O(N2) and the block for evaluations of the polyno-
mials is O(N), this block is only O(1) and hence the work is negligible. Let us
note that the GMP library does not offer a power function for the computations
from formula (4). The good thing is that we do not need to compute the stepsize
with multiple precision and double precision is enough. Therefore, we use the C
standard library function pow in double precision. We do a normalization of the
large GMP fl oating point numbers in order to work in the range of the standard
double precision numbers. The C-code in terms of GMP library of our hybrid
MPI + OpenMP program can be downloaded from [22].

Let us mention that if one half of the OpenMP threads computes one of the
sums in (3) and the other half computes the other sum, one could also expect some
small performance benefi t, because for the small indexes i the unused threads will
be less and the difference from the perfect load balance between threads will be
less. However, the last approach is not general because it strongly depends on the
number of sums for reduction (two in the particular case of the Lorenz system)
and the number of available threads.

85

#pragma omp parallel private(i,j,tid)
{
 tid = omp_get_thread_num();
 for (i = 0; i<N; i++)
 {
 // Every process takes its portion of indexes
 #pragma omp single
 {
 istart=(rank*(i+1))/size;
 ifi nal=((rank+1)*(i+1))/size-1;
 }
 # pragma omp for
 for (j=istart; j<=ifi nal; j++)
 {
 mpf_mul(tempv[pad*tid],x[i-j],z[j]);
 mpf_add(sum[pad*tid],sum[pad*tid],tempv[pad*tid]);
 mpf_mul(tempv[pad*tid],x[i-j],y[j]);
 mpf_add(sum[pad*tid+1],sum[pad*tid+1],tempv[pad*tid]);
 }
 //Explicit OpenMP Parallel Reduction for log(p) additions
 // The result of reduction is in sum[0] and sum[1]
 ..
 #pragma omp barrier
 ..
 //MPI_ALLREDUCE for sum[0] and sum[1]
 //Communication is only between master threads
 //Communication is overlapped with some computations
 //for x[i+1],y[i+1],z[i+1] that can be taken in advance
 ...
 #pragma omp barrier
 ...
 // The rest computations
 // for y[i+1],z[i+1] independently in parallel
 ...
 #pragma omp barrier
 // Setting sum[pad*tid] and sum[pad*tid+1] to zero
 ...
 }
 #pragma omp single
 {
 // Computing the optimal stepsize
 // from x[N-1],y[N-1],z[N-1],x[N],y[N],z[N]
 }
 // One step forward with Horner’s rule
 #pragma omp sections
 {
 // Computing the new x[0],y[0],z[0]
 // independently in three parallel sections
 }
}

Fig. 2. The sketch of hybrid MPI+OpenMP code in terms of GMP library.

86

4 Computational resources. Performance and numerical results

The preparation of the parallel program and the many tests are performed in
the Nestum Cluster, Sofi a, Bulgaria [23] and in the HybriLIT Heterogeneous
Platform at the Laboratory of IT of JINR, Dubna, Russia [24]. The large
computations for the reference solution in the time interval [0,11000] and the
presented results for the performance are from Nestum Cluster. Nestum is a
homogeneous HPC cluster based on two socket nodes. Each node consists of 2
x Intel(R) Xeon(R) Processor E5-2698v3 (Haswell-based processors) with 32
cores at 2.3 GHz. We have used Intel C++ compiler version 17.0, GMP library
version 6.2.0, OpenMPI version 3.1.2 and compiler optimization options -O3
-xhost.

We use the same initial conditions as those in [10], namely x(0) = -15.8, y(0)
= -17.48, z(0) = 35.64, in order to compare with the benchmark table in [10]. We
computed a reference solution in the rather long time interval [0,11000] and re-
peated the benchmark table up to time 10000. Computing this table by two differ-
ent stepsize strategies is a good demonstration that Clean Numerical Simulation
(CNS) is a correct and valuable approach for computing reliable trajectories of
chaotic systems.

We performed two large computations with 256 CPU cores (8 nodes in Nes-
tum). The fi rst computation is with 4566 decimal digits of precision and 5240-th
order method (5% reserve from the a priori estimates). The second computation is
for verifi cation – with 4778 decimal digits of precision and 5490-th order method
(10% reserve from the a priori estimates). The fi rst computation lasted ≈ 9 days
and 18 hours and the second ≈ 11 days and 7 hours. The overall speedup with 256
cores for the fi rst computation is 162.8, for the second – 164.6.

By estimating the time needed for the same accuracy and with fi xed step-
size 0.01, we conclude that by applying variable stepsize strategy we have 2.1x
speedup. There are two reasons for this speedup – less overall work and increased
parallel effi ciency. Although the work per step in the case of variable stepsize
increases by ≈ 80%, the average stepsize is ≈ 0.034 and thus the overall work is
≈ 53% from the work in the case of fi xed stepsize 0.01. In addition, the parallel
effi ciency increases from 55.5% up to 63.6% for the fi rst computation and from
56.2% up to 64.3% for the second. This is because by increasing the order of the
method N, we increase the amount of the parallel work, which mitigates the im-
pact of the serial work and the parallel overhead work.

