
��������	
�
���
���
	���
�����
��
�	�
��	�����
���
�����		��
�����

����	���
�������
�������
�		����	���
��
��	����	���� 
!��
"#
��$�

Testing Robotic Systems: Case Study

Nikola Totev

Faculty of Mathematics and Informatics, Sofi a University St. Kliment Ohridski,
5 James Bourchier Blvd., 1164 Sofi a, Bulgaria

nikolart@uni-sofi a.bg

Abstract. The fi eld of robotics is experiencing rapid growth and is changing how 
we live our lives. Robotic systems are making their way into all areas of our life and 
by doing so present a number of challenges regarding safety. This is especially true 
in the fi elds of education and research where novel systems are being developed 
and tested. There are many articles focused on testing software systems in practice, 
but the same cannot be said about the testing of robotic systems. This paper aims to 
present such a study focused on the development and testing of a small balancing 
robot by analyzing the challenges of development, integration, and testing of the 
system. A series of steps that can be used to methodically test the components of 
a system and to verify that the desired functionality is implemented correctly are 
also proposed. 

Keywords: Robotics, Control Systems, Testing Methods, Real-Time, Balancing 
Robot.

1 Introduction

 The fi eld of robotics is experiencing rapid growth and has the potential of 
revolutionizing how we live our lives. The introduction of low-cost sensors, 
actuators and other electrical components gives individuals, schools, universities, 
and research labs the opportunity to experiment more and to contribute to this fi eld. 

Companies such as Sparkfun, Adafruit, Pololu and many others provide 
plug-and-play components with powerful features, that users can easily incorpo-
rate into their projects. Even though most of these components are easy to use, 
to get the most out of them, a certain degree of technical knowledge is required. 

A good example of this is sensor fusion and how it can be used to combine 
data from an accelerometer and gyroscope to calculate the inclination angle of 
the sensor. 

Another example is the use of PID algorithms to control robots. This is part 
of the fi eld of control theory, and it is an essential part of a variety of projects.

In most cases, the algorithms mentioned above are implemented from scratch 
and to determine if they work correctly, a testing approach needs to be considered.



90

This paper covers the challenges of developing and testing a small robotic 
system in practice and proposes a series of steps that can be used for testing other 
small robotic systems. 

2 Testing in the fi eld of Robotics 

Robotic systems are heavily used in safety-critical domains such as healthcare, 
education, and transportation. This increase in interaction between the public 
and robotic systems drastically raises the chance of catastrophic failure [4]. This 
heightened risk makes testing of robotic systems a key part of the development 
process. It is imperative that Cyber-Physical Systems (CPS) [5-7], of which 
robotic systems may be considered a subcategory [4, 8] be thoroughly tested 
before being used in production environments.

Characteristics of robotic systems such as interaction with the physical world, 
and integration of hardware and software components, differentiate robotic systems 
from conventional software systems [4]. Due to these inherent differences testing 
approaches used for software cannot be directly applied to robotic systems.

The main differences between software systems and robotic systems are: (1) 
Robots are comprised of (unreliable and non-determinstic) hardware, software, 
and physical components [9-11]. This applies to both hobby grade and industrial 
grade products, but it is especially true when working with inexpensive com-
ponents in a research or education setting. (2) Robots interact with the physical 
world via inherently noisy sensors and actuators and are sensitive to timing dif-
ferences [11]. (3) Robots operate within the practically boundless state space of 
reality, making emergent behaviors (i.e., corner cases) diffi cult to predict [9]. (4) 
For robotic systems, the notion of correctness is often inexact and diffi cult to 
precisely specify [7]. 

These differences introduce numerous challenges related to the testing of 
robotic systems such as having to create heavy abstractions of physical reality 
or conduction real-world fi eld testing [4] that can be time-consuming and ex-
pensive. In some cases, real-world testing may even be impossible because the 
environments that the system is aim towards are diffi cult to access. Examples of 
such environments are deep in the ocean, or on other planets.

There are a lot of studies focused on software testing practices, however 
none of them focus on the challenges in robotics [4]. To address this lack of re-
search, a recent study interviewed a group of professionals working in the fi eld of 
robotics [4]. The goal of this study was to identify common testing approaches, 
the challenges that are commonly encountered when developing tests for robots 
and the diffi culties automating those tests.

The methods of testing mentioned by the participants are: (1) Field Testing, 
(2) Logging and playback, (3) Simulation Testing, (4) Plan-based testing and 



91

(5) Compliance testing.[4] Out of these testing methods, simulation is one of 
the most seldom used, as simulators that accurately simulate the real world to a 
high degree just do not exist and are not suitable for testing of the whole system. 
Simulation is usually used as a high-level development tool [4]. 

The main challenges outlined in the study are: (1) Unpredictable corner cas-
es, (2) Engineering complexity, (3) Culture of testing and (4) Coordination, col-
laboration, and documentation. [4]

The last thing the study discusses are the challenges of automating tests. As 
the previous paragraphs outline, testing on its own is diffi cult and trying to au-
tomate it makes things even more tricky. The main diffi culties are: (1) Cost and 
resources, (2) Environmental complexity, (3) Distrust of simulation, (4) Software 
and hardware integration.

Due to all the outlined challenges, the area of robotic testing is still develop-
ing and further research into practical testing approaches is required. 

3 Case study architecture 

This section will briefl y discuss the architecture of the system described in 
this case study – the Teensy Balance Bot. Robots of this type share some key 
characteristics, but there are many ways of implementing a balancing robot [3], 
because of this the specifi c architecture used for this case study is discussed.

3.1 Hardware

The Teensy Balance Bot, as the name suggests is based on the Teensy 
microcontroller family, in this case a Teensy 4.1 is used. The IMU module is the 
LSM6DS33 from Pololu, it has a gyroscope and accelerometer. The motor driver 
is the Cytron MDD3A and the motors are generic brushed motors with reduction 
gears. Two magnetic encoders from Pololu are used for detecting wheel rotation. 
A small OLED screen is displays status messages. The robot is powered by two 
Panasonic NCR18650PF Li-ion. The main body of the robot is custom made to 
fi t the parts and manufactured using 3D printing.

The circuit diagram of the robot shows the connection between all the com-
ponents (see Fig. 1).



92

Fig. 1. Teensy Balance Bot circuit diagram.

3.3 Software

The software that runs on the Teensy microcontroller is written in C++ and uses 
a screen library from Adafruit. Everything else is built from scratch. Fig. 2 shows 
the complete architecture.

Fig. 2. Teensy Balance Bot Software architecture.



93

4 Proposed testing approach

Considering the challenges outlined in section 3, this section this section proposes 
a testing method that provides a systematic approach for testing robotic systems 
that fall into the category of balancing robots. Such robots are used in research 
and education and are an excellent way of learning how to work with sensors and 
actuators. 

It is possible using this process to verify easily that the robot is working cor-
rectly, and that the desired functionality has been implemented. 

4.1 Feasibility study

The testing phase of the project begins before any physical or software components 
are created. MATLAB and Simulink are a good option for simulating robotic 
systems.

Using a simulation allows for early detection of potential defects and in cases 
such as the balancing robot it helps to prove that the system can be created and 
controlled from a mathematical point of view. Simulations also allow for soft-
ware to be tested before the hardware is available [4]. 

Using more advanced simulations and a more detailed model can also aid 
in the development of the software that runs on the microcontroller, however as 
section 3 outlined using simulation can be unreliable and refi ning the simulation 
can be expensive. In the case of the Teensy Balance Bot, a simulation was used to 
determine if the PID controller design was appropriate. 

4.2 Testing tools

The next important step in this approach is choosing the right tools for testing. 
Since both hardware and software tests are being performed, appropriate 
equipment needs to be used.

Software testing tools
Software testing can be accomplished using the Visual Studio IDE with the 

VisualMicro plugin. This combination allows for debugging and provides an easy 
way to monitor the serial output from the microcontroller. 