As we computed the reference solution with some reserve of the estimated N
and K, we actually obtain the solution with some more correct digits. The refer-
ence solution with 60 correct digits at every 100-time units can be seen in [22].
The reference solution at t = 11000 is:

87

x = 6.10629269055689971917782003095370055267185885053970862735508

y =-3.33795350928712428173974978144552360814210542698512462640748

z = 34.1603471532583648867450334710712261840913307358242610005285

5 Conclusions

Parallelized version of multiple precision Taylor series method and particularly
the Clean Numerical Simulation should be used with a variable stepsize strategy
as a better alternative of the fi xed stepsize one. An important observation is that
variable stepsize not only decreases the computational work for a given accuracy,
but also gives a higher parallel effi ciency.

6 Acknowledgement

We thank for the opportunity to use the computational resources of the Nestum
cluster, Sofi a, Bulgaria. We would like to give our special thanks to Dr. Stoyan
Pisov for his great help in using the Nestum cluster and Prof. Emanouil
Atanassov from IICT, BAS for valuable discussions and important remarks on the
parallelization process. We also thank the Laboratory of Information Technologies
of JINR, Dubna, Russia for the opportunity to use the computational resources
of the HybriLIT Heterogeneous Platform. The work is supported by a grant of
the Plenipotentiary Representative of the Republic of Bulgaria at JINR, Dubna,
Russia.

References
1. Barrio, R.: Performance of the Taylor series method for ODEs/DAEs. Applied Mathematics and

Computation 163.2, 525-545 (2005)
2. Barrio, R., et al.: Breaking the limits: the Taylor series method. Applied mathematics and com-

putation 217.20, 7940-7954 (2011)
3. Liao, S.: On the reliability of computed chaotic solutions of non-linear differential equations.

Tellus A: Dynamic Meteorology and Oceanography 61.4, 550-564 (2008)
4. Liao, S.: On the numerical simulation of propagation of micro-level inherent uncertainty for

chaotic dynamic systems. Chaos, Solitons & Fractals 47, 1-12 (2013)
5. Liao, S.: On the clean numerical simulation (CNS) of chaotic dynamic systems. Journal of

Hydrodynamics, Ser. B 29.5, 729-747 (2017)
6. Li, X., Jing, Y., Liao, S.: Over a thousand new periodic orbits of a planar three-body system

with unequal masses. Publications of the Astronomical Society of Japan 70.4, 64 (2018)
7. Wang, P., Li, J.: On the relation between reliable computation time, fl oat-point precision and the

Lyapunov exponent in chaotic systems. arXiv preprint arXiv:1410.4919 (2014)
8. Wang, P., Li, J., Li, Q.: Computational uncertainty and the application of a high-performance

multiple precision scheme to obtaining the correct reference solution of Lorenz equations. Nu-

88

merical Algorithms 59.1, 147-159 (2012)
9. Wang, P., Liu, Y., Li, J.: Clean numerical simulation for some chaotic systems using the parallel

multiple-precision Taylor scheme. Chinese science bulletin 59.33, 4465-4472 (2014)
10. Liao, S., Wang, P.: On the mathematically reliable long-term simulation of chaotic solutions of

Lorenz equation in the interval [0, 10000]. Science China Physics, Mechanics and Astronomy
57.2, 330-335 (2014)

11. Hristov, I., et al.: Parallelizing multiple precision Taylor series method for integrating the Lor-
enz system. arXiv preprint arXiv:2010.14993 (2020).

12. Jorba, A., Zou, M.: A software package for the numerical integration of ODEs by means of
high-order Taylor methods. Experimental Mathematics 14.1, 99-117 (2005)

13. Lorenz, E.: Deterministic nonperiodic fl ow. Journal of the atmospheric sciences 20.2, 130-141
(1963)

14. Moore, R.: Methods and applications of interval analysis. Society for Industrial and Applied
Mathematics (1979)

15. Gropp, W., et al.: Using MPI: portable parallel programming with the message-passing inter-
face (Vol. 1). MIT press (1999)

16. Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: portable shared memory parallel pro-
gramming (Vol. 10). MIT press (2008)

17. GNU GMP library, https://gmplib.org/, last accessed 2021/06/24
18. Kouya, T.: BNCpack, http://na-inet.jp/na/bnc/, last accessed 2021/06/24
19. Kouya, T.: A Brief Introduction to MPIGMP & MPIBNCpack
20. Nikolaevskaya, E., et al.: MPIBNCpack library. Studies in Computational Intelligence 397, pp.

123-134 (2012)
21. Kouya, T.: Performance Evaluation of Multiple Precision Numerical Computation using x86 64

Dualcore CPUs. FCS2005 Poster Session (2005).
22. Article source code, https://github.com/rgoranova/hpcvss, last accessed 2021/06/24
23. Nestum Home Page, http://hpc-lab.sofi atech.bg/, last accessed 2021/06/24
24. HybriLIT Home Page, http://hlit.jinr.ru/, last accessed 2021/06/24