Hardware testing tools
An oscilloscope is used for verifying that the signals being sent from the 

sensors to the microcontroller or vice versa are correct. Oscilloscopes are an es-
sential tool for testing as they are a window into the invisible world of electronics 
and troubleshooting a complex system like a robot without one, while possible, 
would be very diffi cult. 



94

4.3 Divide and Conquer 

Divide and Conquer is a popular strategy that is used in many fi elds. It is of 
particular interest in the testing of robotic systems because it allows for early 
problem detection and correction. Robots are made up of many components 
and diagnosing issues as a single system is diffi cult. Due to this, the approach 
proposed in this paper examines the case where each component goes through 
three stages:

Initial prototype – During this phase only basic functionality is developed 
and tested. Additional care is taken to not crowd the code with unnecessary func-
tionality and the hardware is limited to the basic components. A good example 
of this is the development of the inclination angle measurement component. The 
fi rst step in the development of this component is to validate that the IMU is func-
tion and producing data. The second step is to convert the raw data into a known 
unit and to verify that the values are correct. The third step is to implement a 
sensor fusion algorithm such as a Complementary or Kalman fi lter to measure an 
inclination angle [2].

Defi ning component I/O – In this step the inputs and outputs of the compo-
nent are defi ned. This part embraces the black box model and allows for a good 
level of modularity. A key property of the approach proposed in this paper is 
modularity, even in the smallest projects, as it allows for much more fl exibility.

Creating fi nal version – During this phase, the component is implemented 
using best practices and conventions. 

The three steps listed above are aimed towards software components that 
interact with hardware, such as sensors, as well as those that work exclusively 
with software components.

The “Divide and Conquer” approach falls into the category of Plan-based 
testing, outlined in section 3. It involves creating a rough plan and objectives for 
testing that can be specifi ed in advance to manage and guide testing [4]. The par-
ticipants in the study mentioned that they create system requirements list, which 
is used to ensure all components of the system are covered by the tests [4]. 

4.4 Final tests

Final tests of the system are the last step in this approach. In this phase, processes 
such as PID tuning are performed to dial in the behavior of the robot. PID tuning 
is done by varying the PID gains that are used in the algorithm, there are two 
main ways of accomplishing this. Before tuning a PID controller it is necessary 
to examine how each gain affects the behavior of the system.

As the name suggests, there are 3 gains to be tuned. “The proportional (P) 
action gives a change in the input (manipulated variable) directly proportional to 
the control error. The integral (I) action gives a change in the input proportional 



95

to the integrated error, and its main purpose is to eliminate offset. The less com-
monly used derivative (D) action is used in some cases to speed up the response 
or to stabilize the system, and it gives a change in the input proportional to the 
derivative of the controlled variable. The overall controller output is the sum of 
the contributions from these three terms.” [1].

The two methods of tuning a PID controller examined in this paper are using 
the system model together with built-in MATLAB functionality to calculate the 
gains and empirical testing.

Using results from the simulation. MATLAB has a useful feature that ana-
lyzes the model of the system and generates the appropriate PID gains automati-
cally. This is a very quick and precise way to tune the system. The only downside 
to this method is that if the model that is being used is not accurate enough, the 
PID gains might not work well when used on the physical system.

Another approach is empirical testing. This is a more time-consuming ap-
proach, but it is easy for anyone to perform and it delivers good results. Empirical 
testing starts by setting the I and D gains to 0 and the P to 1. The P gain is then 
increased until the system oscillates, in the case of a balancing robot this means 
that the robot tilts back and forth. After that point, the P gain is decreased, and the 
D gain is increased. The D (derivative) gain has a damping effect that stabilizes 
the system. The last gain to be dialed in is the I gain; this affects the steady state 
error and should be implemented carefully to avoid integrator windup.

With the steps described above it is possible to easily tune a PID controller. 
This technique is suitable for small robots such as the Teensy Balance Bot or 
other projects used in research and education because during the tuning process 
the effects of each gain can be easily observed.

This testing approach falls into the category of “Field testing” outlined in 
section 3. In the same study, participants mentioned that during testing they relied 
on intuition to judge if something is working correctly or not. For the case of a 
small balancing robot, tuning the PID controller by testing it in the real world 
and using intuition to judge if the robot is performing correctly is a good way of 
effi ciently testing the system. 

More formal ways of testing such as using a simulation will always deliver 
better results, but as mentioned in section 3, simulations can be unreliable and 
might not replicate the real world correctly and that will lead to incorrect results. 
More time can be spent to refi ne the simulation, but for such a simple case as a 
balancing robot the cost of creating a detailed simulation is not justifi ed.

5 Conclusion

The case study of a balancing robot discussed in this paper is a typical example of 
how a PID controller is designed, implemented, and tested for a real-world system. 



96

The paper proposes a simple, but powerful modular approach to robot testing, that 
can be used in education or research settings. The presented approach gives insight 
into a practical implementation of the testing method by showcasing the testing 
steps of a balancing robot. Two PID testing approaches are discussed. In cases 
where fi eld testing is an option an intuitive PID tuning approach that enables rapid 
testing and development of robots in research or education is outlined. In cases 
where testing the PID controller on a physical system is impractical, a simulation 
approach with both advantages and disadvantages is discussed.

6 Acknowledgments

This work has been accomplished with the fi nancial support by the Grant № 
BG05M20P001-1.002-0011, fi nanced by the Science and Education for Smart 
Growth

Operational Program (2014-2020) and co-fi nanced by the European Union 
through the European structural and Investment funds.

References
1. Skogestad, Sigurd. (2001). Probably the best simple PID tuning rules in the world.
2. Hau-Shiue, Juang & Lum, Kai-Yew. (2013). Design and control of a two-wheel self-balancing 

robot using the arduino microcontroller board. 634-639. 10.1109/ICCA.2013.6565146.
3. J. Conradt, M. Cook, R. Berner, P. Lichtsteiner, R. J. Douglas and T. Delbruck, “A pencil balanc-

ing robot using a pair of AER dynamic vision sensors,” 2009 IEEE International Symposium on 
Circuits and Systems, Taipei, Taiwan, 2009, pp. 781-784, doi: 10.1109/ISCAS.2009.5117867.

4. A. Afzal, C. L. Goues, M. Hilton and C. S. Timperley, “A Study on Challenges of Testing Ro-
botic Systems,” 2020 IEEE 13th International Conference on Software Testing, Validation and 
Verifi cation (ICST), 2020, pp. 96-107, doi: 10.1109/ICST46399.2020.00020.

5. Duan, P. et al. “A Systematic Mapping Study on the Verifi cation of Cyber-Physical Systems.” 
IEEE Access 6 (2018): 59043-59064.

6. S. A. Seshia, S. Hu, W. Li, and Q. Zhu, “Design automation of cyber-physical systems: Chal-
lenges, advances, and opportunities,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 36, no. 9, pp. 1421–1434, 2016.

7. D. Marijan, A. Gotlieb, and M. K. Ahuja, “Challenges of testing machine learning based sys-
tems,” in International Conference On Artifi cial Intelligence Testing, ser. AITest’19. IEEE, 
2019, pp. 101–102.

8. S. K. Khaitan and J. D. McCalley, “Design techniques and applications of cyberphysical sys-
tems: A survey,” IEEE Systems Journal, vol. 9, no. 2,pp. 350–365, 2014.

9. L. Esterle and R. Grosu, “Cyber-physical systems: challenge of the 21st century,” e & i Elektro-
technik und Informationstechnik, vol. 133, no. 7, pp. 299–303, 2016.

10. C. Hutchison, M. Zizyte, P. E. Lanigan, D. Guttendorf, M. Wagner, C. Le Goues, and P. Koo-
pman, “Robustness testing of autonomy software,” in International Conference on Software 
Engineering: Software

11. H. Li, Communications for control in cyber physical systems: theory, design and applications in 
smart grids. Morgan Kaufmann, 2016, ch. 1-Introduction to cyber physical systems.


